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ABSTRACT

We introduce a new method for estimating the regime-
switching stochastic volatility models from the historical
prices. Our methodology is based on a novel version of the
assumed density filter (ADF). We estimate the switching
model by maximizing the quasi-likelihood function of our
ADF. The simulation experiments show the efficiency of our
method. Then we analyze different market price histories for
consistency with a regime-shifting model.

Index Terms— Stochastic volatility, Markov-switching
stochastic volatility models, Quasi-maximum likelihood, As-
sumed density filtering, Gaussian quadrature.

1. INTRODUCTION

In 1973 Black and Scholes [1] introduce the concept of
volatility of asset price and propose a methodology for val-
uating the related derivatives. A derivative is a security that
derives its value from the characteristics of the underlying
entity. This entity can be an asset, index, exchange or interest
rate or even some other derivative. Its characteristics include
its value, yield and volatility. The global derivatives market
is gigantic and is estimated at more than $1.2 quadrillion.

The interest of Black’s theory is that allows estimating a
”fair” value of a derivative. This enables traders to buy under-
priced securities as well as to sell overpriced ones and make
profit on average. The theory assumes that the infinitesimal
return of the underlying follows a Brownian motion, i.e.

dSt
St

= µtdt+ htdBt.

We denote the price of the underlying at the time instant t by
St ∈ R, Bt is a Brownian motion in R, µt ∈ R is a drift and
ht ∈ R+ is the volatility.

The volatility of an asset is a virtual concept and is not
observable directly. The stochastic volatility (SV) models re-
produce the joint dynamics of both the volatility and the re-
turns of a given equity. The idea is to estimate these models
from the historical prices available between a past and today’s
time instants t0 and t. The papers [2, 3] are concerned with
the techniques to perform this estimation.

The Markov-switching stochastic volatility models have a
jump component in the mean of the volatility process. The
estimation of such models is not trivial. There are several
simulations-based approaches in the literature e.g. [4, 5].

The quasi-maximum likelihood (QML) methods [6, 7, 8]
are alternative to the simulations-based ones. In fact, the
likelihood function in the SV models is usually intractable.
A QML approach consists in maximizing the log-likelihood
function of an approximation of the true likelihood. These
estimators are less computationally demanding than their
simulations-based counterparts [8]. Besides, they do not in-
troduce any hyperparameters and thus do not suffer from the
sensitivity to them [4]. The classic QML estimators [6, 7]
intrinsically assume an online linear (Kalman) relationship
between the log-volatility and the log-squared returns. How-
ever, several researches motivate the need to avoid such a
linearization and offer the linearization-free QML estima-
tors [9, 8].

This work takes up the idea from [8] and extends it
to the switching volatility models. To do so, we derive a
linearization-free assumed density filter (ADF) [10] which
handles the switches.

The object of the next section is to recall the autoregres-
sive [11], asymmetric [7, 12] and Markov-switching [13, 14]
stochastic volatility models. Third section contains a detailed
derivation of our approach. Fourth section contains experi-
ments on both synthetic and market data and fifth section is a
conclusion.

2. STOCHASTIC VOLATILITY MODELS

2.1. Basic stochastic volatility models

The autoregressive stochastic volatility (ARSV) model is a
primary SV model and is subject to numerous extensions.
This model assumes that the logarithm of the variance h2

t fol-
lows an autoregressive process. Let ∆t denote a constant pe-
riod of time between two successive observations and n is a
positive time index. Next, we denote by Yn the log-return
of the underlying at day n and Xn is the corresponding log-
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variance:

Yn = log
St0+n∆t

St0+(n−1)∆t
; (1a)

Xn = 2 log ht0+n∆t. (1b)

In this setting, the ARSV equations are

Xn+1 = α+ φXn + σUn+1; (2a)
Yn = exp(Xn\2)Vn, (2b)

where {Un}n≥1, {Vn}n≥1 are standard Gaussian white
noises and (α, φ, σ) are fixed parameters, |φ| ≤ 1.

The asymmetric stochastic volatility (ASV) model as-
sumes that the innovations {Un}n≥1 in the log-variance
process correlate with the disturbances {Vn}n≥1. That is to
reproduce the increase in volatility that follows a drop in the
equity returns. This effect is known as leverage. The ASV
equations are:

Xn+1 = α+ φXn + σρ exp(−Xn\2)Yn + λUn+1; (3a)
Yn = exp(Xn\2)Vn, (3b)

where {Un}n≥1 and {Vn}n≥1 are standard Gaussian white
noises, ρ is a fixed parameter such that −1 < ρ ≤ 0 and
λ = σ

√
1− ρ2. This value of λ ensures that σ is the standard

deviation of the innovations in the log-variance process when
seen independently from {Yn}n≥1.

