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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01165338


EXACT FAST SMOOTHING IN SWITCHING MODELS WITH APPLICATION TO
STOCHASTIC VOLATILITY
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† École Centrale de Lyon,
LIRIS, CNRS UMR 5205,

Écully, France.

ABSTRACT
We consider the problem of statistical smoothing in nonlin-
ear non-Gaussian systems. Our novel method relies on a
Markov-switching model to operate recursively on series of
noisy input data to produce an estimate of the underlying
system state. We show through a set of experiments that our
technique is efficient within the framework of the stochastic
volatility model.

Index Terms— Nonlinear systems, Stochastic volatility,
Bayesian smoother, Conditionally Gaussian linear state-space
model, Smoothing in switching systems.

1. INTRODUCTION

Let us consider two random sequences XN
1 = (X1, . . . ,XN )

and YN
1 = (Y1, . . . ,YN ), Xn and Yn respectively tak-

ing their values in Rd and Rp. XN
1 is hidden, while YN

1

is observed. We explore the problem of “Bayesian smooth-
ing” which aims to recover, for n = 1, . . . , N , Xn from YN

1 .
With the usual notations for conditional expectation, one gets
the solution by computing E

[
Xn

∣∣yN1 ]. We provide an origi-
nal technique that appears as an alternative to the widely used
particle filter based methods, for example in finance [1–3].
Our method, inspired from [4] to perform a fast filtering, ap-
plies when (XN

1 ,Y
N
1 ) is a stationnary hidden Markov model

(HMM), non necessarily Gaussian nor linear. Such a station-
ary HMM can be defined by an invariant probability density
function p (x1,y1) and the following recursion equations:

Xn+1 = Φ(Xn,Un+1); (1)
Yn = Ψ(Xn,Vn+1), (2)

where U1,V1, . . . ,UN ,VN are convenient independent
variables, and functions Φ and Ψ specify the state equation
and the measurement equation. There is no known Bayesian
smoothing algorithm for this general framework, and one
uses various approximations [5, 6]. Among them, the Monte
Carlo methods are very attractive, but they can meet diffi-
culties in some situations. Our algorithm makes use of the
smoothing in the “Conditionally Markov switching hidden

linear model” (CMSHLM) [7], which can accurately fit the
given HMM. In this way, we state a new general method for
smoothing and show its interest within the framework of the
classic stochastic volatility model [8–10].

The paper is organized as follows. In the next section, we
remind the CMSHLM model and show its relevance for solv-
ing the problem. In Section 3, we describe the “Stationary
conditionally Gaussian observed Markov switching model”
(SCGOMSM) which is a particular Gaussian CMSHLM.
Our smoothing method, which is based on the Expectation-
Maximization (EM) algorithm and Gaussian CMSHLM, is
given in Section 4. The fifth section presents experimental
results, and the sixth one draws conclusions and perspectives.

2. EXACT SMOOTHING IN CONDITIONALLY
MARKOV SWITCHING HIDDEN LINEAR MODELS

Let RN
1 = (R1, . . . , RN ) be a random sequence taking its

values in Ω = {1, . . . ,K}.

Definition 1 We say that a discrete time Markov process
(XN

1 ,R
N
1 ,Y

N
1 ) is a “Conditionally Markov switching hid-

den linear model” (CMSHLM) if it verifies

p
(
rn+1,yn+1 |xn, rn,yn

)
= p

(
rn+1,yn+1 |rn,yn

)
, (3)

and the following recursion equation:

Xn+1 = Fn+1(Rn+1
n ,Yn+1

n )Xn+

Gn+1(Rn+1
n ,Yn+1

n )Wn+1 + Hn+1(Rn+1
n ,Yn+1

n ),
(4)

with suitable matrices Fn+1(Rn+1
n ,Yn+1

n ), Gn+1(Rn+1
n ,Yn+1

n ),
Hn+1(Rn+1

n ,Yn+1
n ) and Gaussian unit-variance white noise

vector Wn+1 .
We can state the following:

Proposition 1
Let (XN

1 ,R
N
1 ,Y

N
1 ) be a CMSHLM. Next, for each n in

{1, . . . , N}, p
(
rn
∣∣yN1 ), E

[
Xn

∣∣yN1 ] and E
[
XnX>n

∣∣yN1 ]
can be computed with a complexity linear in N .



