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ABSTRACT

The aim of our paper is to present a new
unsupervised Bayesian image segmentation method
using a recent model by Hidden Fuzzy Markov
Fields. The main problem of parameter estimation is
solved using a recent general method of estimation
regarding hidden data, called Iterative Conditional
Estimation (ICE, [4]). This has been successfully
applied in classical Hidden Markov Fields based
segmentations ([8], [9]). The first part of our work
involves estimating the parameters defining the
Markovian distribution of the fuzzy picture without
noise. We then combine this algorithm with the ICE
method in order to estimate all the parameters of
the noisy picture.

1. FUZZY MARKOVIAN MODEL
1.1 Distribution of the non noisy Markovian field.

S being the set of pixels, we will consider two random
fieldsX=(X,) . and Y=(Y) . The image to be
segmented is the realisation Y=y of Y and the picture
looked for is the realisation X = x of the field X. Hence,
the values of Y are real numbers. We consider the case of
two classes. In the usual case, which we will be called
"hard" in what follows, X, has the value of Q={0,1},
where the numbers "0" and "1" correspond to the "hard"
classes (for example the classes pure "wood" and pure
"city"). In the fuzzy model presented in [3] we take
Q, =[0,1], where the numbers "0" and "1" correspond to
the "hard" classes and ]0,1[ to the "fuzzy" classes.
Otherwise, if X, =x,€]0,1[, then x, indicates the
percentage of the class "1" in the value of the pixel.
Therefore, 1—x, is the percentage of the class "0".
According to the model proposed in [3] the distribution of
each X_ is represented by a density h according to the
measure v=0§,+06,+4. This includes a "hard"
component (Dirac functions §,,6, on {0,1}), and a
"fuzzy" component which is the Lebesgue measure u. on
10,1[ This "pixel by pixel”" model, has been recently
generalised by introducing the "Fuzzy Markov Random
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Fields" described in [1]. The distribution of X is
represented by

P [x]=Ke " v

where N = Card(S) represents the number of pixels and
h(x)=K .e”"¥ is a density of an analogous form as in
the usual hard case. The difference is that this density is
with respect to the measure v" =(§,+8, +u)". It is

possible to show, as in the hard case, that this law defines
a Markovian field.
U,(X) defines the Markovian energy of the field X. We

consider the spatial markovianity of X relative to the eight
nearest neighbours. We write this energy as a sum of
functions defined on the single and double cliques:

U,(X)= ztb(x,)+i Z‘I’i(xs,x,)

x, single i=1 x,,x, neighbourghs

The index i indicates the kind of the clique : we consider
four kinds of two order cliques. i=1,2,3,4 correspond

respectively to the "horizontal" neighbours, "vertical”
neighbours, "cast-north" and "west-north" neighbours for
the diagonal directions. The function @ indicates the
proportions of the hard and fuzzy pixels:

(D(x:)= n,ifx, =0; CD(x:) =10 ifx, =1
®(x,) = Aif x, €]0,1[ (fuzzy pixel)

Otherwise, for instance, for i=1 we get the function:

for (x,,x,) € {0, 1}* (both pixels hard) :

w,(x:,x,)={

for (x,,x,) €[0,1] ={0,1}" (one pixel is fuzzy) :
¥ (x,.x,)= —a,{w(l -2|x, - x,|)

The formulas are similar for the other directions using the
h h h
parameters a,, .ol ol .o ., al,.

Finally the distribution of X is defined by the set :

hoo: .
-a,, ifx =x,

+a ifx #x,
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1.2 Distribution of the noisy Markovian field.

The global segmentation of the noisy image Y requires a
knowledge of & and the set of parameters denoted by
which is defines all conditional distributions P[Y|X]. In

our study, Y is assumed to be Gaussian conditionally on
X. As in the hard case, we assume :
(i) random variables Y, are independent conditionally to X.

(ii) distribution of each Y, conditional on X is equal to its
distribution conditional on X,.

The parameters of the noise on a fuzzy pixel depend
linearly on the parameter of both "hard" classes. We denote

N (m, 0‘2) the Gaussian law with the mean m and variance
o’. Then:

Py, =y|x

_x:]= N((l_xg)mo +xxn1l’(1—‘x:)og +x10‘2)

The means (m,,m, ) and the standard deviations (0,,0,),
correspond to the class "0" and "1". So
ﬂ=(mo,ml,0'0,0',). If we denote by f, the previous
density, the density f of (X,Y) with respect to the
measure V" ® " is written :

f(xy)=K. e""’(‘)fo‘ (v)

S€S§

According to this result, it is possible to simulate
realisations of X according to P/, its distribution
conditioned to Y =y (called posterior distribution, [1]).

