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Abstract

This paper deals with unsupervised Bayesian
segmentation of images. We introduce a new algorithm
based on a recent general method of estimation in the case
of incomplete data (iterative conditional estimation). The
efficiency of our method is compared with a recent
algorithm based on the stochastic gradient by L. Younes.
We give results of numerous simulations and an
application to a real radar image is also derived.

1. Introduction.

The statistical approaches of the important problem of
image segmentation have been developed by several
authors in recent years. The Bayesian method, which is
generally the adopted one, demands the modelling by
random fields: S being a set of pixels one considers two
collections of random variables C:(CS)S e s X=(XJec s

called "random fields". Each (g takes its values in a finite
set Q ={wy, Wy,..., @, ) of classes and Xgisin R4, with
deN. So the problem of segmentation is the problem of
estimating an "unknown" realization of { from an
"observed" realization of X. The distribution of ({,X) is
defined by Pg, distribution of {, and the family PEy of
distributions of X conditional to {=¢. In this work we are
interested by the MAP segmentation, which will be
performed by simulated annealing ([9]), so we adopt the
following model:
The field { is assumed Markovian with all realizations
possible; so its distribution is a Gibbs distribution:
Py lel=ke Uy (® (1
where k is unknown and o is a parameter which, once

known, makes it possible to compute the distribution of
each {g conditional to (Ep¢ £ ¢ The set of parameters

defining all conditional distributions PSX will be denoted
by B. On the other hand we will suppose that the random
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variables (X) are independent conditionally to each

realization of { : so, if we have m classes it is sufficient
to define m distributions of each X conditional to

Lg=01,..., 0, tespectively. Thus B will have m
components f,...., B,. In this paper the field X will be
assumed Gaussian conditionally to { and each X real, so
we have B; = (;, czi), where L; is the mean and czi the
variance of the Gaussian distribution of each XS
conditional to {=w;.
When the parameter 6=(a, B) is known simulated
annealing ([9]) gives excellent results, there also exists
some other efficient algorithms : ICM of Besag ([1]) or
MPM of Marroquin and al. ([13]). When 6 is not known
the problem becomes much more difficult: in the absence
of any information, which is the more general case, one
has to estimate it from X. The statistical problem is that
of "incomplete data": parameters are estimated from
random variables whose distributions are a mixture of
distributions.

Several solutions to this problem have been proposed in
recent years. Some algorithms (Chalmond ([3]), Devijver
and al. ([6]), Masson and Pieczynski ([14]), Qian and
Titterington ([18])) use variations of the EM algorithm
([4]), adapted to the models considered. One alternative
technique (Besag ([1]), Lakshmanan and Derin ([10]))
consists of a re-estimation of the parameters based on the
segmentations obtained with the current parameters.

In this work we present a new algorithm for estimating 6.
We compare its efficiency with that of Younes's method
([20]). We examine the behaviour - by studing real and
simulated images - of two unsupervised segmentation
methods obtained from our estimation algorithm and from
Younes's by adding simulated annealing ([9]).

The organization of the paper is as follows:

In the next section we present our new method and briefly
review the operation of the Younes algorithm.

The third section is devoted to different simulations and
contains some comments. Concluding remarks constitute
the fourth and last section.




2. Ice procedure and Younes algorithm.
2.1 Ice procedure.

ICE procedure is a recent gemeral method of
estimation in the case of incomplete data ([16], [17]),
stemming from the following idea: if X were observable
one could generally estimate o, B by some efficient

estimators O, @ defined from {, X. { being unknown we

have to approach Q, ﬁ by some functions of X, the only
one observable. The best approximation, as far as the
mean square error is concerned, is the conditional
expectation. This in turn depends on the parameters, so we
have to take a "current" value of the parameter defined by
some way. This leads to the following iterative method:

letQ, ﬁ be two estimators of a, B defined from {, X. By
denoting Ep, the conditional expectation using (0., Bn)
the procedure is:

(i) one takes an initial value (0, Bg)
(ii) (041> Bpy 1) is computed from (o, By) and X=x by:

Opy1=EnlQ/X=x] @

Bne1=En[ B/X=x] 3)

Let us denote by PX  the distribution of € conditioned on
X=x (posterior distribution) computed from (o, B). (2)
and (3) are not workables, but it is possible to simulate
realizations of { according to Pxn, using the Gibbs
sampler for example. So we can use an "approximative"

ICE : (2) and (3) can be approached, in accordance with the
law of large numbers, by:

o =

n+

bey) @

2|
'Mz

i=1

z

1
Bn+1=ﬁ
i=

Bee, x) ®

—

where €1, €5....., & are independent realizations of {

according to PX .

Our method is an ICE procedure, and thus we have to
choose an estimator of o from  and another one of B

from ¢, X. We opt for 8=0(C) another Younes algorithm
([191) (defined from &) and B=B(¢,X) given by empirical

means and variances. The choice of @ is justified by its
good behaviour; furthermore the author proposes a
rigorous study of its asymptotical behaviour. More

precisely 9, which is an iterative method, runs as follows:
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let Ug, denote the energy of the distribution of . For each
{=e U'g(e) will denote the gradient of Ug with respect
1o o.