Proof Firstly, let us prove that

E
[
Xn

∣∣yN1 ] =
∑
rn

p
(
rn
∣∣yN1 )E [Xn |rn,yn1 ], (5)

E
[
XnX>n

∣∣yN1 ] =
∑
rn

p
(
rn
∣∣yN1 )E

[
XnX>n |rn,yn1

]
.(6)

According to (3), p
(
xn
∣∣rn,yn+1

n

)
= p (xn |rn,yn ) and,

more generally, p
(
xn
∣∣rn,yNn ) = p (xn |rn,yn ). Then (5)

comes from p
(
xn
∣∣yN1 ) =

∑
rn
p
(
rn
∣∣yN1 ) p (xn ∣∣rn,yN1 ),

and we prove (6) in a similar way.
Secondly, the posterior marginals p

(
rn
∣∣yN1 ) are cal-

culable using the forward-backward algorithm. The “for-
ward” and “backward” probabilities αn(rn) = p (rn,y

n
1 ),

βn(rn) = p
(
yNn+1 |rn,yn

)
are recursively computable with

α1(r1) = p (r1,y1) ;

αn+1(rn+1) =
∑
rn∈Ω

αn(rn)p
(
rn+1,yn+1 |rn,yn

)
; (7)

βN (rN ) = 1;

βn(rn) =
∑

rn+1∈Ω

βn+1(rn+1)p
(
rn+1,yn+1 |rn,yn

)
. (8)

This algorithm enables us to calculate the jump smoothed val-
ues p

(
rn
∣∣yN1 ) and the jump filtered values p (rn |yn1 ) using

p
(
rn
∣∣yN1 ) =

αn(rn)βn(rn)∑
r∗n∈Ω

αn(r∗n)βn(r∗n)
. (9)

p (rn |yn1 ) =
αn(rn)∑

r∗n∈Ω

αn(r∗n)
. (10)

We can also get E [Xn |rn,yn1 ] and E
[
XnX>n |rn,yn1

]
in-

ductively [7]. Indeed, the recursive formula to compute
E
[
Xn+1

∣∣rn+1,y
n+1
1

]
from E [Xn |rn,yn1 ] is

E
[
Xn+1

∣∣rn+1,y
n+1
1

]
=
∑
rn

p
(
rn
∣∣rn+1,y

n+1
1

)
(
Fn+1(r

n+1
n ,yn+1

n )E [Xn |rn,yn
1 ] + Hn+1(r

n+1
n ,yn+1

n )
)
.(11)

The recursion to compute E
[
Xn+1X

>
n+1

∣∣rn+1,y
n+1
1

]
from E

[
XnX>n |rn,yn1

]
is similar to the previous one:

E
[
Xn+1X

>
n+1

∣∣rn+1,y
n+1
1

]
=
∑
rn

p
(
rn
∣∣rn+1,y

n+1
1

)
(
Fn+1(r

n+1
n ,yn+1

n )E
[
XnX>n |rn,yn

1

]
F>n+1(r

n+1
n ,yn+1

n ) +

Fn+1(r
n+1
n ,yn+1

n )E [Xn |rn,yn
1 ]H

>
n+1(r

n+1
n ,yn+1

n ) +

Hn+1(r
n+1
n ,yn+1

n )E> [Xn |rn,yn
1 ]F

>
n+1(r

n+1
n ,yn+1

n ) +

Gn+1(r
n+1
n ,yn+1

n )G>n+1(r
n+1
n ,yn+1

n ) +

Hn+1(r
n+1
n ,yn+1

n )H>n+1(r
n+1
n ,yn+1

n )
)
. (12)

Both expressions require p
(
rn
∣∣rn+1,y

n+1
1

)
, which is ob-

tainable using (10) and

p
(
rn
∣∣rn+1,y

n+1
1

)
=

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )∑
r∗n

p
(
rn+1,yn+1 |r

∗
n,yn

)
p (r∗n |yn

1 )
.