2.2. Markov-switching stochastic volatility models

The classic Markov-switching stochastic volatility model
(MSSV) introduces a regime-shifting effect through a Markov
chain {Rn}n≥1. This chain has k possible states, i.e. for each
positive n, Rn ∈ {1, .., k}. The transition probabilities of
{Rn}n≥1 are independent from n, and we note them as

pj|i = P [Rn+1 = j |Rn = i ] . (4)

Note that we do deliberately not consider the initial state
probabilities P [R1 = i] for 1 ≤ i ≤ k. In practice, a switch-
ing model is not sensitive to them due to the rapid mixing
property of the Markov chains [15]. Therefore, we assume
that the distribution of R1 is invariant with respect to the
Markov transition (4).

The MSSV model extends the ARSV by making α in (2)
depend on the current state of the Markov chain. We write it
down as

Xn+1 = αRn+1 + φXn + σUn+1; (5a)
Yn = exp(Xn\2)Vn, (5b)

with the same assumptions as for the ARSV model. The over-
all parameter is θ = {αi, φ, σ, pj|i |1 ≤ i, j ≤ k }.

Similarly, the Markov-switching asymmetric stochastic
volatility (MSASV) model is

Xn+1 = αRn+1 + φXn + σρ exp(−Xn\2)Yn + λUn+1; (6a)
Yn = exp(Xn\2)Vn, (6b)

with the same assumptions as for the ASV model.
Finally, let us present our Markov-switching asymmetric

stochastic volatility surrogate (MSASVS) model. It covers a
broad range of the switching SV models. We define its equa-
tions as follows:

Xn+1 = fθn+1 (Xn, Rn+1, Yn) + σθn+1 (Rn+1, Yn)Un+1; (7a)
Yn = exp(Xn\2)Vn, (7b)

where {Un}n≥1 and {Vn}n≥1 are standard Gaussian white
noises. The notation fθn+1 , σθn+1 relates to SV model-
dependent functions which take random variables and the
parameter vector θ as argument. We explain further how we
estimate θ. However, these functions derive from a specific
switching SV model so our algorithm does not construct them
but assumes known. We introduce this meta-model to make
wider the scope of application of our method.

3. PARAMETER INFERENCE WITH ASSUMED
DENSITY FILTERING

The maximum-likelihood estimation (MLE) is a well-known
method of estimating the parameters of a statistical model.
It searches for the most likely value of the unknown param-
eter vector θ that would reproduce the observed time series
y1...N = {yn}n≥1. In other words, it maximizes

θ → pθ (y1...N ) .

Regarding the models (5)-(7), the likelihood function is
usually intractable. The QML approach consists in maximiz-
ing an approximation to the log-likelihood function of (7) (i.e.
a quasi-likelihood function) instead of its exact likelihood.
Next, for a quasi-likelihood function of {yn}Nn=1

` : θ → ` (θ, y1...N ) , (8)

the related parameter estimation is defined by

θ̂(y1...N ) = arg max
θ

` (θ, y1...N ). (9)

Let us note that each method of evaluation of quasi-
likelihood function is related to a QML estimator. In fact, any
nonlinear optimization routine can solve (9). The processing
time depends on the complexity of evaluation of (8).

It is common to derive a quasi-likelihood function by us-
ing the assumed density filtering (ADF). Below we derive a
specific algorithm for the switching stochastic volatility mod-
els.



3.1. Quasi-likelihood evaluation in the switching stochas-
tic volatility models

A variant of the ADF for the switching linear models is avail-
able in [16]. We generalize it to handle the MSASVS (7)
dynamics. In what follows, pθ denotes the true probability
mass function and qθ is its projection in the ADF workspace.
By reproducing the reasoning [16] we consider, for each
n > 0 and for each rn in {1, .., k}, a normal approximation
qθ (xn |rn, y1...n ) as follows:

qθ (xn |rn, y1...n ) = N
(
xn; x̂n|n(rn), Γ̂n|n(rn)

)
.

The ADF recursion computes x̂n|n(rn) and Γ̂n|n(rn) for
any n with a linear complexity. Then we define, for each
(rn, rn+1) , a normal prediction mass

qθ (xn+1 |rn, rn+1, y1...n ) =

N
(
xn+1; x̂n+1|n(rn, rn+1), Γ̂n+1|n(rn, rn+1)

)
.