2. ICE PROCEDURE

ICE is a recent general method of estimation in the case of
incomplete data [4] whose principle is as follows: we

consider 6 = 6(X,Y) an estimation of 8= (e, B) from the
complete data (X,Y). Data X being unknown, we have to

approach é:é(X, Y) by a function of Y. The best

approximation, as far as the mean square error is concerned,
is the conditional expectation. By denoting E, the
conditional expectation based on the current parameter 9,,
ICE procedure is written:

(i) 6=6, given
(ii) 6,,, = E,[6]Y =]

The relation (ii) is not workable. In accordance with the
law of large numbers, we use an approximate ICE:
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N
PN

= D 6(x.y)

ICE i=1

where x,,...,x,  are independent realisations of X

according to P, , with the current parameter 8,, and y the
realisation of Y (image to be segmented). We take for

6=6(X,Y) the estimation 6= (&(X),ﬁ(X, Y)), where
@(X) is the stochastic gradient algorithm (see section 2.1)

and ﬁ(X Y) is given by the empirical means and variances
(where j=0,1):

R

[":t-"’l]
x,,y ses - 7
Z [rsi=as]
(=),
6:(x,.,y>=—————; I
ses [J:'ij]

2.1 Estimation of the parameter («,f3)
2.1.1 Estimation of o from the field X.

The first part of our work consists of evaluating of ¢,
when the picture does not contain any noise. We take X a
fuzzy field without noise. In this way, we adapted the
stochastic gradient algorithm [7] to the fuzzy case. We
denote by U;(X) the gradient of U (X) with respect to

6. The method is defined by:

(i) a,, X =x, given

(i) 0, = 0, 4 U3 (5) = U )]

. 1S a realisation of X simulated by the "fuzzy"
Gibbs Sampler, using the current parameter o,. The
parameter ¢ > 0 is a constant ensuring the convergence of
the algorithm. If ¢ is too small, we have to initialise o
near the real value. So ¢ must be large enough, if we want
to ensure a fast convergence. In the first steps of the
algorithm we must maintain constant the value of
¢/(n+1), in order to readjust the initial value of . We

select ¢ =1/N?.

where x

2.1.2 Initialisation of «.

This method has a stochastic and a deterministic character.
We have nerely to ensure at the initialisation that the order
of size of « is the same as the real parameter. To initialise



o, we use the algorithm of Derin and Eliott [5] adapted to
the fuzzy case.

2.2 ICE procedure using gradient algorithm and
empirical moments.

We compute the ICE procedure applied to 6 = 6(X,Y)

defined above, as follows :
(i) take 6, as an initial value of 8 with the methods

described in the previous sections. To initialise the means
my and m;, we use the empirical method called the

"cumulated histogram".

(i) compute 8,, =(«,,,,B,,) from 6,=(a,,B,) and
Y =y in the follwing way

simulate N, realisations of X according to the posterior
distribution corresponding to 6, and Y =y. For each
realisation x,, we estimate the parameter «,(x,) and

n+l
ﬂiﬂ(x,,y) by the empirical means and variances. Then

taking the average of these values, perform the new
parameter 0,,, :

1 &
anﬂ = Z n+l(xi)

at
ICE =l

1 &,
ﬁnn:N ZB:HI(xi’y)
e i

(iii) when the sequence 8, = (a", [3,,) becomes steady, stop
the estimation step and proceed to the segmentation.

3. SEGMENTATION

We use a segmentation method, which is an adaptation of
the Maximum Posterior Mode (MPM, [6]), proposed in
[1]. The case of the blind fuzzy segmentation was studied
in [3]. We are interested in the laws of X, conditional on

Y which are the marginal posterior laws of the field X.
For each s in S, we choose the class whose probability is
maximum. The choice of the strategy depends on the loss
function. Denote by L(x,,%,) this function with %, the
estimated pixel of x,. If it is possible to define L, the
Bayesian methods should minimise the expectation of
L(Xs,)A(s) conditional to Y =y,. This expectation can be

estimated by the law of large numbers (this gives us the
error of estimation):

Ey[L(X:,)?:)|Y] = %g‘L(xﬂfe)