(13)

3. STATIONARY CONDITIONALLY GAUSSIAN
OBSERVED MARKOV SWITCHING MODELS

Let us consider a stationary Markov triplet (XN
1 ,R

N
1 ,Y

N
1 )

such that ∀n ∈ {1, ..., N}, p(xn+1
n ,yn+1

n |rn+1
n ) is a Gaus-

sian probability density function. Let Zn be (X>n ,Y
>
n )> and

zn be its realisation. We thus intend to specify the mean vec-
tor

Υ(rn+1
n ) =

[
M(rn)

M(rn+1)

]
=

[
E [Zn |rn ]

E [Zn+1 |rn+1 ]

]
(14)

and the covariance matrix

Ξ(rn+1
n ) =

[
S(rn) Σ(rn+1

n )

Σ>(rn+1
n ) S(rn+1)

]
(15)

of the multivariate normal distribution:

p(xn+1
n ,yn+1

n |rn+1
n ) =

N
((

z>n , z
>
n+1

)
,Υ(rn+1

n ),Ξ(rn+1
n )

)
, (16)

Definition 2 We say that a discrete time stationary Markov

process (XN
1 ,R

N
1 ,Y

N
1 ) is a ”Stationary conditionally Gaus-

sian observed Markov switching model” (SCGOMSM) if it
verifies (14)-(16) and has the following property:

p
(
yn+1

∣∣xn, rn+1
n ,yn

)
= p

(
yn+1

∣∣rn+1
n ,yn

)
(17)

Let us remember that SCGOMSMs can be very close to
the classic “conditionally Gaussian linear state-space model”
(CGLSSM) [11, 12], which does not offer the possibility of
fast smoothing [5].

Proposition 2
If a discrete time stationary Markov process (XN

1 ,R
N
1 ,Y

N
1 )

is a SCGOMSM, it is also a CMSHLM with Fn+1, Gn+1

and Hn+1 in (4) given by (26)-(28).
Proof According to (14) - (16), we have p (rn+1 |xn, rn,yn ) =
p (rn+1 |rn ). We then use (17) to prove that a SCGOMSM
has property (3) of the CMSHLM.

To find out the corresponding Fn+1, Gn+1 and Hn+1 in
(4), we set

A(rn+1
n ) = Σ>(rn+1

n ) S−1(rn), (18)

and consider B(rn+1
n ) and Q(rn+1

n ) such that

B(rn+1
n )B>(rn+1

n ) =

S(rn+1)−Σ>(rn+1
n )S−1(rn)Σ(rn+1

n ), (19)



Q(rn+1
n ) =

[
Q1(rn+1

n ) Q2(rn+1
n )

Q3(rn+1
n ) Q4(rn+1

n ).

]
= B(rn+1

n )B>(rn+1
n ).

(20)
Equation (17) induces that the matrix A(rn+1

n ) has the
following form:

A(rn+1
n ) =

[
A1(rn+1

n ) A2(rn+1
n )

0 A4(rn+1
n )

]
. (21)

Hence, we can state that the discrete time process (ZN1 ) satis-
fies the following recursion equation:

Zn+1 = A(Rn+1
n )(Zn −M(Rn))

+B(Rn+1
n )Wn+1 + M(Rn+1), (22)

where W1, . . . ,WN are Gaussian unit-variance white noise
vectors. Let us set M(rn) =

(
M1(rn)>,M2(rn)>

)>
p
(
xn+1,yn+1

∣∣xn, rn+1
n ,yn

)
is a multivariate normal

probability density function. Its covariance matrix is Q(rn+1
n )

and its mean vector is

A(rn+1
n )

