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ABSTRACT

This work addresses the problem of unsupervised mul-
tisensor image segmentation. We propose the use of
a recent method which estimates parameters of gener-
alized multisensor Hidden Markov Chains. A Hidden
Markov Chain is said to be “generalized” when the ex-
act nature of the noise components is not known; we
assume however, that each of them belongs to a finite
known set of families of distributions. The observed
process is a mixture of distributions and the problem of
estimating such a “generalized” mixture contains a sup-
plementary difficulty: one has to label, for each state
and each sensor, the exact nature of the corresponding
distribution. The general ICE-TEST method recently
proposed allows one to solve such problems.

Key words : multisensor data, generalized mix-
ture estimation, Hidden Markov Chains, Bayesian seg-
mentation, unsupervised segmentation.

1. INTRODUCTION

Hidden Markov Chains are well known as an efficient
tool for treating numerous concrete problems. Such
models previously applied to speech processing prob-
lems and script recognition problems are here used in
image segmentation. The image is transformed into
a chain using the Hilbert-Peano curve [1]. This model
was first proposed in [2] for the case of mono-sensor im-
ages and Gaussian mixtures. Nevertheless, the Gaus-
sian model can be unsuited to describe reality and one
has to consider the use of other noise types; moreover,
it 1s desirable to be able to find automatically the cor-
rect nature of the noise for each class and each sensor.
Such generalized mixtures have been previously stud-
ied assuming that the components lie in the Pearson
system; in fact, an adaptation of the classical SEM al-
gorithm ([3]) can be used to estimate such mixtures
([4]). In this paper we propose the use of a recent gen-
eral method, called TCE-TEST, which allows one to

find the noise components among any set of families of
distributions ([5]). This method for estimating a gen-
eralized mixture is then coupled with a segmentation
method, Maximum Posterior Mode (MPM), resulting
in an unsupervised segmentation of multisensor images.
The organization of the paper is as follows:

The next section is devoted to the Hidden Markov
Chain model in image segmentation. In the third sec-
tion we briefly address the generalized mixture esti-
mation problem and recall our particular method for
Generalized Hidden Markov Chain model estimation,
based on the Kolmogorov-Smirnov test. Section 4 is de-
voted to unsupervised segmentation and presents some
results.

2. IMAGE SEGMENTATION USING
HIDDEN MARKOV CHAINS

Let S be the set of pixels and (s1,...,s,) be pixels
ordered according to the Hilbert curve given in Fig-
ure 1. X = (X;eg) is the class random field: thus
each X, takes its values in a finite set of classes Q =
{wi,...,wi}. Y = (Yseg) is the observed field and each
Y, takes its values in IR™ where m is the number of
sensors; thus Yy = (Y!,...,Y/™). We assume that the
observations for a given class in different sensors are in-
dependent. Considering (X1,...,X,) = (Xs,, ..., Xs,)
as a Hidden Markov Chain, the problem of image seg-
mentation can be seen as the problem of the Hidden
Markov Chain restoration.

A sequence of random variables X = (X,),en taking
their values in Q = {wy,...,w;} is a Markov random
chain if it verifies for every n > 1:

P(Xn-}-l = win-}-l | Xn = (-Uin . .X1 = wil) =
P(Xny1 =wi,p, [ Xn=wi,) (1)

Then, the distribution of X = (X, )nen is given by the
distribution of X7, called the initial distribution, and



a sequence of transition matrices a;; = P(Xp41 = wj |
Xpn = w;). In what follows we will assume that

cij = P(Xn = wi, Xny1 = wj) (2)

does not depend on n. Thus the initial distribution is
given by

k

7= P(X1 =w;) = Zcij (3)

ji=1

and we have just one transition matrix A = [a;;], with

Cig
aij = —— (4)

E Cij

ji=1

We will assume that the random variables Y = (V;)ses
are independent conditionally on X and that the dis-
tribution of each Y, conditional on X is equal to its
distribution conditional on X,. Thus all distributions
of Y conditional on X are given by k distributions of Y
conditional on X; = wq,...,wy, respectively. The lat-
ter distributions are given by densities fi,..., fr with
respect to the Lebesgue measure and each f; of densi-
ties, defined on IR™,is given by m densities f}, ..., f™
on R: fi(Vl,...,Y/™) = fH(V)) x ... x f™(Y/™). We
denote by z = (z1,...,2,) and y = (y1,...,Yn) the
realizations of X and Y, respectively.

