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Abstract We consider a triplet Markov Gaussian linear systems (X,R,Y), where X is a10 10

sequence of continuous hidden states, R is a hidden discrete sequence, Y is an observed11 11

continuous sequence, and (X,Y) is Gaussian conditionally on R. In the classical “Condi-12 12

tionally Gaussian Linear State-Space Model” (CGLSSM), the exact computation of the first13 13

and the second moments of the filtering distribution is a NP-hard problem. By contrast,14 14

in a recent family of triplet models called “Conditionally Markov Switching Hidden Linear15 15

Models” (CMSHLM), the exact computation of these moments can be done with complexity16 16

linear in the number of observations. In this paper, we show that it is possible to modify a17 17

given CGLSSM to obtain a quite close CMSHLM in which exact optimal filtering is possible.18 18

So we provide an alternative to classical approximative filtering techniques in CGLSSM.19 19

Keywords Triplet Markov Chains, Exact filtering, Conditionally Gaussian Linear State-20 20

Space Model, Conditionally Markov Switching Hidden Linear Model.21 21

1 Introduction22 22

Let us consider three random sequences XN
1 = (X1, · · · ,XN), RN

1 = (R1, · · · , RN)23 23

and YN
1 = (Y1, · · · ,YN), where Xn ∈ Rm, Yn ∈ Rq and Rn ∈ Ω = {1, · · · , K}. The24 24

problem we address in this paper is the sequential estimation of hidden (RN
1 ,X

N
1 )25 25

from observed YN
1 . More precisely, we look for computing p

(
rn+1|yn+1

1

)
and E

[
Xn+1|rn+1,y

n+1
1

]
26 26

from p (rn|yn
1 ), E [Xn|rn,yn

1 ] and yn+1 at a linear computational cost. The general27 27

model used for the distribution of the Markov chain (MC) TN
1 = (XN

1 ,R
N
1 ,Y

N
1 ) in-28 28

cludes the two classical models that are Hidden Markov Chains (HMCs) [3] and Lin-29 29

ear Gaussian State-Space Models (LGSSMs) [8]. Roughly speaking, ((XN
1 ,R

N
1 ),YN

1 )30 30

is an HMC and given RN
1 , (XN

1 ,Y
N
1 ) is a LGSSM:31 31

RN
1 is a MC with p (rn+1|xn

1 , r
n
1 ,y

n
1 ) = p (rn+1|rn) , (1)32 32

Xn+1 = An+1(Rn+1)Xn + Cn+1(Rn+1)Un+1, (2)33 33

Yn+1 = Bn+1(Rn+1)Xn+1 + Dn+1(Rn+1)Vn+1, (3)34 34
35 35



TAIMA Conf., Hammamet (Tunisia), 3-8 May 2013

2 W. Pieczynski, S. Derrode, N. Abassi, Y. Petetin and F. Desbouvries

with An+1(Rn+1), Bn+1(Rn+1), Cn+1(Rn+1) and Dn+1(Rn+1) appropriate matrices36 36

depending on switches, and Un+1, Vn+1 appropriate Gaussian vectors. When the37 37

sequence RN
1 is known, the problem is solved by the Kalman Filter (KF); how-38 38

ever, when RN
1 is not known the problem is NP-hard [9], so numerical or stochastic39 39

approximation methods need to be used [2,5].40 40

Recently, another family of distributions for triplet TN
1 has been proposed[7]41 41

which makes possible the computation of p
(
rn+1|yn+1

1

)
and E

[
Xn+1|rn+1,y

n+1
1

]
with42 42

complexity linear in n:43 43

p
(
rn+1,yn+1|xn, rn,yn

)
= p

(
rn+1,yn+1|rn,yn

)
, (4)44 44

Xn+1 = Fn+1(R
n+1
n ,Yn+1

n )Xn + Gn+1(R
n+1
n ,Yn+1

n )Wn+1 + Hn+1(R
n+1
n ,Yn+1

n ),
(5)