[
xn
yn

]
+

[
N1(rn+1

n )
N2(rn+1

n )

]
=

[
A1(rn+1

n )xn + A2(rn+1
n )yn + N1(rn+1

n )
A4(rn+1

n )yn + N2(rn+1
n )

]
, (23)

where we set

N1(rn+1
n ) = M1(rn+1)−A1(rn+1

n )M1(rn)

−A2(rn+1
n )M2(rn),

N2(rn+1
n ) = M2(rn+1)−A4(rn+1

n )M2(rn).

p
(
xn+1

∣∣xn, rn+1
n ,yn+1

n

)
is also a multivariate normal

probability density function with mean vector is

Q2(rn+1
n )Q−1

4 (rn+1
n )(yn+1 −A4(rn+1

n )yn −N2(rn+1
n ))

+A1(rn+1
n )xn + A2(rn+1

n )yn + N1(rn+1
n ), (24)

and covariance matrix

Q1(rn+1
n )−Q2(rn+1

n )Q−1
4 (rn+1

n )Q3(rn+1
n ). (25)

This allows to complete the proof and to specify Fn+1, Gn+1

and Hn+1 :

Fn+1(r
n+1
n ,yn+1

n ) = A1(r
n+1
n ), (26)

Hn+1(r
n+1
n ,yn+1

n ) = A2(r
n+1
n )yn + N1(r

n+1
n ) + (27)

Q2(r
n+1
n )Q−1

4 (rn+1
n )(yn+1 −A4(r

n+1
n )yn −N2(r

n+1
n )),

Gn+1(r
n+1
n ,yn+1

n )GT
n+1(r

n+1
n ,yn+1

n ) = (25). (28)

To sum up, the smoothing procedure in the SCGOMSM
at first recursively computes p (rn |yn1 ), E [Xn |rn,yn1 ],
E
[
XnX>n |rn,yn1

]
using Algorithm 1 below, then com-

putes the state smoothed values using (8) and (9) and finally
produces the smoothed output using (5) and (6).

Algorithm 1 Given E [Xn |rn,yn1 ], E
[
XnX>n |rn,yn1

]
,

p (rn |yn1 ), and yn+1:

• Calculate Fn+1(rn+1
n ,yn+1

n ), Hn+1(rn+1
n ,yn+1

n ) and
Gn+1(rn+1

n ,yn+1
n )G>n+1(rn+1

n ,yn+1
n ) with (26)-(28);

• Calculate p
(
rn+1,yn+1 |rn,yn

)
=

p (rn+1 |rn ) p
(
yn+1

∣∣rn+1
n ,yn

)
. Let us remind that

the probability density function p
(
yn+1

∣∣rn+1
n ,yn

)
is

multivariate normal with mean vector A4(rn+1
n )yn +

N2(rn+1
n ) and covariance matrix Q4(rn+1

n ) ;

• Use (7) and (10) to calculate p
(
rn+1

∣∣yn+1
1

)
, then use

(13) to calculate p
(
rn
∣∣rn+1,y

n+1
1

)
;

• Use (11) and (12) to calculate E
[
Xn+1

∣∣rn+1,y
n+1
1

]
and

E
[
Xn+1X

>
n+1

∣∣rn+1,y
n+1
1

]
.

4. APPROXIMATING NON-LINEAR
NON-GAUSSIAN MODELS

Let us consider a stationary HMM that we described in the
introduction. The probability density functions p

(
xn+1
n

)
and

p (yn |xn ) do not depend on n, so p
(
x2

1,y
2
1

)
defines the en-

tire distribution of p
(
xN1 ,y

N
1

)
. The idea is to approach it by

a Gaussian mixture of K2 components in such a way that this
mixture derives from a SCGOMSM [13].