In any cases, we have to minimise the Bayesian risk,
conditioned on Y =y. The minimisation of the global

Bayesian risk corresponds to the minimisation of the
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"blind" Bayesian risk. With respect to the density y ® v,
tihs risk is written:

R(y,s)=L(0,5).h (0)+ L(1,5).h (1)

+ j L(t,5).h (t,5).dt

with respect to the notations of the previous sections. We
dispose of the three following method:

(i) L{x,,%,)=|x, - %] : we compute the integral formulas
1
by an approximation of .[L(t,s).hy(t).dt, taking

0

(ss=0,5,=Vn,....,s,, =(n~D/n,s,=1)  for  the
discretisation.

0ifx, =x
() L(x,,%,) ={ .07 : here we generalise the (0,1)

Lif x, # x,
discreet loss function of the hard case. this gives us the
maximum likelihood method.
(iii) we dispose of a strategy, described in two steps called
"adapted maximum likelihood"”, which is efficient
comparable to the two others methods:
first step: we choose in the set {0,1, F} ("F" means fuzzy)
according to the classical Bayesian law. The chosen
element has to maximise the probability
k) (0), k) (1), 1=k} (0) =Ry (1).
second step: if this element is in {0,1}, we stop.
Otherwise we choose in ]0,1[ the element which maximise
the restriction of h’ in this set.
This method takes better the fuzzy part of the field into
account than the others ones. The problem is to find its
corresponding loss function, because of the two steps. A
loss function which could be an approach to measure the
error of estimation is similar to the (0,1) function of the
hard case, applied to the set {0,1, F}, where we consider

the fuzzy set as a class.

4. EXPERIMENTS AND RESULTS

Our first example shows the estimation of ¢ using the
fuzzy iterative method applied to a non noisy Markovian
field, simulated by the Gibbs Sampler. Using the
estimation of this parameter, we reconstruct the field.
Visually the final field looks like the initial one.

reconstruction

initial picture




We present below some examples which show the visual
aspect of fuzzy Markov fields and the effectiveness of the
unsupervised segmentation method proposed. We chosen
the relative maximum posterior method. This algorithm
gives visually a good aspect of the fuzzy segmented image.
We present our results in the table below, which contains

the initial and the estimated values of (c, ). Furthermore,

we compare these segmentations with the supervised
segmentations, according to the rates of errors (last line of
the table). The components of the estimated ¢ respect the
directions of the picture. The method of segmentation is
robust with respect to this parameter.

IMAGE IM1 IMAGE IM2
(a.B) real val. | estim. | realval. | estim.
17 . n ;0 -0.07:-0: 05 0:0 0.02;0.02
0 i1
2’ 0 0.12 0 —0.04
a'l . a/ 2.0;2.5 0.32;0.57 4.0;4.5 0.55;0;93
hor * ~ho
ah . a/ 2.0:2.5 0.67:0.91 4.0:4.5 0;95:1;2
ver * " ver
ah . af 2.0;2.5 0.48;0.99 4.0;4.5 0.77;1.39
en? en
ah . a/ 2.0:2.5 0.13;0.48 4.0;4.5 0.69;1.16
wn ® " wn
l’)’lu,}’n,1 13 1.14;2.82 153 1.05;2.97
0'0?01 11 1.06;1. 02 11 ©1.06;1.04
error % 12.81 12.90 18.4 9.

table above : estimation of the noisy parameter.

IMl:true image noisy image  segmentation

segmentation

IM2:true imae noisy imge

5. CONCLUSION

We presented a new algorithm of unsupervised fuzzy image
segmentation based on recent fuzzy hidden Markov field
model, the iterative conditional estimation (ICE, [4]) and
the stochastic gradient method [7]. This type of
unsupervised segmentation was already studied in the case
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of the hard classes [9]. The estimation method gives us the
relative component values of vector of the parameter. We
studied other possible cases of noise (same means and
different variances). Our segmentation method does not
seem to be overly sensitive to the non noisy field
parameters. However, the resulting pictures can be mainly
degraded by a wrong estimation of the parameter §.. We.

were interested in the two class model. A model of fuzzy
Markovian field concerning more than two classes would
undoubtedly improve the fuzzy segmentation. In this way,
to permit an easy estimation, we should add restrictive but
realistic hypothesis: for instance to decide that the fuzzy
pixels belong to maximum two classes.
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