Let us consider the Forward-Backward probabilities
which will be used in estimation and restoration stages:

Fi(w;) = P[Xe =wi, Y1 =1, ..
Bt(wz’) = P[Yt+1 = Yt41,- -

'JY—f:yt]
13% = Yn |X3 :de

Fi(w;) = Nﬂjf;g(yl)

Fy(wj) = Ny ZFt_l(wi)aij) fi(ye) for t>1
6)

Bp(w;) =1

Bi(wi) = Neya zk:aijBtH(wi)fj (yr41) for t<n

(6)

Here N; is a normalizing constant :
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Figure 1: Hilbert scan

3. GENERALIZED MIXTURE
ESTIMATION

The problem of mixture estimation is to find & = (7,
a;j) and fi,..., fr from Y = y. In the “classical” mix-
ture case the general form of fi,..., fr is known and
these densities depend on a parameter § which has to
be estimated from Y = y. For instance, if each f! is
Gaussian, § contains k x m means and k x m vari-
ances. In the “generalized” mixture case the general
form of densities is not known exactly. However, the
form of each f! is in a given finite set of forms. Let
W ={Fy,...,Fa} be a set of families of distributions;
we assume that each family F} is characterized by the
first four moments. Thus each f! belongs to one of
the families F, ..., F)yy and we do not know which one
it is. The problem of finding the densities is then two-
fold: for each f/, find the family Fj to which f/ belongs
and find the parameter which fixes f! in Fj. We use a
general algorithm developed in [5], called ICE-TEST,
based on the ICE algorithm ([6]), which in fact com-
prises a family of generalized mixture estimation meth-
ods. We propose the use of the Kolmogorov-Smirnov
test and accordingly call this algorithm the ICE-KOLM
algorithm. The iterative algorithm runs as follows:

At step ¢, let a? = (7, af;) and f],..., f{ be current
prior parameters and current densities. The updating
procedure is:

o The initial distribution:

w = LSS 6) (7)

t=1j=1

e the transition matrix:

n—1
> ¢l 5)
agj-l_l = n—tlzlk (8)
61 (1, 4)
=1

t=1j



where ¢; is defined with (5) and (6):

P(Xy =wi, X441 =w;, Y = y)
P(Y =y)
_ Fuwi)aij £ (Y1) Biga (w))

k k
Zfl(yt+1)ZFt(Wj)ajl
=1 j=1

¢t(iaj) =

9)

e Simulate z7, a realization of X, according to its

a? and f{,..., f] based distribution conditional
onY =y.
e for each sensor [ =1,...,m

— Calculate the conditional distribution param-
eters which depend on the first four mo-
ments and are estimated by empirical mo-
ments:

Z Ye 1[rf:wl]

izt y) = S———  (10)

(11)
— perform M Kolmogorov tests which check
the hypotheses

(HO) : le:f fE\II:{Fl,,FM}

(Hi) : fil#f fev={F,...

Take fil’q+1 as the density giving the positive
answer to the test.

, Far}

e For each class i = 1,..., k take fiq"'1 = fl-l’q'i'1 X
L% fl?“’q"'l) and update (f1, ..., fr) with
T .

4. UNSUPERVISED RESTORATION OF
MARKOV CHAINS

4.1. Segmentation

At the end of the estimation stage, the prior distribu-
tion and conditional distributions have been calculated,

so we can perform the segmentation. We have cho-
sen the MPM algorithm which maximizes the marginal
posterior probability:

Xt:ijP(Xt:wj [ Yi=wp ... Vo =yn) =

ier{q%}P(Xt =wi | Yi=y.. . YVa=y)=

ie{ﬁéﬁ} Fy(w;)Bi(w;) (12)
The unsupervised restoration runs as follows:

e Estimate (m;, a;j;, fi) using the ICE-KOLM algo-
rithm.

e Foreachs=1,... n:

— Calculate F;, B; using (5) and (6);

— Classify X; = w; where w; maximizes the
posterior probability according to (12).

