UNSUPERVISED ADAPTIVE IMAGE SEGMENTATION

Zoltan Kato, Josiane Zerubia, Marc Berthod

INRIA - 2004 Route des Lucioles - BP 93
06902 Sophia Antipolis Cedex - FRANCE
Tel (33) 93 65 78 57 - Fax (33) 93 65 76 43

ABSTRACT

This paper deals with the problem of unsupervised Bayesian
segmentation of images modeled by Markov Random Fields
(MRF). If the model parameters are known then we have
various methods to solve the segmentation problem (Sim-
ulated Annealing, ICM, etc...). However, when they are
not known, the problem becomes more difficult. One has to
estimate the hidden label field parameters from the avail-
able image only. Our approach consists of a recent iterative
method of estimation, called Iterative Conditional Estima-
tion (ICE), applied to a monogrid Markovian image seg-
mentation model. The method has been tested on synthetic
and real satellite images.

1. INTRODUCTION

In real life applications, the model parameters are usu-
ally unknown, one has to estimate them only from the ob-
servable image. From a statistical viewpoint, this means
that we want to estimate parameters from random variables
whose joint distribution is a mixture of distributions. If we
have a realization of the label field then the problem is rel-
atively easy, we have many standard methods to do param-
eter estimation (Maximum Likelihood, Coding method [1],
etc...). Unfortunately, such a realization is not known, so
the direct use of such estimation algorithms is impossible.
We have to approximate it by some function of the image
data, which is the only observable attribute. Some nowa-
days used algorithms are iterative [2] subsequently generat-
ing a labeling, estimating parameters from it, then gener-
ating a new labeling using these parameters, etc ...

Herein, we will present a parameter estimation method
applied to monogrid MRF models. The proposed algorithm
has been tested on image segmentation problems. Com-
parative tests have been done on noisy synthetic and real
satellite images.

2. PARAMETER ESTIMATION

Hereafter, we consider the monogrid MRF segmentation
model originally presented in [3] but with unknown param-
eters. Let us first review the model. We are given the grey-
levels F of an image S = {s1, 82,...,8~}, which is the only
observable attribute. Moreover, we are given a set of labels

THIS WORK HAS BEEN PARTIALLY FUNDED BY
CNES, AFIRST AND DRED/GDR-TDSL

2399

Wojciech Pieczynski

INT - 9, rue Charles Fourier
91011 Evry Cedex - FRANCE
Tel (33-1) 60 76 40 40 - Fax (33-1) 60 77 65 29

denoted by A = {0,1,...,L — 1}. The problem is to esti-
mate the model parameters © and find the MAP estimate
of the label field X among the possible discrete labelings
Q=AY = {0 = (Woy,.--,wsp):ws € A}. In the case of
unknown parameters, the maximization problem becomes

(@,8) = argmax P(w, F | ©). (1)

Since this maximization is not tractable, we use the follow-
ing equations instead [4, 5]:
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Herein, we are interested in the solution of the ML estima-
tion using Equation (3):

O =arg max P, F | ©) (4)

The probability at the right hand side can be written as
P(®,F|©)=P(F|w,0)Pw]|0O) (5)
Using the model defined in [3], the first term is a product
of independent Gaussian densities and the second term is a

first order MRF, also known as the Potts model in statistical
mechanics [6]:
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We have 2L + 1 parameters (two for each class and one
hyperparameter 8) denoted by the vector ©. The first 2L
parameters are estimated from the Gaussian term and the
last one is computed from the Markovian term. Instead of
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the likelihood function defined in Equation (6), we consider
the simpler logarithmic likelihood:
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where S, is the set of pixels where & = A. To get the mini-

mum of the likelihood function, ® must satisfy the following
equations:

YA € A: 9G(pr03) 0 (11)
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and 5 - 0 (13)

The solution with respect to (w.r.t.) ux and oy of the above
system is simply the empirical mean and variance:
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The solution w.r.t. 3, however, is not as easy. Let us con-
sider the derivative of M(S):
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with N** (@) = Z{S,T}EC 8(w,,w,) is the number of inho-

mogeneous cliques in &. From Equation (15), we get:
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The right hand side is also called the energy mean. Since

In(Z(B)) is convezin O [6, 4], the gradient can be approxi-
mated by stochastic relaxation [4}:
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Algorithm 1 (Hyperparameter Estimation)

@ Setk =0, initialize ﬁo and let N**(3) denote the num-
ber of inhomogeneous cliques in the estimate of the la-
beling.