However, one supposes classically that the joint mass
qθ (xn+1, yn+1 |rn, rn+1, y1...n ) is normal too. This results
in a linear (Kalman) relationship between xn+1 and yn+1. In
order to avoid this, we assume that only the conditional mass
qθ (xn+1 |rn, rn+1, y1...n+1 ) is normal. We have

qθ (xn+1 |rn, rn+1, y1...n+1 ) =

N
(
xn+1; x̂n+1|n+1(rn, rn+1), Γ̂n+1|n+1(rn, rn+1)

)
.

We make some shortcuts to reduce the amount of notation:

r̂n|n(i) = qθ (rn = i |y1...n ) ;

r̂n+1|n(i, j) = qθ (rn = i, rn+1 = j |y1...n ) ;

r̂n+1|n+1(i, j) = qθ (rn = i, rn+1 = j |y1...n+1 ) .

At each filter step, we begin classically by computing
x̂n+1|n+1(rn, rn+1) and Γ̂n+1|n+1(rn, rn+1) for each
(rn, rn+1) in {1, .., k}2. Then we find x̂n+1|n+1(rn+1) and
Γ̂n+1|n+1(rn+1) for each rn+1 in {1, .., k} by matching the
first two moments. We recall that these moments suffice to
define a normal distribution.

Algorithm 1 Quasi-likelihood evaluation for a regime-
switching stochastic volatility model
Input: Functions fθn+1 , σθn+1 for positive n, parameter vec-
tor θ with respect to (7) and observed time series {yn}Nn=1.
Output: The quasi-log likelihood L = log ` (θ, y1...N )
Initialization:

(i) For each (r0, r1) in {1, .., k}2, assign to x̂1|0(r0, r1),
Γ̂1|0(r0, r1) the prior mean and variance of X1;

(ii) For each (i, j) in {1, .., k}2, r̂1|0(i, j)← pθ (r1 = j);

(iii) Assign zero to L;

Recursion: for n in {0, . . . , N − 1}, repeat:

(A) For each (i, j) in {1, .., k}2:

(a) Let ω(xn) = N
(
xn; x̂n|n(rn), Γ̂n|n(rn)

)
;

(b) Assign to x̂n+1|n(i, j) and Γ̂n+1|n(i, j) respectively

x̂n+1|n(i, j) =

∫
fθn+1 (xn, j, yn)ω(xn)dxn; (10a)

Γ̂n+1|n(i, j) =
(
σθn+1 (j, yn)

)2
+∫ (

fθn+1 (xn, j, yn)− x̂n+1|n(i, j)
)2
ω(xn)dxn;

(10b)

(c) Let ω′ (xn+1) = N
(
xn+1; x̂n+1|n(i, j), Γ̂n+1|n(i, j)

)
;

(d) Assign to cn+1 (θ, i, j, y1...n+1)∫
N (yn+1; 0, expxn+1)ω′(xn+1)dxn+1; (11)

(e) Define ω′′ (xn+1) by

ω′′(xn+1) =
ω′(xn+1)N (yn+1; 0, expxn+1)

cn+1 (θ, i, j, y1...n+1)
;

(f) Assign to x̂n+1|n+1(i, j) and Γ̂n+1|n+1(i, j) respec-
tively∫

xn+1ω
′′(xn+1)dxn+1; (12a)∫ (

xn+1 − x̂n+1|n+1(i, j)
)2

ω′′(xn+1)dxn+1; (12b)

(g) r̂n+1|n(i, j) = r̂n|n(i)pj|i.

(B) Assign to cn+1 (θ, y1...n+1)∑
1≤i,j≤k

r̂n+1|n(i, j)cn+1 (θ, i, j, y1...n+1) ;

(C) For each (i, j) in {1, .., k}2,

r̂n+1|n+1(i, j) =
r̂n+1|n(i, j)cn+1 (θ, i, j, y1...n+1)

cn+1 (θ, y1...n+1)
;

(D) For each j in {1, .., k},

r̂n+1|n+1(j) =
∑

1≤i≤k

r̂n+1|n+1(i, j);

(E) Let ∀(i, j) ∈ {1, .., k}2,

β(i, j) =
r̂n+1|n+1(i, j)

r̂n+1|n+1(j)
;



(F) For each j in {1, .., k}:

x̂n+1|n+1(j) =

k∑
i=1

β(i, j)x̂n+1|n+1(i, j);

Γ̂n+1|n+1(j) =

k∑
i=1

β(i, j)Γ̂n+1|n+1(i, j) +

k∑
i=1

β(i, j)
(
x̂n+1|n+1(j)− x̂n+1|n+1(i, j)

)2
;

(G) Assign L ←L + log cn+1 (θ, y1...n+1).