4.2. Numerical results

Let us consider the family ¥ = {F}, Fy, F3} where F
are Gaussian distributions, Fy are Gamma distribu-
tions and F3 are Beta distributions of the first kind,
plus a synthetic image “Letter B” with two sensors.
Table 1 presents the distributions used to corrupt the
image, the kind of distributions detected and the clas-
sification error rates after segmentation. Noisy images
and segmented images are presented in Figures 2 and
3. We compare the ICE-KOLM algorithm with a clas-
sical one called TCE-GAUS [2] which assumes that all

densities are (Gaussian.

Sensor 1 | Sensor 2 | Taprpm

Real Gamma | Normal
distributions | Gamma | Gamma | 0.89%

ICE-GAUS | Normal | Normal
Normal | Normal 3. 7%

ICE-KOLM | Gamma | Normal
Gamma | Gamma | 1.7%

Table 1 : Density recognition with ICE-KOLM, real
parameter based segmentation, ICE-GAUS based unsupervised
segmentations, and ICE-KOLM based unsupervised
segmentation.

In view of the results presented in Table 1 we observe
that ICE-KOLM finds the correct distributions and the
good estimation of the parameters improves the effi-
ciency of the unsupervised Gaussian MPM restoration.
Moreover, the error rates of the MPM based on the
ICE-KOLM estimates are very close to the error rates
of the MPM based on the true parameters.



sensor 1 sensor 2

Figure 2: Noisy images in each sensor.

ICE-GAUS+MPM

ICE-KOLM+MPM

Figure 3: Segmented images.

We consider now a real multisensor radar image:

sensor 1 sensor 2

We present the result of two sensor, ICE-GAUSS and
ICE-KOLM based-MPM segmentation:

o

4 classes

3 classes

Figure 4: ICE-GAUSS based MPM segmentation

g 2

4 classes

3 classes

Figure 5: ICE-KOLM based MPM segmentation

In case of three classes, the components detected by
ICE-KOLM are Gamma, Gamma, Normal in sensor 1
and Gamma, Normal, Beta in sensor 2. In case of four
classes, the components are Gamma, Normal, Normal,
Normal in sensor 1 and Gamma, Beta, Beta, Normal
in sensor 2. We may note that the nature of the com-
ponents varies with the class. As the real nature of the
ground is not avalaible, it is difficult to compare the
efficiencies of the two methods. We observe, though,
that fine details in image have been restored.

5. REFERENCES

[1] Skarbek.W. Generalized Hilbert scan in image
printing. In W. G. Kropetsh R. Klette, editor, The-
oritical Foundations of computer vision, pages 45—

57. Akademie Verlag, 1992.

[2] Benmiloud.B et Pieczynski.W.
paramétres dans les chaines de Markov cachées
et segmentation d’images. Traitement du Signal,

12(5):433-454, 1995.

Estimation des

[3] Masson.P et Pieczynski.W. SEM algorithm and un-
supervised segmentation of satellite images. IEEFE
Transaction on Geoscience and Remote Sensing,

31(3), 1993.

[4] Delignon.Y, Quelle. HC. and Marzouki.A. Unsuper-
vised Bayesian segmentation of SAR images using
the Pearson system. Proceedings of IGARSS’93
Tokyo, pages 1538-1540, 1993.

[5] Giordana.N and Pieczynski.W.  Unsupervised
Restoration of Generalized Multisensor Hidden
Markov Chains. In FUSIPCO-96 VIII European
Signal Processing Conference, Trieste, Sept 1996.

[6] Pieczynski.W. Champs de Markov cachés et Es-
timation Conditionnelle Itérative. Traitement du

Signal, 11(2):141-153, 1994.