More precisely, it is possible to find an approximation

p
(
x2

1,y
2
1

)
≈

∑
1≤i,j,≤K

cij pij(x
2
1,y

2
1), (29)

with an arbitrary precision and under mild conditions. In
order to find a SCGOMSM close to the given HMM, we
assume that cij is the distribution of the random variable
(R1, R2) taking its values in Ω2 = {1, ...,K}2, which means
that we set cij = P (R1 = i, R2 = j). With respect to
(16), we can then parametrize the conditional distribution
pij(x

2
1,y

2
1) = p(x2

1,y
2
1|r1 = i, r2 = j) by the mean vec-

tor Υij and the covariance matrix Ξij . The suitable values
for cij , Υij and Ξij can be found with a training sample
(x′M1 ,y′M1 ) simulated within the HMM framework, and the
Expectation-Maximization algorithm (EM) that we describe
below.

Algorithm 2 inputs the simulated sample to produce the
sequence

(
c
(q)
ij ,Υ

(q)
ij ,Ξ

(q)
ij

)
q∈N,1≤i,j≤K

, assumed to tend to

(cij ,Υij ,Ξij)1≤i,j≤K .

Algorithm 2

1. Let q ← 0. Use the k-means clustering algorithm to as-
sign each couple (x′m,y

′
m) to one of the K clusters and

consider, for each 1 ≤ i ≤ K and 1 ≤ m ≤ M , φ(0)
m (i)

that equals 1 if (x′m,y
′
m) belongs to the i-th cluster and 0

otherwise. Furthermore, consider, for each 1 ≤ i, j ≤ K

and 1 ≤ m < M , ψ(0)
m (i, j) = φ

(0)
m (i)φ

(0)
m+1(j);

2. Use the formulas below to calculate, for each 1 ≤ i, j ≤



K, the new estimates
(
c
(q+1)
ij ,Υ

(q+1)
ij ,Ξ

(q+1)
ij

)
.

c
(q+1)
ij =

1

M − 1

M−1∑
m=1

ψ(q)
m (i, j), (30)

Υ
(q+1)
ij =

M−1∑
m=1

z′m+1
m ψ(q)

m (i, j)

M−1∑
m=1

ψ(q)
m (i, j)

, (31)

Ξ
(q+1)
ij =

M−1∑
m=1

(
z′m+1
m −Υ

(q+1)
ij

)(
z′m+1
m −Υ

(q+1)
ij

)T
ψ(q)

m (i, j)

M−1∑
m=1

ψ(q)
m (i, j)

,

(32)
where z′m+1

m = (x′Tm ,y
′T
m ,x

′T
m+1,y

′T
m+1)T .

3. To compute ψ(q+1)
m (i, j), use (33) to compute the ”for-

ward” probabilities and use (34) to compute the ”back-
ward” ones, then use (35) to calculate ψ(q+1)

m (i, j) for
each 1 ≤ i, j ≤ K and 1 ≤ m < M .

α1(i) = aip (x′1,y
′
1 |r1 = i ) ;

αm+1(j) =
∑
i∈Ω

αm(i)γ(q+1)
m (i, j)pj|i; (33)

βM (j) = 1;

βm(i) =
∑
j∈Ω

βm+1(j)γ(q+1)
m (i, j)pj|i. (34)

ψ(q+1)
m (i, j) =

αm(i)γ(q+1)
m (i, j)pj|iβm+1(j)∑

i∗,j∗∈Ω

αm(i∗)γ(q+1)
m (i∗, j∗)pj∗|i∗βm+1(j∗)

,

(35)

where ai =
∑
j∈Ω

c
(q+1)
ij , pj|i =

c
(q+1)
ij

ai
and γ(q+1)

m (i, j) =

p
(
x′m+1,y

′
m+1 |rm = i, rm+1 = j,x′m,y

′
m

)
. The con-

ditional probability density functions p (x′1,y
′
1 |r1 = i )

and p
(
x′m+1,y

′
m+1 |rm = i, rm+1 = j,x′m,y

′
m

)
are

multivariate normal distribution defined by Υ
(q+1)
ij and

Ξ
(q+1)
ij with respect to (14)-(23).