(i) one takes an initial value oy,

(ii) otpq-1 is calculated from oy and C=¢q by:

on+1=0n+(1/n+ 1)U’ (Ens-1)-U'y (€0)] ©)
where €41 is a realization of { simulated by Gibbs
sampler based on the current parameter O,
Empirical means and variances are:

> Xoli o]

= se S )
% 1[;’=mi]
2
2, (Xm0 1o
62.= ses ®
SEES 1[§-=“’i]

Finally, our new parameter estimation method runs as
follows:

(i) we take an initial value of the parameter 6(

(ii) Op+1 is obtained from Oy and X=x by:

- we simulate N realisations €1,....eN of { according to
the posterior distribution based on 6p.

- Bp+1 is defined from €1,..., €N and X=x by (4) and (5),
where o and B are defined by (6), (7) and (8) respectively.
Some other applications of ICE to the problem of
unsupervised segmentation are exposed in [2] and [12].

2.2 Younes algorithm.

This iterative method runs as follows: let Vg denote
the energy of the distribution of ({,X), which also is,
under hypotheses above, a Gibbs distribution. For each
(& X)=(e,x) V'g(e,x) will denote the gradient of Vg with
respect to 0.

(i) one takes an initial value 80
(ii) 641 is calculated from 6y and X=x by:

eﬂ+ 1=en+(k/"+ 1 ) [V'On(5n+ 1.-Xn+ 1)-V'en(8*n+ 1 ,X)] (9)

where (en4+1.Xn+1) is a realization of ({,X) simulated by
Gibbs sampler (using Op), €*p+] a realization of {
according to posterior distribution (simulated by Gibbs
sampler based on 0p) and k a constant. This method is
presented as a generalisation of the estimator defined by
(6) to the case of hidden data, in fact, when the noise
vanishes, i.e. when the variances of its conditional



distributions tend to 0, the formula (9) gives (6).

Unfortunately its theoretical study becomes much more

difficult and is not immediately generalisable to the hidden

data case.

2.3. Unsupervised ICE and Stochastic

Gradient based segmentation methods.
Let us denote by Al our new parameter estimation

ICE based algorithm and by A2 the method of Younes

([20]). Both algorithms Al and A2 are iterative. When

the sequence of parameters becomes steady the estimation

step is finished and we apply simulated annealing ([9]).

Let us denote by S1, S2 the methods so obtained of

unsupervised segmentation.

Finally:

Al= ICE based on the algorithm of Younes ([19]) and

empirical moments given by (6) and (7).

A2=Algorithm of Younes ([20])

S1=A1+MAP (simulated annealing [9])

S2=A2+MAP (simulated annealing [9])

As pointed out above the aim of our work is to compare

Al with A2 on the one hand and S1 with S2 on the other.

Incidentally our study gives some information about the

robustness of the simulated annealing with respect to the

considered parameters.

We suppose  to be a Markov random field relative to four

nearest neighbours, so the energy (function U in (1)) is

defined by:
oEs) + Y,

Ue) = Y, Tes )
s, t neighbours

se S

For m classes, ¢ is then defined by m values o.1=¢(01),
-» 0m=0(®m ) and we take y of the shape Y(€g,er)=d if
€g=€t, -0 otherwise. As the noise is Gaussian and
independent conditionally to §, the parameter B is given by
m means [i1,..., Wy and m standard deviations 61,..., o,
Numerous simulations (we consider two, three, four or
five classes, different means, variances equal or different)
allow us to put forth the following conclusions:

1. Al is always much more efficient that A2, as far as the
estimation of noise variances is concerned. The difference
is particularily significant when they are different. The
qualities of estimation of all other parameters are
equivalent.

2. S1 is always more efficient that S2. The efficiency,
measured by the rate of well classified pixels, can reach 15
percent when the noise is significant.

Our first study concerns the behaviour of the three methods
(51,52 and the initialisation, which is a standard method
based on histogramme and which will be denoted INIT)
when the number of classes (NC) and the signal to noise
ratio (SNR) vary. We consider a common standard
deviation equal to 1, and SNR is then defined by: SNR=inf
Iui-wjl. The results, expressed in rates of well classified
pixels, are:
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SNR NC 2 3 4 5
INIT 773 68.1 636 64.0
1.5 S1 869 849 882 882
S2 824 757 129 748
INIT 839 772 745 738
2 S1 9.5 964 972 977
S2 91.8 884 89.1 89.7
Tab. 1.