@ Using SA at a fized temperature T, generate a new la-
beling 1, sampling from

N
exp (—ﬂT E{s,r}es 6(w,,w,))

PX =w)= e (17)
Z(B*)

Compute the number of inhomogeneous cligues N**(n)

7.

® If N'*(n) = N*@) then stop, else k = k + 1. If
N*™*(n) < N**(@) then decrease B, if N (n) > N**(%)
then increase ﬁk, and goto Step (.

Using Equation (14) and Algorithm 1, we can estimate the
model parameters, if we have a realization of the label field.
Unfortunately such a labeled sample is unknown in real-life
applications, we have to use an estimation method which
works with unlabeled samples. We have chosen a recent
method, called Iterated Conditional Estimation (ICE) [2]
to solve this problem.

Let us consider an estimator £o{(F,w) of © (ML, for
instance). Since realizations of the label field are unknown,
the direct use of £o(F,w) is impossible, we have to ap-
proximate it. The best approximation, in the mean-square
sense, is the conditional expectation. Since E{fo | F,w}
depends on the parameters ©, we need a parameter ex
previously defined by some way. This defines an iterative
procedure [2]:

Algorithm 2 (ICE)
@ Setk=0 and initialize ©°.

@ Generate n realizations (n is fized a priori) (1 < i <
n) of the label field based on ©F.

® Based on the sample B'(1 < i < n), O s obtained
as the conditional expectation

~ 1+ ~i
B = B{fo | X =w) ~ = > Ee(FDH.  (18)

i=1
@ Goto Step @ until O stabilizes.

There is still one problem to solve, namely the initialisation
of the parameters in Step . We have used a simple algo-
rithm to initialize the Gaussian parameters. The method,
proposed by Postaire and Vasseur [7], consists of the geo-
metrical analysis of the hystogram, regarded as a Gaussian
mixture, in order to determine its modes. For the hyper-
parameter 3, the initial value is not crucial, pratically any
value between 0.5 and 1 is good.

The complete segmentation process is the following: Given
an image F, compute the histogram and initialize the mean
and the deviation of the classes, using the geometrical anal-
ysis of the histogram. Then, using the ICE algorithm, es-
timate ©. Once the final estimate © of the parameters is
obtained, one proceeds to the ordinary segmentation with
known parameters. The formulation of the unsupervised
segmentation algorithm used for the simulations is the fol-
lowing:

Algorithm 3 (Unsupervised Segmentation)
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@ Given an image F, compute its histogram and for each
A € A, wnatialize py and ox using the histogram. (3 is
initialized tn an ad-hoc way.

@ (Estimation) Using the ICE algorithm, get an esti-
mate © of the parameters.

@ (Segmentation) Given the parameters @), do an ordi-

nary supervised segmentation to get the MAP estimate
of the label field given F and ©.

Unsupervised
Parameter || Initial | Final || Supervised
Po 83.5 | 84.3 85.48
ay 256.0 | 480.5 446.60
H1 100.0 | 117.3 115.60
o7 169.0 | 416.3 533.97
2 152.5 | 148.1 146.11
a5 676.0 | 457.8 540.32
H3 181.5 | 178.5 178.01
o3 100.0 | 490.9 504.34
(B [ o7 10] 1.0 |

Table 1: Parameters of the synthetic image.

3. EXPERIMENTAL RESULTS

We have tested the proposed monogrid unsupervised algo-
rithm on noisy synthetic and real images. The algorithm
was implemented on a Connection Machine CM200. We
have compared the obtained parameters and segmentation
results to the supervised results. In general, the quality
of unsupervised results are as good, or sometimes slightly
better, than the results of supervised segmentation. For ex-
ample, the number of misclassified pixels on the synthetic
image was 112 (0.68%) with the supervised algorithm and
103 (0.63%) with the unsupervised method. We observed,
however, that the unsupervised algorithm is more sensitive
to noise than the supervised one. This is due to the ini-
tial conditions (in particular the initialization of the mean
and the variance of the classes). For example, in the case
of the synthetic image with SNR= 3dB one class has been
lost. But with SNR= 5dB, the result is as good as for the
supervised algorithm.