4. Stop according to a stopping criterion or increment q and
repeat from Step 2.

Finally, our new smoothing method is:

Algorithm 3 Given input data yN1 ,
1. Consider a training sample (x′M1 ,y′M1 ) simulated within

the HMM framework;

2. Apply Algorithm 2 to the training sample to compute
(cij ,Υij ,Ξij)1≤i,j≤K ;

3. Compute recursively p (rn |yn1 ), E [Xn |rn,yn1 ],
E
[
XnXT

n |rn,yn1
]

using Algorithm 1;

4. Calculate state smoothed values using (8) and (9);

5. Calculate the smoothed output using (5) and (6);

5. EXPERIMENTS

Let us consider the stochastic volatility model defined by the
following recursion equations:

X1 = U1; (36)
Xn+1 = µ+ φ(Xn − µ) + σUn+1; (37)
Yn = β exp (Xn/2)Vn, (38)

with fixed µ and σ, and Gaussian unit-variance white noise
vectors U1,V1, . . . ,UN ,VN . In the non-degenerate case,
this model is stationary if and only if φ < 1 and σ2

1−φ2 = 1
[14]. Therefore, we consider four sets of parameters, corre-
sponding to µ = 0.5, β = 0.5, different values of σ2 and φ
with respect to the condition σ2 = 1− φ2.

For each experiment instance, we aim to compare the be-
haviour of our method forK = 2, 3, 5 or 7. In concrete terms,
we simulate a training sample (x′M1 ,y′M1 ) and a test sample
(xN1 ,y

N
1 ) within the framework of the stochastic volatility

model. Next, we use Algorithm 3 to compute a smoothed out-
put, and we use xN1 to calculate the mean square error (MSE).
For our study cases, the training sample size is M = 20000,
the number of iterations of EM is QEM = 100 and the test
sample size is N = 1000.

We also use a particle smoother to compute E
[
Xn

∣∣∣Yn+T
1

]
with T = 5, and we measure the MSE. We found out that
using greater values of T needs more particles to cope with
the degeneracy phenomenon, but does not change the MSE
value. We thus consider that E

[
Xn

∣∣∣Yn+T
1

]
is a good ap-

proximation of E
[
Xn

∣∣∣YN
1

]
.

The results of our experiments are presented in Table 1.
In the case of K = 5, the results are similar to those obtained
with a particle smoother (PS). When choosing 100 particles,
PS is quicker than our method because of the EM algorithm.
However, when the underlying SCGOMSM fits the HMM,
our method is as fast as the Kalman filter, and faster than PS.
For the higher values ofK, the results remain stable and anal-
ogous to the PS ones, which probably means that they are
close to the theoretical ones.

6. CONCLUSION

We put forward a new method to find the hidden signal in
the framework of a nonlinear and non-Gaussian model. This
method is general and works under slight conditions: we only
need to be able to sample data according to the given HMM.
When our model fits the nonlinear and non-Gaussian system,



Table 1. MSE of 100 separate experiments in the cases de-
scribed above, for our method and for the particle smoother
(1500 particles).

Nb of mixture components

φ σ2 2 3 5 7 PS

1 0.99 0.02 0.39 0.23 0.14 0.13 0.12
2 0.90 0.19 0.48 0.39 0.35 0.34 0.33
3 0.80 0.36 0.56 0.50 0.47 0.47 0.46
4 0.50 0.75 0.70 0.67 0.66 0.66 0.66

the method is as fast as the classic Kalman filter in linear sys-
tems.

We tested our approach in the framework of the stochastic
volatility model, and it turns out that the mean square error
obtained is very close to the theoretical one, the latter esti-
mated by a particle smoother.

As a conclusion, let us mention two perspectives. The
first one is to consider different and more complex stochas-
tic volatility models [3, 15–17]; the second one is to consider
more advanced families of switching models allowing fast ex-
act smoothing.
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