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ABSTRACT

This work addresses the problem of generalized mul-
tisensor Hidden Markov Chain estimation with appli-
cation to unsupervised restoration. A Hidden Markov
Chain is said to be “generalized” when the exact nature
of the noise components is not known; we assume how-
ever, that each of them belongs to a finite known set of
families of distributions. The observed process is a mix-
ture of distributions and the problem of estimating such
a “generalized” mixture thus contains a supplementary
difficulty: one has to label, for each state and each sen-
sor, the exact nature of the corresponding distribution.
In this work we propose a general procedure with ap-
plication to estimating generalized multisensor Hidden
Markov Chains.

Key words : multisensor data, generalized mixture es-
timation, Hidden Markov Chains, Bayesian restoration,
unsupervised restoration.

1 INTRODUCTION

Hidden Markov Chains are well known as an efficient
tool for treating numerous concrete problems. Such
models have been successfully applied to speech process-
ing problems [5], script recognition problems, image pro-
cessing problems [1] and others. In a more general man-
ner, one can envisage the use of theses models once the
problem is to estimate some discrete phenomenon from
the observed “noisy”, i.e., continuous phenomenon. The
noise is generally modelled as a realization of a Gaus-
sian random variable. The unsupervised restoration of
Hidden Markov Chains has been studied in the Gaus-
sian case in [1], which is the origin of the present work.
Nevertheless the Gaussian model can be unsuited to de-
scribe reality and one has to consider the use of other
noise types; moreover, 1t is desirable to be able to find
automatically the right nature of the noise for each class
and each sensor. Such generalized mixtures have been
previously studied assuming that the components lie in
the Pearson system. An adaptation of the classical SEM
algorithm [2] can be used to estimate such mixtures [3].
This work lies within the scope of this general problem.
The organization of the paper is as follows:
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In the next section we adress the generalized mixture es-
timation problem in a general setting and present ICE
[4] and tests based methods of its estimation. The third
section 1s devoted to the Hidden Markov Chain model.
In section 4 we present a particular method for General-
ized Hidden Markov Chain model estimation, based on
the Kolmogorov Smirnov test. Section 5 is devoted to
unsupervised restoration and presents some results.

2 GENERALIZED MIXTURE ESTIMATION

Let us consider a finite set S and random variables
(X,Y) = ((Xs)ses, (Vs)ses). X = (Xses) is the class
random process: thus each X, takes its values in a fi-
nite set of classes Q@ = {wiy,...,wi}. YV = (YVses) is
the observed process and each Y; takes its values in
IR™, where m is the number of sensors; thus Y, =
(Y}, ..., Y™). The distribution of X depends on a pa-
rameter o and is denoted by #,. The random variables
Yl ..., Y™ are independent conditionally on X and all
distributions of Y conditional on X are given by k dis-
tributions of Y; conditional on X, = wy,...,wy, respec-
tively. The latter distributions are given by densities
f1,-- ., fr with respect to the Lebesgue measure. The
problem of mixture estimation is to find e and f1, ..., f
from Y = y. In the “classical” mixture case the general
form of f; is known and these densities depend on a
parameter § which has to be estimated from ¥V = y.
For instance, if each f; is Gaussian, 3 contains k£ x m
means and kxm variances. In the “generalized” mixture
case the general form of densities is not known exactly.
However, the form of each f; is in a given finite set of
forms. Let ¥ = {Fy,...,Fyu} be a set of families of
distributions. Thus each f; belongs to one of the fam-
ilies Fy,..., Fyy and we do not know which one it is.
The problem of finding the densities is then two-fold:
for each f;, find the family F7 to which f; belongs and
find the parameter which fixes f; in F;. We propose a
general algorithm called ICE-TEST based on the ICE
algorithm ([4]), which in fact comprises a family of gen-
eralized mixture estimation methods. We assume the
following:



(H1) One disposes of an estimator & = &(X) of o from
X

(H2) Tt is possible to simulate realizations of X accord-
ing to its distribution conditional on Y;

(H3) Each family F; of ¥ is parametrized with a pa-
rameter §';

(H4) One disposes of M estimators B, ..., M such that
if asample z = (z1, ..., z;) is produced by a distribution
fgi in Fj, then pi = B (z) estimates (3

(H5) One disposes of a test which, given any distribu-
tion density f;, checks the hypothesis “f = f;” against
the hypothesis “f # f;”.

For the multisensor case we add the following;:

(H6) Y}, ..., Y™ are independent conditionally on X.
Thus each density f; on IR™ is given by m densities
L. fmon Rand fi = fl x ...x f™

The ICE-TEST algorithm is an iterative method: at
step ¢, let a? and f{,..., f} be current prior parame-

ters and current densities. The updating is:

1. Simulate z?, a realization of X, according to its a?
and f{,...,f] based distribution conditionnal to
Y =uy.

2. Calculate ot = E,[a(X) | Y = y], where E,[ . |
Y =yl is af and f,..., f} based conditional ex-

pectation. If this calculation is impossible, calcu-
late a?t! = a(z?)