Before evaluating the results, let us explain some im-
portant points of the implementation. The only parameter
which has to be defined by the user is the number of classes
(or regions). All the other parameters are estimated auto-
matically from the data. For the hyperparameter, we have
chosen B = 0.7 as initial value. Experiments show that the
initial value is not vital, practically any value between 0.5
and 1 is good. In Step @ of Algorithm 3), we use the ICE
algorithm (see Algorithm 2) to iteratively reestimate the
parameters. We have chosen ICM [1] to generate labelings
because of its rapidity: Given the parameters @”, the ICM
is used to maximize the a posteriori probability of the la-
bel field w. Suppose, that ICM converges in N iterations

(N is typically less than 10) given N realizations of w. Us-
ing these labelings, we hiwe to compute N ML estimates of
©. Once the sequence ©" becomes steady, the estimation
step is finished and one proceeds to the segmentation (with
known parameters) using the Gibbs sampler.

The algorithms were tested on a synthetic (Figure 1)
and on a satellite image (Figure 2). We also give the his-
tograms, since the initial estimates are based on them. In
Table 1, we compare the parameters obtained by the un-
supervised algorithm to the ones used for the supervised
segmentation.

In Table 2, we give the computer time of the estima-
tion and segmentation (VPR means the number of virtual
processors per physical processor). As we can see, the es-
timation requires much more time than the segmentation.
The hyperparameter estimation requires the largest part of
the computer time since it consists of generating new label-
ings by Simulated Annealing in Step @ of Algorithm 1.

4. CONCLUSION

In summary, the presented unsupervised algorithms provide
results comparable to those obtained by supervised segmen-
tations, but they require much more computing time and
they are slightly more sensitive to noise. The main advan-
tage is, of course, that unsupervised methods are completely
data-driven. The only input parameter is the number of re-
gions. We believe that, for unsupervised methods, the main
problem is still the initialization of the Gaussian parame-
ters. Hence, a natural extension of this work would be to
look for more efficient initialization techniques.

5. REFERENCES

[1] J. Besag. On the statistical analysis of dirty pictures.
Jl. Roy. Statis. Soc. B., 1986.

[2] W. Pieczynski. Statistical image segmentation. In Ma-
chine Graphics and Vision, GKPQ0’92, pages 261-268,
Naleczow, Poland, May 1992.

[3] Z. Kato, J. Zerubia, and M. Berthod. Bayesian im-
age classification using markov random fields. In
A. Mohammad-Djafari G. Demoments, editor, Maz:-
mum Entropy and Bayesian Methods, pages 375-382.
Kluwer Academic Publisher, 1993.

[4] D. Geman. Bayesian image analysis by adaptive an-
nealing. In Proc. IGARSS’85, pages 269-277, Ambherst,
USA, Oct. 1985.

[6] S. Lakshmanan and H. Derin. Simultaneous parameter
estimation and segmentation of gibbs random fields us-
ing simulated annealing. JEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(8):799-813, Aug.
1989.

[6] R. J. Baxter. Ezactly Solved Models in Statistical Me-
chanics. Academic Press, 1990.

[7] J. G. Postaire and C. P. A. Vasseur. An approximate
solution to normal mixture identification with applica-
tion to unsupervised pattern classification. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
3(2):163-179, March 1981.

2401



Image
[ Imag,

]| VPR | Total CPU time | Estimation | Segmentation

Synthetic

2

249.75 sec.

237.00 sec. 12.75 sec.

Satellite

32

3576.58 sec.

3270.78 sec. 305.81 sec.

Original image

Supervised

SNR = 5dB

Table 2: Computer times.
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Figure 1: Supervised and unsupervised segmentation results with the Gibbs Sampler.
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Figure 2: Supervised and unsupervised segmentation results with the Gibbs Sampler.
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