Steps (B) - (G) are well known and are the same for both
linear and non-linear switching models. Steps (a) - (b) are
also standard and should be ignored at the first iteration (at
n = 0). Steps (d),(f) replace the classic Kalman linear up-
date. Instead, we compute the involved integrals by using the
Gaussian quadrature. This cancels the linearization-induced
bias [8, 9, 10].

3.2. Gaussian quadrature

We see that Algorithm 1 includes evaluating of the integrals
in (10)-(12). These integrals are of the form

I =

∫
g(x)N

(
x;m, s2

)
dx, (13)

where g is a function, m and s2 are the mean and the variance
of the normal mass function in the integral. The value of I
also is

I =

∫
g(m + sx)N (x; 0, 1) dx. (14)

The Gaussian quadrature is a computational approach
which allows approximating the value of I in (14) by:

I ≈
M∑

q=1

πqg(m + sξq). (15)

where {ξq}Mq=1 are M points in R (known as the quadrature
nodes) and {πq}Mq=1 are their corresponding weights. Such
an approximation is exact if g is a polynomial function up to
the (2M − 1)th order cf. [17].

To find these nodes and weights, consider a symmetric
tridiagonal matrix J of size M × M such that its diagonal

elements are null and J [m,m+1] =
√

m−1
2 ,m ∈ {1, ..,M−

1}. Next, find the eigenvalues {εq}Mq=1 and the normalized
eigenvectors {υq}Mq=1 of J . Then the quadrature nodes and
weights are:

ξq =
√

2εq, πq =
(
[υq]1

)2
, (16a)

where [υq]1 stands for the first element of υq. The formulas
below carry out a numerical integration involved by steps (a)-
(f) of Algorithm 1.

(a) Let ∀q ∈ {1, . . . ,M},

ξ′q = x̂n|n(i) +

√
Γ̂n|n(i)ξq;

(b) Assign to x̂n+1|n(i, j) and Γ̂n+1|n(i, j) respectively

x̂n+1|n(i, j) =

M∑
q=1

πqf
θ
n+1

(
ξ′q, j, yn

)
;

Γ̂n+1|n(i, j) =
(
σθn+1 (j, yn)

)2
+

M∑
q=1

πq
(
fθn+1

(
ξ′q, j, yn

)
− x̂n+1|n(i, j)

)2
;

(c) Let ∀q ∈ {1, . . . ,M},

ξ′′q = x̂n+1|n(i, j) +

√
Γ̂n+1|n(i, j)ξq;

(d) Assign to cn+1 (θ, i, j, y1...n+1)

M∑
q=1

πqN
(
yn+1; 0, exp ξ′′q

)
;

(e) Let ∀q ∈ {1, . . . ,M},

π′′q =
πqN

(
yn+1; 0, exp ξ′′q

)
cn+1 (θ, i, j, y1...n+1)

;

(f) Assign to x̂n+1|n+1(i, j) and Γ̂n+1|n+1(i, j) respec-
tively

x̂n+1|n+1(i, j) =

M∑
q=1

π′′qξ
′′
q; (18a)

M∑
q=1

π′′q
(
ξ′′q − x̂n+1|n+1(i, j)

)2
; (18b)

Finally, we obtain a QML parameter estimate θ̂ by maxi-
mizing the output of Algorithm 1 with respect to θ. We use
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization
routine.

Remark 1 The approximation error in (15) decreases at a
rate of O

(
1
M2

)
cf. [18]. The corresponding Monte Carlo in-

tegration error decreases at O
(

1√
M ′

)
where M ′ is the num-

ber of random integration nodes. The one-dimensional Gaus-
sian quadrature converges faster. Compared to a simulation-
based estimation, the proposed QML approach allows a bet-
ter trade-off between the accuracy and the computation time.
Note that the Gaussian quadrature can be combined with the
sparse grid theory to compete the Monte-Carlo integration
even in higher dimensions cf. [19].



4. EXPERIMENTS

4.1. Simulation study

Let us consider the MSSV model (5) which has k = 2
regimes. We use the following parameters (cf. [4]): α1 = −5,
α2 = −2, σ = 0.32, φ = 0.5, p1|1 = 0.990, p2|2 = 0.985
for Test 1, then p1|1 = 0.85, p2|2 = 0.25 for Test 2 and
p1|1 = 0.5, p2|2 = 0.5 for Test 3. In each test, the prior
distribution of jumps corresponds to the eigenvector of the
Markov transition matrix.

