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ABSTRACT

This paper presents a statistical approach to the Bayesian
unsupervised segmentation of images. The main problem lies in
the estimation of a distribution mixture. Iterative Conditional
Estimation provides solutions to such a problem. After a brief
recall about the general procedure two stochastic algorithms are
described in the case of a finite Gaussian mixture. They are
applied on synthetic images corrupted by Gaussian noise in
order to estimate the parameters required when performing
contextual Bayesian segmentation.
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INTRODUCTION

This work deals with a statistical approach to the unsupervised
Bayesian segmentation of images. The Bayesian segmentation
problem can be expressed as follows. Let S denote a set of
pixels; an image is then modeled by a pair ( { = ({s)se S,
X=(Xg)se § ) of random fields. Each (g takes its values in a
finite set of classes  and each X is a real random variable.
The distribution of ({,X) is defined by the distribution P{ of {
and by the conditional distributions Py€ of X given {=¢; so is
defined the conditional distribution of { given X=x (a posteriori
distribution). Bayesian segmentation consists in estimating the
unobservable realization of { from the data X=x by {* which
maximizes the a posteriori distribution.

When sufficient information about P{ and PxE is available there
are several algorithms which can be used for Bayesian
segmentation. When using the whole observation one can
choose between the well known MAP and MPM methods
which can be performed respectively by the Simulated
Annealing algorithm described by Geman ez al. in [2] and the
algorithm proposed by Marroquin et al. in [3]. In both these
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approaches { is a Markov field and the random variables
Xs)se § are assumed to be independent conditionally to {.
Another point of view consists in classifying each (g from
observations made on a neighborhood Vg of the pixel s; such
methods are said to be local while MAP and MPM are global
methods.

When classifying real data, P{ and Pyx€ are unknown and,
whatever the segmentation method retained, their estimation

must be carried out in a previous step or simultaneously from
the random variables Xg whose distribution is a mixture of
distributions.

This paper focuses on local methods implying estimation in the

case of images dominated by Gaussian noise.

ITERATIVE CONDITIONAL ESTIMATION

Let (£,X) be a pair of random variables, the distribution of
which is assumed to be defined by the distribution P of { and
the family {Px€} of distributions of X given {=g, these
distributions depending respectively on parameters o and f3 that
need to be estimated from X only. Let us suppose that
estimators o* and B* for o and B can be defined from { and
(£, X) respectively. When { is unobservable the Iterative
Conditional Estimation procedure described in [6] defines ot
and B+ as conditional expectations of a* and B* given X=x
computed according to the current values o€ and 3€. These are
the best approximations of o* and B* in terms of mean square
error when the current parameter tends towards (o, 3).

From an initial value (0g,Bo) the reestimation formulz are:

o :Ec[a*lx =x] (L1
B =E [plx =x] 12)

where E¢ denotes the conditional expectation using (0C,f3°).
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We will see in the following sections that, when the contextual
segmentation in concerned, an explicit computation of ot using
(1.1) is possible but the computation of B+ has to be done

through a “stochastic” approximation of (1.2).

BAYESIAN CONTEXTUAL SEGMENTATION

For A and B such that S B D A let us denote by {A and XB
the restriction of { and X to A and B respectively. Bayesian
segmentation consists in estimating {A by {A* that maximizes
the distribution of A given XB=xRB. In the case of contextual
segmentation A is set equal to {s} and B is a neighborhood of
the pixel s. { needs not to be assumed Markovian and
"discriminating"” functions can be used directly. These functions
are derived from the distribution of ({B,XB) that is assumed to

be independent of B.
For each ®j in Q:

FD(0 ;. xp)= ;BI_IP{Csz‘”i’ Cp_qs = Xp=%p} @

oe

where |B | denotes the cardinal of B and Q is the (finite) set of
classes where (g takes its values.
Then :

* = =
Cq o, < FD(®,, xp) wngQ FD(coj, xB) 3)
J

So, in order to perform segmentation, some knowledge about
the distribution of ({B,XRB) is required. In the most general
case it has to be estimated from the data X=x.

Let us denote by Fj the distribution of XB given {B=gj and
assume that {B is equal to g; with probability . The law of
XB can be written:

F= ) o F 4)

where m =(card(2) |B | .
Then the problem is to estimate the components of a distribution
mixture.

In the following, X is assumed to be Gaussian conditionally to
{. In this case Fj depends on a parameter i composed of a
mean vector and a covariance matrix and the problem lies in
estimating O={a=(d1,...,am);B=(B1,....8m)} from a
realization x of X which provides a sample of XB.

FINITE GAUSSIAN MIXTURE

Let x=(x1,...,xn) be a sample of independent realizations of a
random variable X taking its values in R,
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The density of X is assumed to be:

fO= 3 a () (5)

i=1

where fj is normal with mean yj and covariance matrix I'j; each
oj belongs to ]0,1[ and X{aj; i=l,...,m}=1. In fact,
(ei)i=1,..m corresponds to the a priori distribution described
here above.