We can note, according to Tab. 1., a real superiority of S1
over S2. It is particularly visible in the case of small
SNR and four or five classes. This fact seems to be
basically due to the superiority of Al over A2 when the
estimation of the variance of the noise is concemned. To be
more precise let us consider two following examples:

1. Let us consider a four class (m=4) random field with
a1=a2=03=04=0, 8=—5. The corresponding image
(IM1) is corrupted with a white Gaussian noise of means
11=32, pp=96, 13=160, p4=224 (we consider 256 grey
levels) and a common standard deviation equal to 30
(IM2). The estimation of parameters gives:

Al:

01=-0.002 02=0.050 3=-0.019 04=—0.029 &=—0.65
11=33.19 up=96.37 n3=158.28 114=220.81
01=24.66 02=26.23 0©3=2691 0©4=24.72

A2:

1=-0.001 0:2=0.049 3=-0.026 04=—0.022 §=—0.62
Kn1=34.34 n2=96.02 p3=157.68 n4=219.72
01=17.89 02=18.38 0©3=18.81 ©4=17.83

Both algorithms S1, S2 have been initialised by a
classical method based on the histogramme (which gives
0.77 as a rate of well classified pixels: IM3). The
corresponding rates (IM4, IMS) are 0.98 for S1 and 0.92
for S2.

2. We consider a binary (m=2) image with oi1=0:2=0, §=5
(IM6) corrupted with white Gaussian noise j1=64,
n2=192, 61=062=50 (IM7). Estimations of parameters

give:

Al :
01=0.045 0=-0.045
U11=66.65 up=185.70
A2:
1=0.008 02=0.008
n1=64.05 Lp=189.42

6=—0.573
61=42.83 02=43.62

6=-0.528
61=33.99 02=34.25

Both algorithms S1, S2 have been initialised by the same
classical method based on the histogramme (which gives
0.90 as a rate of well classified pixels: IM8). The
corresponding rates are 0.986 for S1 and 0.975 for S2
(IM9, IM10).
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3. Segmentation of a real image.

We consider a real SAR image (IM11) which
represents an agricol region of Ontario, Canada. It is well
known that the conditional distributions of X are not
Gaussian but, when the number of looks is large (IM11 is
taken with 7 looks) they can be approached by Gaussian
distributions. IM12 is the result of segmentation by the
initialising method and IM13, IM14 are the results of
segmentation by S1 and S2 respectively.

A rigourous comparison between the two methods is

difficult because we ignore the real nature of the ground.

However one could have the impression that the S1

segmentation gives more detail.
——

4. Conclusion.

We presented a new algorithm of unsupervised
Bayesian image segmentation and showed its superiority
over a recent method based on the stochastic gradient. This
superiority is verified in quite different situations: two,
three, four or five classes, different means, variances equal
or different. In some cases the difference of well classified
pixels can reach 15 percent. Both unsupervised methods
use the same segmentation algorithm (simulated
annealing) and the difference is due to the difference of
efficiencies of the estimators employed. Furthermore, the
performances of two estimators used are comparable for
every type of parameter except the noise variances, which
are moderately well (A1) or badly (A2) estimated.
Furhermore, they are quite sufficient when means and
a1,002,.., am are concerned, but not efficient in
estimating &.
This leads to two following conclusions (as far as the
present framework is concerned):

- simulated annealing is sensitive to the noise
variance; consequently a good estimation of this parameter
is important.



- neither Al nor A2 is efficient in estimating & but
the simulating annealing does not seem to be overly
sensitive to this parameter.

So the collaboration of %, ‘B, ICE and simulated
annealing turns out to be efficient in numerous

situations.The good properties of Q. ([19]), /ﬁ and
simulated annealing ([9]) being well known, we can say
that ICE "saves them" in exposed cases.

The association of ICE and simulated annealing was
already studied in a different context ([2]) where the

estimator @ used is the algorithm of Derin and Elliot

([51). The results obtained-although having to be

interpreted with care, the simulation study being not rich

enough-are good. In particular one of the corresponding

unsupervised methods turns out to be more efficient, in

the case of an homogeneous image, than the algorithms of
Chalmond ([3]) and Devijver and al. ([6]).

In the genmeral manner the use of ICE seems to be
especially interesting in unsupervised segmentation of
images where it appears as an alternative to the EM
algorithm whose use is rather tedious and requires strong
hypotheses ([18]): discrete or Gaussian noise, the same
variance for all classes.The ICE procedure can be applied in
a much more general framework. When modelling the
distribution of { by a Gibbs distribution and supposing
that the random variables (Xg) are conditionally
independent, the conditional densities f1, f2, ..., fy of each
X (for m classes) can be of any kind, in particular of
nonlimited kinds. Moreover, they can be of distinct kinds.
In fact, simulations of realizations of { according to the a
posteriori distribution (by means of the Gibbs sampler for
example) are possible once the fi(xg) (1<i<m, s€ S) are
known. The only condition is to estimate, for each 1<i<m,
a parameter [3 (that defines fj) based on a sample issued by
class wj, that in general is possible using the empirical
moments.

The possible applications of ICE go beyond image
segmentation: we expose in [17] some examples of
estimation in the case of hidden data. In the case of a
simple Gaussian mixture the well known EM re-
estimation formulae can be obtained from ICE in a
different way, without any reference to the likelihood. ICE
can also be used to estimate all parameters in a noisy auto-
regressive process and in a hidden Markov chain. This last
possibility affords the construction of a fast unsupervised
image segmentation algorithm ([8]).

The great diversity of applications of the ICE procedure is

. . . A
due to the great freedom in choosing the estimator 6. In
particular, the notion of likelihood is not necessary and it
is possible to use modeling with Dirac's measure.
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