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Evidential Correlated Gaussian Mixture Markov Model 

for Pixel Labeling Problem  

Lin An, Ming Li, Mohamed El Yazid Boudaren, and Wojciech Pieczynski 

Abstract. Hidden Markov Fields (HMF) have been widely used in various prob-

lems of image processing. In such models, the hidden process of interest X  is 

assumed to be a Markov field that must be estimated from an observable process

Y . Classic HMFs have been recently extended to a very general model called 

“evidential pairwise Markov field” (EPMF). Extending its recent particular case 

able to deal with non-Gaussian noise, we propose an original variant able to deal 

with non-Gaussian and correlated noise. Experiments conducted on simulated 

and real data show the interest of the new approach in an unsupervised context. 

Keywords: Markov random field, correlated noise model, Gaussian mixture, be-

lief functions, theory of evidence, image segmentation 

1 Introduction  

The paper deals with statistical image segmentation. The use of hidden Markov fields 

(HMFs) has become popular since the introduction of these models in pioneering pa-

pers [1, 2] with related optimal Bayesian processing. HMFs provide remarkable results 

in numerous situations and continue to be used nowadays. On the other hand, Demp-

ster-Shafer theory of evidence (DST) has been used in different information fusion 

problems [3, 4]. However, simultaneous use of both HMFs and DST is rather rare, and 

is mainly applied to fuse sensors of different nature [5, 6, 7, 8]. Another application 
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consists of using DST to model images with fine details, and the first results presented 

in [9] were encouraging. Calculations presented in [9] were possible because of the fact 

that DS fusion in Markov field context can be interpreted as calculation of a marginal 

distribution in a “triplet Markov field” (TMF [10]). The model proposed in [9] has been 

recently extended to non-Gaussian noise in [11], enjoying the generality of the pro-

posed “Evidential Pairwise Markov Field” (EPMF) models. Such extensions are par-

ticularly useful in radar images context, in which noise is not Gaussian in general. The 

aim of this paper is to propose a further extension of the model proposed in [11] to the 

case of correlated noise. This seems to be of interest in radar images processing, as 

noises are correlated in real situations while they are usually considered independent in 

different Markov fields based models.  

Let S  be a finite set, with  Card S N , let  s s S
Y Y


  be the observed random 

field with each sY  taking its value in  , and let  s s S
X X


  be the hidden random 

label field with each sX  taking its values from a finite set of “classes” or “labels”. 

Realization of such random fields will be denoted using lowercase letters. The labeling 

problem consists in estimating X x  from Y y . 

The reminder of the paper is organized as follows. Section 2 summarizes the theory 

of evidence and its applicability within Markov models. In Section 3, we describe our 

proposed model. In Section 4, we assess the proposed model on image segmentation. 

Finally, concluding remarks are presented in Section 5. 

2 Background 

In this section, we briefly recall the basics of Dempster-Shafer theory of evidence and 

discuss its application within Markov field models. 

2.1 Hidden Markov fields 

In basic hidden Markov fields (HMFs) context, the field X  is assumed Markovian with 

respect to a system of cliques C , associated to some neighborhood system. The model 

name “hidden Markov field” stands for the very fact that the hidden field X is Markov. 

According to the Hammersley-Clifford equivalence, X is then an MRF given by 

    exp c c

c C

p x x


 
  

 
                               (1) 

where  c cx  is the potential function associated to clique c , and cssc xx  )( .  

On the other hand, the likelihood distribution )( xyp  is defined by  

    | exp log |s s

s S

p y x p y x


 
  

 
                              (2) 

The joint distribution of  ,X Y  is then given by  

     , |p x y p x p y x .                                           (3) 



2.2 Theory of evidence 

The class set from which sX  takes its value is defined by  1, KL l l  that is an uni-

verse of discourse, also called frame of discernment. Let  12 , , ,L l L  

 1, , , Q   be its corresponding powerset, where  k

kl l  and 2 1KQ   . A 

“basic belief assignment” (bba) is a function M  from   to  0,1  satisfying 

  0M    and  
1

1
Q

i

i

m 


 . A bba M  defines then a “plausibility” function Pl and a 

“credibility” function Cr, both defined from   to  0,1  by    Pl M
  

 


   and 

   Cr M
 

 


   respectively. For a given bba M , related Pl and Cr are linked by 

    1Pl Cr   . From this point of view, a probability p  can be perceived as a spe-

cial case for which p Pl Cr  . Moreover, if two bbas 1M  and 2M  represent two 

pieces of evidence, we can merge, or fuse, them using the so called “Dempster-Shafer 

fusion” (DS fusion), which defines 1 2M M M   given by:     1 2M M M  

   1 2M M
  

 
 

   for any   . Finally, a bba is said “probabilistic” or 

“Bayesian” when it vanishes outside singletons, and it is said “evidential” otherwise. 