3. fori=1,...,k consider S; = {s € S| z? = w;}.

Let y! = (ys)ses: = (b, ..., y™)ses, and y!i" =
(¥5)ses,. For each sensor r = 1,...,m and each
class i = 1,...,k calculate M parameters ﬁilyr —

. M A
PR, B0 = V).

4. for r = 1,...,m and 7 = 1,...,k, consider that
yl" = (Y )ses, is issued from a density f and per-
form M tests (for j = 1,...,k) “f = f5i” against
the hypothesis “f # fﬂ{”. Take ﬁ;’ﬁl as the first

parameter giving the positive answer to the test.

5. For each class i = 1,...,k take fiq"'1
fﬁi,q+1 X ... X fﬁﬁ/{,q+1) and update (f1,..., fr) with
I g,

We call our method ICE-TEST because it can be seen as
a generalization of ICE. The latter method is a general
method of estimation in case of hidden data, including
classical mixture estimation.

3 HIDDEN MARKOV CHAINS

This section is devoted to a brief review of the Hidden
Markov Chain model. We describe it in the mono-sensor

case; the generalization to the multisensor case 1s imme-
diate when the observations for a given class in different
sensors are independent, by replacing in all formulas
filys) by filyg, - u) = fl(ys) x oo x [ (yd).

A sequence of random variables X = (X, )nen taking
their values in Q = {wq,...,wr} is a Markov random
chain if it verifies for every n > 1:

P(Xn+1 = (.dl'n+1 | Xn = (.din .. .Xl = wil) =
P(Xn+1 = Wi, 4 | Xﬂ = win) (1)
Then the distribution of X = (X, )nen is given by the
distribution of X1, called the initial distribution, and a

sequence of transition matrices a;; = P(Xp41 = wj |
Xpn = w;). In what follows we will assume that

cij = P(Xn = wi, Xnp1 = wj) (2)

does not depend on n. Thus the initial distribution is

given by
k

Ti:P(Xlzwi):ZCij (3)

ji=1
and we have just one transition matrix A = [a;;], with

Cii
aij = —— (4)

E Cij

ji=1

Following the general hypotheses of Section 2, we will
assume that the random variables Y = (V;);se s are inde-
pendent conditionally on X and that the distribution of
each Y, conditional on X is equal to its distribution con-
ditional on X;. We still denote by f1, ..., fr the distri-

bution densities of Y, conditional on X, = wq,..., X, =
wy, respectively. We denote by z = (z1,...,2,) and
y = (y1,...,yn) the realizations of X and Y, respec-

tively.
Let us consider the Forward-Backward probabilities
which will be used in estimation and restoration stages:

Ft(wi :P[Xt =w, Y1 =y1,...,Y; :yt]
By(wi) = P[Yiq41 = Y41, -, Y = Yn | Xt = wi]

Fi(w; INlﬁjf];j(yl)
Fy(wj) = Ny (Z Ft_l(wi)aij) fi(y:) for ¢>1
i=1
(5)

Bn(wl) =1 .

By(w;) = Ny Eaij3t+1(wi)fj(yt+1) for t<n
i=1
(6)

Here N, is a normalizing constant :

-1

k
Ny = ZFt(Wj)
ji=1



4 ESTIMATION OF GENERALIZED HID-
DEN MARKOV CHAINS

A Hidden Markov Chain is a type of general model de-
scribed in section 2. Assuming (H6), we show in this
section that the hypotheses (H1)-(H5) assumed in sec-
tion 2 are also verified and then we develop the formulas
adapted to the model.

1. The parameter « is here c¢; j, which can be esti-
mated by

n—1

Z 1[Xt:w“Xt+1:Wj]

~ t=0 -
Cij = — (7)

Thus (H1) is verified.

2. The distribution of X = (Xy,..., X,) conditional
to Y = y, where n 1s finite and fixed, is a distribu-
tion of a nonstationary Markov chain. The initial
distribution and the transition matrix at time ¢ are
given by

e M) (5)

t=1j=1

n—1
> 6uli, g)
i = e (9)

DD ¢ulig)

t=1j=1
where ¢; is defined with (5) and (6):

P(Xt =wi, Xig1 =wj, Y = y)
PY =y)
_ Fi(wi)ai; fi(ye41) Bey (@)

k k
> filyisn) Y Fulwj)aj
=1 j=1

¢:(1,5) =

(10)

Thus simulations are possible; (H2) is verified.

3. There are numerous families verifying (H3). As an
example let us consider ¥ = {N LIIT}; we discribe
below these densities and their parameter estima-
tions:

- type N: distribution N(m,o?)