45 45

46 46

where Fn+1(R
n+1
n ,Yn+1

n ), Gn+1(R
n+1
n ,Yn+1

n ) are appropriate matrices, Wn+1 is an47 47

appropriate zero-mean independence sequence and Hn+1(R
n+1
n ,Yn+1

n ) are appropri-48 48

ate vectors. The main difference between classical family (1)-(3) and recent fam-49 49

ily (4)-(5) lies in the fact that in the former, the couple (XN
1 ,R

N
1 ) is Markov while50 50

the couple (RN
1 ,Y

N
1 ) is not necessarily Markov, while in the latter the converse is51 51

true: the couple (RN
1 ,Y

N
1 ) is Markov while the couple (XN

1 ,R
N
1 ) is not necessarily52 52

Markov. Of course, in both classical and recent families, TN
1 is Markov. In this pa-53 53

per, we look for models(4)-(5) (so in which p (rn|yn
1 ), E [Xn|rn,yn

1 ] are computable54 54

at a linear computational cost) which are “close”to a given classical model (1)-(3).55 55

By close, we mean that we start from model (1)-(3) where jumps RN
1 are given and56 56

we look for a Pairwise MC (PMC) model [4,6] in which YN
1 is a MC and the pdf57 57

of (Xn,Yn) coincides in both models. Finally, we introduce the discrete MC RN
1 in58 58

these particular PMC models and we apply the exact filtering technique[7].59 59

The paper is organized as follows. In Section 2 we derive PMC models which are60 60

close to a given HMC one and in which YN
1 is a MC. In Section 3, we extend the61 61

previous model in order to derive particular TMC models in which exact filtering is62 62

possible and which are close to a given model (1)-(3). In Section 4 we perform some63 63

simulations and end the paper with a conclusion.64 64

2 Models with known switches65 65

In the whole paper, RN
1 will be assumed to be a MC. In this section, we as-66 66

sume that switches RN
1 are known and we consider distributions conditional on RN

1 .67 67

Therefore, although all matrices depend on Rn+1 or Rn, we will temporarily forget68 68

this dependence. Thus, when RN
1 is given, model (1)-(3) reads69 69

Xn+1 = An+1(Rn+1)Xn + Cn+1(Rn+1)Un+1, (6)70 70

Yn+1 = Bn+1(Rn+1)Xn+1 + Dn+1(Rn+1)Vn+1, (7)71 71
72 72
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where UN
1 , VN

1 are zero mean-sequences which are independent, mutually indepen-73 73

dent and independent of X0, with E [X0] = 0.74 74

Assuming that (B1
n+1(Rn+1))

−1 exists, let us consider the following equivalent75 75

form which will be called “Model 1”:76 76

Zn+1 = A1
n+1(Rn+1)Zn + B1

n+1(Rn+1)Wn+1, with Zn =

[
Xn

Yn

]
, (8)77 77

Wn+1 =

[
Un+1

Vn+1

]
,A1

n+1 =

[
An+1 0

Bn+1An+1 0

]
,B1

n+1 =

[
Cn+1 0

Bn+1Cn+1 Dn+1

]
. (9)78 78

79 79

Let Γ Zn be the covariance matrix of Zn: ΓXn = E
[
XnX

T
n

]
, ΓYn = E

[
YnY

T
n

]
,80 80

ΓXnYn = E
[
XnY

T
n

]
and ΓYnXn = E

[
YnX

T
n

]
. From (8) that sequence (Γ Zn) satis-81 81

fies the classic following recursion:82 82

Γ Zn+1 = A1
n+1Γ Zn(A1

n+1)
T + B1

n+1(B
1
n+1)