In this paper, a probabilistic bba will be said defined on L  and singletons 
kl  and ele-

ments kl  will be handled indifferently. 

2.3 Hidden evidential Markov field with Gaussian-mixture likelihood 

Let us consider the fields  s s S
X X


 ,  s s S

Y Y


 and let  1p x   exp c c

c C

x


 
 
 
  

and    |y

s s

s S

p x p y x


 . 1p  and yp  will be called “prior” and “likelihood” bbas 

respectively. Then, the posterior distribution  |p x y  given by (3) is itself the DS fu-

sion of 1p  and yp :     1| yp x y p p x  . This is of particular significance since it 

may offer different possibilities of extensions [9]. More precisely, if either 1p  or yp  

is extended to an evidential bba, the result of the fusion 
1

yp p  remains a probabilistic 

distribution, which can then be seen as an extension of the classic posterior probability 

 |p x y . Additionally, if the “evidential” extension of 1p  or yp  is of a similar Mar-

kovian form, the computation of posterior margins  |sp x y  remains feasible in spite 

of the fact that the fusion result is no longer necessarily a Markov field [9]. 



For instance, if 1p  is extended to a Markov bba M , we can construct an evidential 

Markov field (EMF) defined on 
N  by 

    exp c c

c C

M m m


 
  

 
                           (4) 

In [11], we consider a general situation where the priors are evidential and the noise 

is blind but not Gaussian. By introducing an auxiliary field  s s S
U U


 with

 1, ,s PU    , the evidential blind Gaussian mixture Markov (EBGMM) model 

is given by  

 ( , , , ) 1 exp ( ) ( , ) ( , )x m c c s s s s s s

c C s S s S

p m x u y m x u Log p y x u  

  

 
    

 
    (5) 

Since  , , ( , , , )
Nu

p m x y p m x u y


  , we have  

( , , ) 1 exp ( ) exp[ ( , )] ( , )
s

x m c c s s s s s s

c C us S

p m x y m x u p y x u  

 

   
     

    
          (6) 

and thus ),,( yxmp is a classic EHMF with )( ss xyp  being mixtures, ( )s sp y x 

( ) ( , )
s

s s s s

u

u p y x u


 , where the mixture coefficients are ( ) exp[ ( , )]s s s su x u   . As 

demonstrated in [11], the interest of such models is to make it possible to deal with 

unknown noise densities )( ss xyp . 

3 Evidential Correlated Gaussian Mixture Markov Model 

The aim of the present paper is to extend the model (5) in such a way that the possible 

noise correlations can be taken into account. Thus we propose a model in which the 

noise is non-Gaussian and correlated, and in which all parameters can be estimated by 

the “iterative conditional estimation” (ICE) method, allowing unsupervised image seg-

mentation.  

The distribution of the proposed model, called “evidential correlated Gaussian mix-

ture Markov” (ECGMM) model, is written as 

 

( , , , )

  1 exp ( ) ( ) ( , ) ( ( , ))x m c c c c s s s s s s

c C c C s S s S

p m x u y

m u x u Log p y x u   

   



 
    
 
   

(7) 

Then the likelihood is 

 

( ) exp ( ) ( , ) ( ( , ))
N

c c s s s s s s

c C s S s Su

p y x u x u Log p y x u 
  

 
    

 
            (8) 



Let us notice that this likelihood, which is new with respect to the likelihood in (5), is 

very different from the latter. Indeed, the likelihood in (5) verifies two classical prop-

erties: 

(i) 



Ss

s xypxyp )()( ; 

(ii) )()(
sss xypxyp   for each Ss , 

whereas the likelihood (8) does not verify any of them. Thus the greater complexity of 

(7) with respect to (5) goes beyond the introduction of the noise correlation. 

We have to mention that another way to construct the correlated likelihood is assum-

ing the likelihood to be the Markov field: 

   | exp ,c c c

c C

p y x y x 


 
  

 
 ,                                       (9) 

which captures the contextual information directly [13]. Since the observation sy  takes 

the value from R , it is such a complex model with so many parameters. When the 

likelihood is simple Gaussian there are six parameters, it will be much more when we 

consider the Gaussian mixture. In CGMM, su  takes the value from a limited data set, 

so ( )c cu  can be constructed by the well-used Multi-level logistic (MLL) model [14], 

which keeps the likelihood to be correlated as well as simplify the complexity of the 

model.  

The labeling problem is to find x̂  from yY  . Then setting SssVV  )(  with 

),,( ssss UXMV  , we have a standard hidden Markov field ),( YV . The field V is dis-

crete finite, and thus we use the classic “iterated conditional modes” (ICM) algorithm 

[1, 6], which is an approximation of the optimal Bayesian solution )(maxargˆ yvpv
v

B 

. Having )ˆ,ˆ,ˆ(ˆ uxmv   gives then x̂  (in addition, it also gives )ˆ,ˆ( um , which can be of 

interest). Let us consider the simplest situation: sx  takes the value from  1 2,l l , and 

su  takes the value from  1 2,  . Then sv  takes the value from 

        1 1 1 2 2 1 2 2, , , , , , ,l l l l      1 2 3 4, , ,    . We can estimate the probabil-

ity  |sp v y  on   by Gibbs sampler. The estimation obtained in this way enables us 

to compute      1 1 2| | |s s sp x l y p v y p v y       and  2 |sp x l y   

   3 4| |s sp v y p v y    , which are then used to perform ICM. 

