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Abstract

This work deals with the estimation of generalized mixtures
with applications to unsupervised statistical multisensor image
segmentation. A mixture is said to be "generalized" when the
exact nature of the noise components is not known; one
assumes, however, that each belongs to a finite known set of
families of distributions. We propose some methods of
estimation of such mixtures based on Expectation-
Maximization (EM), and Iterative Conditional Estimation
(ICE, [6]) algorithms. The set of families of distributions is
assumed to lie in Pearson's system.

1. INTRODUCTION

It is well established that statistical methods of segmentation
can show exceptional efficiency. One can distinguish global
methods, which use Markovian models [1], [3], [4], [6], and
local ones [5], [8]. When unsupervised segmentation is
concerned, one has to estimate the required model parameters
in a previous step. The corresponding statistical problem is
that of mixture estimation, and techniques like EM or SEM [5]
can generally be used. In "classical" mixtures the nature of the
noise distributions is known: for instance, they are all
Gaussian, or Gamma, or Beta, etc. In real situations it can
happen that this nature differs with the class. Furthermore, in
the multisensor case, it can differ with the sensor for a given
class. Moreover, for a given class and a given sensor this
nature can vary in time. Thus it would be very useful to be
able to automatically find the right nature of the distribution
for each class and each sensor. Pioneer results of such works
are presented in [7].

Our work addresses the problem of a generalized multispectral
mixture estimation with application to unsupervised
segmentation of SAR images. A mixture is said to be
"generalized" when the exact nature of the noise components
is not known; we assume, however, that each belongs to a
finite known set of families of distributions. For instance, in
the case of three classes and two sensors, if each component
can be exponential or Gaussian, there are thirty-six
possibilities of "classical" mixture. Thus the observed process

is a distribution mixture and the problem of estimating such a

0-7803-3068-4/96$5.00©1996 IEEE

“generalized" mixture contains a supplementary difficulty: one
has to label, for each class and each sensor, the exact nature of
the corresponding distribution.

When considering both global and local methods, classical
mixture estimation algorithms such as EM, ICE, and SEM,
can be adapted to such situations. Among different
possibilities, we describe one of the generalized mixture
estimation methods, valid in the context of Hidden
Multisensor Markov Fields, using the Pearson system and
ICE.

Different algorithms are then applied to the problem of
unsupervised Bayesian multispectral SAR image
segmentation. We propose an adaptive version of SEM in the
case of "blind", i.e., "pixel by pixel", segmentation and
compare its efficiency to the global ICE based method.

2. PEARSON'S SYSTEM

In this section we specify the set of families ® = {F. ,...,FS}

we will use in the unsupervised radar image segmentation.
Our description of Pearson's system is brief as further details
can be found in [2].

A probability density function f on R belongs to Pearson's

system if it satisfies :
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The variation of the parameters 4,€0,€15Co provides

distributions of different shape and, for each shape, defines the
parameters fixing a given distribution. Let ¥ be a real random
variable whose distribution belongs to Pearson's system. For
q = 1,2,3,4 let us consider the moments of Y defined by :
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and two parameters Y1> 79 defined by :
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4/ 7, is called "skewness" and ¥, "kurtosis".

On the one hand, the coefficients a,c¢;,¢;,C, are then linked
with [L;,[L,,7Y,, 7, by the following formula :
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On the other hand, putting
2
71(75 +3)
172 (5)

4(47, = 37)27, =37, —6)
the eight families of the set @ = (F,,..., F. 8} are defined by :
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The exact form of different densities can be seen in [2]. In
particular we have, F): beta distributions of the first kind;
F: gamma distributions; F: Inverse gamma distributions;
F : beta distributions of the second kind; and F8 : Gaussian
distributions.

Note that the moments fi;,....{, can be easily estimated by
empirical moments, from which we deduce the estimated
values of 7,7, by (3) and, finally, we estimate the family
using (6).

3. GENERALIZED ICE

Let us briefly describe how generalized ICE runs in the
context of Multisensor Hidden Markov Fields. For a set of
pixels S, we consider two sets of random variables

X =(X; )seS’ Y= (YS)SES called "random fields". Each X

takes its values in a finite set of classes Q = {a)l,..., @y, } and

each Y takes its values in R™. The field X is Markovian
and we will denote by « all parameters defining its
distribution PX. The random variables (Ys)seS will be
assumed independent conditionally to X, and furthermore,
the distribution of each Y conditional to X will be assumed
equal to its distribution conditional on X. Under these
hypotheses all distributions of Y conditional to X are defined
by the & distributions of Y conditional to X = Wp5eee Op

respectively, whose densities will be denoted by f,..., f,.
The sensors will be assumed independent, which implies

F09) = £ 0 = £ G X i GE (D)

Note that realizations of X according to its posterior
distribution are possible (Gibbs sampler).

Thus each flj lies in one of the eight families of Pearson's

system and the problem is to find each of them. We assume
that we dispose of an estimator & = &(X) of the parameters
a.

The ICE-PEAR is an iterative procedure which runs as
follows:
(i) Initialize the procedure in some way. For instance, take all

fij Gaussian with parameters estimated by some classical
algorithm.

(ii) Caleulate (09T, fg.”) from ¥ =y and (af, fg.) in
the following way:

q and

(a) Simulate x?, a realization of X according to its &
fi,..., f based distribution conditional to ¥ = y.

(b) Caleulate o711 = ax7).

(c) For i =1,...,k, consider Si ={se S/x? = a)l.}. For each
sensor j calculate the four first moments from

y{ = (yg )sES. and decide, using (3), (5), and (6), in which
i

family among F ""’F8 the distribution fij lies. Use (4) in
order to calculate the parameters.
(d) Consider the densities fij found in (c) as (ng)

It is possible to propose an analogous "blind", i.e. "pixel by
pixel" SEM based algorithm and its adaptive version, in
which priors depend on pixels [7].

707



4. EXPERIMENTS

4.1 Synthetic image

Let us consider a synthetic image "Ring" below and its noisy
versions in three sensors. ICE-PEAR is the result of the
Maximum Posterior Mode (MPM [4]) segmentation based on
ICE-PEAR estimates and Adaptive Generalized SEM
designates the result of the classical local Bayesian
segmentation based on estimates with Adaptive Generalized
SEM .
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Ssor 3

Adaptive Generalized SEM

ICE-PEAR

4.2 Real image
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5.CONCLUSION

Different generalized mixture estimation algorithms allow one
to find automatically the correct form of the noise for each
class and each sensor, which allow one to generalize the
classical unsupervised image segmentation methods.
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