T . (10)83 83
84 84

Our goal is to look for a “Model 2”with the following properties:85 85

(i) Model 2 is “close” to the model (6)-(7) in the sense that pdf of couple86 86

(Xn,Yn) are the same in Models 1 and 2;87 87

(ii) In Model 2, YN
1 is a MC and its transitions are identical to pdf p

(
yn+1|yn

)
88 88

of Model 1.89 89

The first point justifies the use of Model 2 in situations where Model 1 is used. The90 90

second point is of importance as it will allow us to use the recent results in [1,7] and91 91

to propose a fast exact optimal filtering in the presence of switches.92 92

Proposition 1. Let us consider the Model 2 defined by93 93

Zn+1 = A2
n+1Zn + B2

n+1Wn+1, (11)94 94

A2
n+1 =

[
An+1 0

0 Bn+1An+1ΓXn(Bn)T (ΓYn)−1

]
(12)95 95

96 96

and the sequence B2
n+1 verifying97 97

B2
n+1(B

2
n+1)

T = A1
n+1Γ Zn(A1

n+1)
T + B1

n+1(B
1
n+1)

T −A2
n+1Γ Zn(A2

n+1)
T . (13)98 98

99 99

Then we can state:100 100

(P1) YN
1 is a MC and its transitions are given by pdf p

(
yn+1|yn

)
of Model 1;101 101

(P2) for any n ≥ 0, covariance matrices E
[
Yn+1(Yn)T

]
are the same in (8)102 102

and (11);103 103

(P3) the sequence of variance-covariance matrices Γ Zn is the same in (8) and (11);104 104

(P4) in Models 1 and 2, XN
1 is a MC with the same distribution;105 105

(P5) for any n ≥ 0, the distributions of (Xn,Yn), (Xn,Yn+1), (Yn,Yn+1) and106 106

(Xn+1,Yn) are the same in both models; so the distributions of (Xn,Yn,Xn+1)107 107

and (Xn+1,Yn,Yn+1) are also identical in both models.108 108
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3 Gaussian switching linear systems109 109

Let us now consider the equivalent formulation of CGLSSM (1)-(3):110 110

RN
1 is a MC with p (rn+1|xn

1 , r
n
1 ,y

n
1 ) = p (rn+1|rn) , (14)111 111

Zn+1 = A1
n+1(Rn+1)Zn + B1

n+1(Rn+1)Wn+1, (15)112 112
113 113

where A1
n+1(Rn+1) and B1

n+1(Rn+1) are defined as in (9) in which the dependence114 114

in Rn+1 is introduced:115 115

A1
n+1(Rn+1) =

[
An+1(Rn+1) 0

Bn+1(Rn+1)An+1(Rn+1) 0

]
, (16)116 116

B1
n+1(Rn+1) =

[
Cn+1(Rn+1) 0

Bn+1(Rn+1)Cn+1(Rn+1) Dn+1(Rn+1)

]
. (17)117 117

118 118

Let us notice that the sequence of the covariance matrices satisfies119 119

Γ Zn+1(rn+1) = A1
n+1(rn+1)

[∑
rn

p (rn|rn+1)Γ Zn(rn)

]
(A1

n+1(rn+1))
T

120 120

+ B1
n+1(rn+1)(B

1
n+1(rn+1))

T . (18)121 121
122 122

As in Section 2 above, we now look for matching a CGLSSM to a CMSHLM. More123 123

precisely, let us consider the extension of Model 2 in section 2:124 124

RN
1 is a MC with p (rn+1|xn

1 , r
n
1 ,y

n
1 ) = p (rn+1|rn) , (19)125 125

Zn+1 = A2
n+1(R

n+1
n )Zn + B2

n+1(R
n+1
n )Wn+1, (20)126 126

127 127

where128 128

A2
n+1(R

n+1
n ) =

[
An+1(Rn+1) 0

0 En+1(R
n+1
n )

]
, (21)129 129

En+1(R
n+1
n ) = Bn+1(Rn+1)An+1(Rn+1)ΓXn(Rn)(Bn+1(Rn+1))