The problem lies in the estimation of a=(tt1,...,00m) and
B=((11.I'1),....(Lm.I'm)) from the sample x.

x can be regarded as a sample of incomplete data by considering
each xk to be the "known" part of an observation yk=(xk,®0k)
where Wk is an integer indicating the component population of
origin. Then Iterative Conditional Estimation provides solutions
to such a problem as soon as estimators for o and § can be
defined and if the conditional expectations in (1) can be
computed or approached.

If e=(®1,...,0p) were known, an estimator for a could be

defined by the empirical distribution as follows:
Forie{l,...,m},

Ot? B % k§1x[mk = i] ©

where X[wk=i]=1 if Wk=i, O otherwise.
An alternative is to use the estimator proposed by Tilton in [8];
in this case:

ar=A"'Y )

where A=[ajj] with ajj=[gd fifj for i,j € {1,...,m}and
Y=KY1,..., Ym) with Yi=Z{fi(xk)/n; k=1,...,n}.
The components of B can be estimated by empirical means and

covariance matrices respectively:

H’:(&X) == (8.1)
kglx[“)kzl]
- T
(xk—ui*)(xk—ui*) X[m :i]
« k=1 x
I (ex)= m (8.2)
kglx[wkzl]

Then by considering (6) and (8) or (7) and (8) two iterative
algorithms denoted respectively by A1 and A2 can be defined
whenever formulae (1) can be computed or approached.

When o* is defined by (6), ot = Ec[o* | x] can be computed:



we find, for each ai*, the mean value of the posterior
probabilities pik, computed from the current values o€ and 3€.

pik=Prob{ek=i |xk} )

According to the law of large numbers, B* given by (1.2) can
be approached by:

N
N lglﬁ*(el, x) 10)

where £1,...,.eN are independent realizations of € according to
the posterior probabilities pjk based on o€ and C.

Then from an initial value (0g,Bo) taken not "too far" from the
real parameter and if af=(i€,...,om°®) and BC=(B1C,...,.Bm®)
are the current approximate values of o* and B* the new values
prescribed by the algorithm A1 satisfy:

o1 B e ED

ar=1 a1
P kgl £(x JB%)

and:

N
uf=§ y k=1 12. 1)
=1 ¥ %
k=1 [wl,k—l]
L T
N Z(xk_“p(xk_“?) X[m =]
ri=— 3 *=! 2t 2012.2)

P X[“’l,k=i]

k=1

where ] k is the k-th point of €].
It can be noticed that o * given by (11) is the reestimated value
prescribed by the M-step of the EM algorithm for « (cf. [7]).
Since Tilton's estimator dees not depend on € the reestimation
formule of algorithm A2 are obtained directly by replacing (11)
by:

o= (A% ¥* (13)
where AC and YC are computed as in (7) according to the
current value of .

RESULTS

The algorithms have been first applied in order to perform
contextual segmentation of two classes Markovian fields

corrupted with a real Gaussian noise spatially independant and
spatially correlated. The corresponding means are m1=1, m2=3

and dispersion o2=1.
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Figures (1d), (le), (1f) and (1g) are Bayesian restorations
obtained when estimating the parameters by algorithm Al.
Image (2c¢) is a restoration of (2b) by the three pixel contextual
method involving algorithm A2. In each case we also present
the restoration obtained by a global method that is the algorithm
proposed by Chalmond in [1].

=. I
n

a) Original
Image

b) O.1. + Inde{¢c) O.1. + Cor-

pendent Noise] related Noise

d

€)
Blind Method

1)) g)
3 pixels Contextual Method
h) i)
Chalmond's Algorithm




From (4) it can be easily seen that the complexity in estimation
increases with the context size. The blind method corresponds
to a context size equal to one; the “three pixels contextual”
method restores a pixel s from observations made on a
neighborhood Vg of s:

it

c) 3 pixels contextual method

d) Chalmond's Algorithm
Figure 2

Percentages of misclassified pixels are given in Table 1 and 2.

fig 1d: 16.4 | fig le; 16.3
figlf 125 |foig 143
fiz1h. 49 |fgii 157 fig2¢: 12.3 | fig2d: 21.1

Table 1: error rates
relatives to figure 1

Table 2: error.rates
relatives to figure 2

In figure 3 the original image (3a) is a handdrawn letter
digitalized and binarized. It has been corrupted with a spatially
correlated noise to obtain image (3b). Figure (3c) (respectively
(3d)) is a Bayesian segmentation in two classes (respectively 3
classes) of (3b) by the blind method when the parameters are
estimated by algorithm Al.

a) Original Image
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Figure 3
CONCLUSION

Non supervised image segmentation appears as an important
problem because, in practice, the parameters required are
unknown. When Bayesian segmentation is concerned the
algorithms Al and A2, which are relatively simple to
implement, seem to be well suited to carry out their estimation
in the Gaussian case.

Numerous simulations allow the following conclusions:

- In both cases (independent or correlated noise) the “3 pixels
contextual” method is more efficient than the blind method:

- But, as spatial correlation of the noise increases the contextual
method is less efficient. However it seems to stay more efficient
than Chalmond’s algorithm in the case of correlated noise,
especially when the original image is not homogeneous.
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