4 Experiments 

4.1 Simulated data 

The proposed model will be assessed against the existing EBGMM and HMF models 

on unsupervised segmentation of simulated images in both cases of independent and 



correlated noise. Let us consider the simulated images “Nazca bird”, which has already 

been dealt with in [9, 11], and which is too complex for the simple HMFs models. There 

are two classes, i.e sX  takes its value from  1 2,L l l , sM  takes its values from

 1 2 3, ,           1 2 1 2, , ,l l l l , and sU takes its values from  21, . The 

non-Gaussian noise used here is the Gamma one. In independent noise case, the two 

noise densities are Gamma  1 0.5,2G  and  2 3,1G , which are quite different from 

Gaussian densities. The correlated noise is obtained by the following equation: 
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             (10) 

where ,i j  is the location of the pixel; 1y  and 2y  are two independent noises with the 

densities being  1 0.5,2G  and  2 3,1G ; 1  and 2  are the means;   is the class im-

age. We obtain a correlation coefficient of 0.23. We show the class image, the observed 

images, and their corresponding histograms in Fig. 1. 
 

(a)                           (b)                                        (c) 

     
 

       (d)             (e) 

 

Fig. 1. Simulated noisy Nazca bird images (a) class image; (b) image corrupted by independent 

noise; (c) image corrupted by correlated noise; (d) histogram of independent noise; (e) histogram 

of correlated noise. 

 



             (a1)                                      (b1)                                     (c1) 

     
 

                            (a2)                                       (b2)                                    (c2) 

     

Fig. 2. Results of segmentation of noisy Nazca bird images. (a1-a2) by HMF; (b1-b2) by 

EBGMM; (c1-c2) by ECGMM. (a1-c1) independent noise case; (a2-c2) correlated noise case. 

 

The noisy images are then segmented using HMF, EBGMM and ECGMM respec-

tively. The obtained results are shown in Fig. 2. More precisely, we assess all ap-

proaches with respect to the reference map in terms of overall accuracy (OA) and Kappa 

coefficient (Kappa) [12] and illustrate them in Table 1. The best approach is the one 

exhibiting the highest OA, and the highest Kappa. The presented results, and other sim-

ilar results obtained in additional experiments, show that HMFs give very poor results 

in both independent and correlated noise cases. EBGMM and ECGMM significantly 

improve HMFs’ results in the independent-noise case, and produce equivalent results. 

Finally, the new ECGMM model based segmentation allows a significant improvement 

of the EBGMM based one in the case of correlated noise. 

Table 1. Performance evaluation of different approaches on simulated images 

OA (%) 

 HMF EBGMM ECGMM 

Independent noise 73.92 91.73 90.28 

Correlated noise 69.15 80.22 90.61 

Kappa 

 HMF EBGMM ECGMM 

Independent noise 0.3912 0.5864 0.5377 

Correlated noise 0.3336 0.3405 0.5864 



4.2 Real data 

In this subsection, we evaluate our method on a real radar image. To this end, we con-

sider the image of Toronto city, shown in Fig. 3 (a), obtained in December 2007 by 

TerraSAR-X SpotLight, which is single HH polarization with a resolution of 1m . 

 
      (a)                                               (b)                                          (c) 

     

Fig. 3. Unsupervised segmentation of a real SAR image (a) real data, (b) EBGMM’s result, and 

(c) ECGMM’s result. 

We segment the image into three classes by EBGMM and the proposed ECGMM, 

and show the result in Fig. 3. This data is full of small edges, which is a real challenge 

for Markov-based methods. Compared with EBGMM, we see that ECGMM seems to 

perform better in some spots; in particular around the rich-edge area. We can see from 

the red panels that the segmentation obtained by ECGMM includes more details with 

respect to the one obtained through EBGMM. The correlated coefficient of this data is 

about 0.25, which is very close to the simulated image above.  

5 Conclusion 

In this paper, we extended the particular “evidential pairwise Markov fields” model 

used in [11] to deal with the segmentation of SAR images containing fine details and 

non-Gaussian noise. The extension consists of introducing an auxiliary field, making it 

possible to take the noise correlation into account. The experiments conducted on sim-

ulated and real data prove that the new approach can significantly improve the results 

obtained by the previous one. In future work, one can view an extension of the proba-

bilistic likelihood used here to an evidential one, so that the possible non stationarity of 

the noise could be taken into account. 
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