T (ΓYn(Rn))−1. (22)130 130
131 131

B2
n+1(R

n+1
n ) is defined such that Γ Zn+1(rn+1) in the considered CMSHLM is equal132 132

to Γ Zn+1(rn+1) defined in (18). It gives133 133

B2
n+1(R

n+1
n )(B2

n+1(R
n+1
n ))T = Γ Zn+1(rn+1)−134 134∑

rn

p (rn|rn+1) A2
n+1(R

n+1
n )Γ Zn(rn)(A2

n+1(R
n+1
n ))T . (23)135 135

136 136

These particular CMSHLM models are of practical interest when we address the137 137

filtering problem in a CGLSSM one. Indeed, when the switches are known, they138 138

reduce to models (11)-(13) which are themselves close to the classical model. In139 139

addition, the mean and the variance of couple (Xn,Yn) are identical in both models.140 140
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Remark 1. When we apply the exact filtering technique [7], we need distributions141 141

p
(
yn+1|rn+1

n ,yn

)
and p (xn+1|xn, r

n+1
n ,yn+1

n ). In models (19)-(23), these distribu-142 142

tions are given by applying classical results on Gaussian distributions defined by143 143

A2
n+1(r

n+1
n ) and by B2

n+1(r
n+1
n )(B2

n+1(r
n+1
n ))T .144 144

So we propose a new filtering technique in CGLSSM models; starting from (1)-(3):145 145

1. we derive a CMSHLM (19)-(20) where matrices A2
n+1(R

n+1
n ) and B2

n+1(R
n+1
n )146 146

are respectively defined in (21) and (23);147 147

2. we apply the filtering technique [7] where p
(
yn+1|rn+1

n ,yn

)
and p (xn+1|xn, r

n+1
n ,yn+1

n )148 148

are computed from A2
n+1(R

n+1
n ) and from B2

n+1(R
n+1
n )(B2

n+1(R
n+1
n ))T .149 149

4 Simulations150 150

In experiment below, XN
1 and YN

1 are assumed to be real valued processes, Zn is151 151

assumed homogeneous in both models and Ω = {1, 2}. We setAn(1) = 0.3,An(2) =152 152

0.6, Bn(1) = b1, Bn(2) = 0.2, ΓXn(1) = 1, ΓYn(1) = 2, ΓXn(2) = 2, ΓYn(2) = 4,153 153

and for rn ∈ Ω, C2
n(rn) = ΓXn(rn)(1 − A2

n(rn)) and D2
n(rn) = ΓYn(rn)(1 −154 154

B2
n(rn)). The jump transition matrix is set symetric with p (R1 = 1|R2 = 1) =155 155

p (R1 = 2|R2 = 2) = 0.95.156 156

For this experiment, data were sampled according to model 1 given by (14)-(15)157 157

and restored by (1) the model 1 based optimal filter with known switches (denoted158 158

by PGMM-KS), (2) the model 2 based optimal filter with known switches (denoted159 159

by CMSHLM-KS), and (3) the model 2 based optimal filter with unknown switches160 160

(CMSHLM-US).161 161

The results in Figure 1 are means of 300 independent experiments, each of them162 162

with N = 1000 data. Figure 1(a) reports the influence of b1 on the Mean Square163 163

Error (MSE) of the estimated states by the three filters (when compared to the true164 164

states), while Figure 1(b) reports the influence of b1 on the jump error rate when165 165

jumps are estimated by the third filter.166 166

Particularly interesting, the performances between the two models are very close,167 167

whatever the value ofBn(1). The second interesting point is that the filter CMSHLM-168 168

US provides MSE which close to the MSE obtained from the first two filters ; the169 169

MSEs becoming almost equal when Bn(1) = Bn(2). In the setting of this experi-170 170

ment, we conclude that model (11)-(13) is a good approximation of model (6)-(7).171 171

5 Conclusion172 172

In this paper we have proposed a new approximation filtering technique for173 173

CGLSSMs. Starting from a given CGLSSM, we have derived a close CMSHLM174 174
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(a) (b)

Figure 1. (a) MSEs for the three filters; (b) Jump error rate estimation for the CMSHLM-US filter.

in which the computation of the first and the second moments of the filtering distri-175 175

bution is possible. The main conclusion is that the two models are so close that it is176 176

difficult to see any difference at the results level, at least in the case of real-valued177 177

sequences considered. In addition, the results obtained with the new model with178 178

known switches are very close to those obtained when the switches are not known.179 179
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