Let N = 1000, we perform the following experiment 100
times per each test:

• Simulate {xn, yn}Nn=1 by using (5) with
θ0 = (p1|1 , p2|2 , α1, α2, φ, σ) depending on the test;

• Perform a QML estimation by maximizing the likelihood
function ` (θ, y1...N ) from Algorithm 1. We use M = 5
integration nodes in the quadrature rules;

• Run a particle filter with 2000 particles to find the su-
pervised {x̂supn }Nn=1 and unsupervised {x̂unsupn }Nn=1 log-
variance estimates as follows:

x̂supn = Eθ0 [Xn |y1...n ] , x̂unsupn = Eθ̂ [Xn |y1...n ] ;

• Compute the mean square errors (MSE) by

MSEsup =
1

N

N∑
n=1

(x̂supn − xn)
2

;

MSEunsup =
1

N

N∑
n=1

(x̂unsupn − xn)
2
.

We report in Table 1 the average over these experiments
and the average parameter estimates per each test.

This simulation study shows that the accuracy of our un-
supervised method is satisfactory. We also observed that us-
ing a larger number of integration nodes does not affect the
outcome.

4.2. Stock market volatility analysis

We have collected 100 historical prices of the most active
stocks by trade volume, of the most volatile stocks and those
of the largest companies by revenue.

These charts are publicly available via Yahoo! Finance
service. In our analysis, they relate to the period in-between
01/01/2010 and 04/01/2016 and contain 1500 price observa-
tions each on average.

We estimate the parameters of bi-regime MSSV (5) and
MSASV (6) models for each of these shares with our QML
estimator. By analyzing these parameters we can find out
whether or not the switching models are relevant for the of the
price movement modeling. For example, if the parameters of

Table 1. Error measures for both supervised and unsuper-
vised log-variance estimates in the MSSV model, as well as
the true parameters and their average estimates. The percent-
age quantifies the increase in error when the parameter vector
is unknown.

Test 1 Test 2 Test 3
MSEsup 0.34 0.82 1.46

MSEunsup 0.37 0.83 1.47
Percentage 9.4% 1.9% 0.7%
p1|1 , p2|2 0.990, 0.985 0.85, 0.25 0.50, 0.50
p̂1|1 , p̂2|2 0.991, 0.984 0.86, 0.26 0.49, 0.51
α1, α2 −5.0,−2.0 −5.0,−2.0 −5.0,−2.0
α̂1, α̂2 −5.5,−2.2 −5.1,−2.1 −5.3,−2.2
φ, σ 0.50, 0.32 0.50, 0.32 0.50, 0.32

φ̂, σ̂ 0.45, 0.19 0.48, 0.30 0.47, 0.30

a MSSV are p1|1 = 1, p2|2 = 0, then the second regime is
clearly absent and we can say that MSSV includes only one
regime. The same holds if α1 = α2 i.e. the two regimes are
exactly the same.

We find out that MSSV and MSASV have only one
regime in 32 of the analyzed charts. We conclude that the re-
lated equities do not seem to have a regime-switching volatil-
ity. The MSSV and MSASV are identical for 36 equities
from our list. In other words, the corresponding log-variance
is not asymmetric but includes regime-shifting. The MSSV
and MSASV produce two nonidentical regimes in 24 cases.
The related shares have an asymmetric switched log-variance.
Consider Fig. 1 for an illustration. There are only three shares
for which the MSASV identifies two different regimes while
MSSV identifies only one. The corresponding regimes are un-
detectable unless we use an asymmetric model. These shares
concern large companies, specifically Apple, AO Smith and
IBM. Finally, there are five charts where MSSV identifies two
different regimes while MSASV identifies only one. Indeed,
these charts include the well-known SPX and FTSE indexes.
The corresponding log-variance is highly asymmetric so the
asymmetric volatility model fits it better than non-asymmetric
Markov-switching one.

5. CONCLUSION AND PERSPECTIVES

We proposed a general method of parameter estimation in the
switched stochastic volatility models. The solution results
from maximizing a specific approximation of the likelihood
function. This method is simple, efficient and allows perform-
ing an analysis of stock quotes dynamics. Our approximation
is designed to realize considerable speedups compared to the
existing simulation-based techniques. A Monte-Carlo study
confirms the effectiveness of our methodology.

The proposed method can be generalized to a broad range
of common activities such as option pricing and yield curve



Fig. 1. Log-variance of the XLF index by the four models
in-between 01/10/2015 and 08/12/2015 (48 observations).

fitting. As a perspective, we will study the applicability of
this method to more complex models. Such are, for exam-
ple, multi-factor, multi-scale volatility models. We will also
propose tests for model selection.
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