1) = e (U] e w

m = [ 0'22/,L2

- type I: distribution B(p,q,a1,as), © € [a1 as],
p,q>0

_ T+ q) (= a1~ (ar — 22

T@) = 50T (ar —a it

Y1

1
p’q:ir<1i(’°+2)\/(r+2)272+16(r+1)
p >q if ps>0 otherwise ¢>p
6(y2—m—-1
(6 + 3y1 — 2y2)

1
A=ay—a; = 51@\/(”2)27#16 (r+1)

p
alzlul—A—
pP+q

- type III: distribution T(p, q,a1), > a1, p,¢ > 0

_Aw s 2
pP=—5 =5 G = {1 - —
13 241z 13
Where p1, pa, ps, pa are the first four moments,
2
71:'u—gand'y2:'u—;l.
Hy H3

To estimate the first four moments, one can use
empirical moments

Zyil[)(}:wl]

i(X,Y) = S (11)

Y lxi=ed
t=1

n

D W5 — i) 1 x, =]
i (X, V)= 5 p>1 (12)

(H4) is verified.

. We propose the use of the Kolmogorov-Smirnov test

and accordingly call this algorithm the ICE-KOLM
algorithm. The test runs as follows :

Let y = (y1, ..., Yn) be a sample issued from a den-
sity f. Let

. 1 &
Gul) = =Y 1w ()
t=1

the empirical distribution function, G; the distri-
bution function associated with the distribution
P; (represented by a density f;) and set K, =

sup Gn(.r) — Gj(2)|.
W = {ye R"/K,(y) < c} where ¢ is defined by
P;j(W) = € (for an ¢, ¢ is given by Kolmogorov’s
table). The hypothesis “f = f;” is then accepted if
y € W, and rejected otherwise.

For a given ¢ > 0, let

(Hb) is verified.

)



5 UNSUPERVISED RESTORATION OF
MARKOV CHAINS

5.1 Restoration

At the end of the estimation stage, the prior distribu-
tion and conditional distributions have been calculated;
so we can perform the restoration. We have chosen the
MPM algorithm which maximizes the marginal poste-
rior probability:

Xi=wj ©P(Xy=wj |[Yi=y..Va=uyn) =
iel{%é}i} PXi=wi | Yi=wmn..YVo=9y) =
max Fy(w;)By(wi) (13)
The unsupervised restoration runs as follows:
o Estimate (m;, aij, f;)

e Foreach s=1,... n:

— Calculate F;, B; using (5) and (6);

— Classify X, = w; where w; maximizes the pos-
terior probability according to (13).

5.2 Numerical results

Let us consider two Markov Chains with two classes,
chain A and chain B of different homogeneity. Some
previous numerical results show that the homogeneity
of the class can have a strong influence on the behavior
of estimation and restoration stages.

- Chain A homogeneous. The transition matrix and
initial distribution are:

0.98 0.02
A= ( 0.02 0.98 )
- Chain B non homogeneous. The transition matrix and
initial distribution are:

0.8 0.2

A= < 0.2 08 )
The sensor 1 is corrupted with T'(4;10;100) and
N(180;400) and the sensor 2 is corrupted with
T'(8;10;100) and B(7;3;0;200). We compare the ICE-
KOLM algorithm with the classical one called TCE-
GAUS which assumes that all densities are Gaussian.
Results of estimation and kind of distribution detected
are presented in table 1. The classification error rates
after restoration are presented in table 2.
In view of the results presented in table 1, we observe
that ICE-KOLM finds the correct distributions for chain
A. In case of chain B, ICE-KOLM fails to detect the Beta
distribution in sensor 2. The good estimation of the
parameters improves the efficiency of the unsupervised
Gaussian MPM restoration (see table 2). Moreover, the
error rates of the MPM based on the ICE-KOLM es-

timates are very close to the error rates of the MPM
based on the true parameters.

7=(05,0.5)

7=(05,0.5)

Chain A Sensor 1 Sensor 2
Real I'(4,10,100) I'(8;10;100)
distribution N(180,400) B(7;3;0;200)
ICE-GAUS N(140,379) N(179;855)
N(180,405) N(140;764)
ICE-KOLM | T'(3,5;12;98) I'(10,2;8;95)
N(180;400) | B(6,3;2,3;36;198)
Chain B Sensor 1 Sensor 2
Real T'(4,10,100) I'(8;10;100)
distribution N(180,400) B(7;3;0;200)
ICE-GAUS N(137,251) N(171;871)
N(180,397) N(139;810)
ICE-KOLM | T'(3,8;11;100) | [(6,7;10;116)
N(181;374) | N(142;822)

Table 1: 2 sensor generalized mixture estimation

Chain A | Chain B
Real distribution | 0.46% 6.8%
ICE-GAUS 3.14% 9.1%
ICE-KOLM 1.45% 7.9%

Table 2: Error rates after restoration
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