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ABSTRACT 

 

Hidden Markov models have been widely used to solve 

some inverse problems occurring in image and signal 

processing. These models have been recently generalized to 

pairwise Markov chains, which present higher modeling 

capabilities with comparable computational complexity. To 

be applicable in the unsupervised context, both models 

assume the data of interest stationary. When these latter are 

actually stationary, the models yield satisfactory results 

thanks to some Bayesian techniques such as MPM and 

MAP. However, when the data are nonstationary, they fail 

to establish an appropriate link with the data and the 

obtained results are quite poor. One interesting way to 

overcome this drawback is to use the Dempster-Shafer 

theory of evidence by introducing a mass function to model 

the lack of knowledge of the a priori distributions of the 

hidden data to be recovered. It has been shown that the use 

of such theory in the hidden Markov chains context yields 

significantly better results than those provided by the 

standard models. The aim of this paper is to apply the same 

theory in the pairwise Markov chains context to deal with 

nonstationary data hidden with correlated noise. We show 

that MPM restoration of data remains workable thanks to 

the triplet Markov models formalism. We also provide the 

corresponding parameters estimation in the unsupervised 

context. The new evidential model is then assessed through 

experiments conducted on synthetic and real images. 

 

Index Terms— Hidden Markov chains, pairwise 

Markov chains, triplet Markov chains, theory of evidence, 

nonstationary data 

 

1. INTRODUCTION 

 

Let us consider two sequences of random variables: � � �������� , an unobservable process that takes its values 

from a finite set of classes Ω � ���, . . , ���, and � ��������� , with �� � �, an observable noisy process obtained 

from X in some way. The aim then is to recover � from �. 

Realization of such processes will be denoted by lowercase 

letters. We will consider this example all along the paper to 

describe the different models and their corresponding 

formalisms. The estimator that will be used in this 

framework is the MPM estimator which is given by the 

following formula: 

 ��� � �̂������� � ���� � argmax$  %��� � �|��'       (1) 

 

Hidden Markov chains (HMCs) have been extensively 

used to solve various inverse problems occurring in a wide 

range of fields covering signal and image processing [1-3], 

and communications [3] among others. Let us also mention 

[4-5] as pioneering papers. 

According to these models, the probability of 

observing the whole data is given by: 

 %��, �� � %����%���|���∏ %���|��)��%���|������*         (2) 

 

The MPM restoration can then be achieved thanks to 

the possibility of recursive computations of forward 

probabilities  +����� � %���, . . , �� , ��� and backward 

probabilities ,����� � %���-�, . . , .��|���. The posterior 

distributions required to achieve the MPM estimation of (1) 

are then given by: 

 %��� � �|�� � +���� ,����         (3) 

 

Moreover, when the distributions %���|��)�� do not 

depend on /, the MPM restoration can be achieved in the 

unsupervised context thanks to some parameters estimation 

algorithms such as Expectation- Maximization (EM) [6] and 

Iterative Conditional Estimation (ICE) [7]. 

However, these algorithms may become inefficient 

when the distributions %���|��)�� depend on /. We deal 

then with nonstationary data.  

To overcome this drawback, Lanchantin and 

Pieczynski [8] introduce an evidential mass function to 

model the varying %���|��)��. In fact, the nonstationary 

aspect of the a priori distributions has been assimilated to an 

imprecision or a lack of knowledge within these latter. The 

corresponding model is called evidential hidden Markov 

chain and it turned out that it outperforms the standard HMC 

model. Evidential Markov models were also used in [9, 10]. 
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Let us notice that another way of dealing with varying 

a priori distributions is to apply the switching hidden 

Markov chains [11]. However, the use of this model 

subsumes the knowledge of the number of the stationary 

parts constituting the data. 

HMCs have been generalized to pairwise Markov 

chains (PMCs) [7]. In PMC, one directly assumes the 

Markovianity of  0 � ��, ��, (2) becomes: 

 %�1� � %�1��∏ %�1�|1�)�����* ,         (4) 

 

and the HMC can then be seen as a particular PMC 

where %�1�|1�)�� � %���|��)��%���|���, whereas in 

general PMC we have  %�1�|1�)�� � %���|��)�, ��)�� %���|��)�, ��)�, ���. The superiority of PMCs over HMCs 

relies in the fact that he process � is no longer necessarily 

Markovian. On the other hand, MPM restoration and 

parameters estimation according to PMC paradigm remain 

workable in similar manner as in HMC context.  

The aim of this paper is to propose an evidential 

pairwise Markov chain (EPMC) to model nonstationary data 

corrupted with correlated noise, which generalizes the 

evidential hidden Markov chain [8].  

The remainder of the paper is organized as follows: 

section 2 describes the proposed EPMC model and provides 

its corresponding restoration and parameters estimation 

algorithms. In section 3, the model performance is assessed 

through experiments conducted on synthetic and real 

nonstationary images. Finally, we end the paper with some 

concluding remarks and possible future improvements. 

 

2. EVIDENTIAL PAIRWISE MARKOV CHAINS 

 

In this section, we describe the proposed EPMC and its 

corresponding formalism. For this purpose, we first 

introduce the nonstationary PMC model and show how the 

new model can take into account the nonstationary aspect of 

the data to be modeled.   

 

2.1. Nonstationary PMC 

 

Let us consider the example described in the previous 

section. we can write: 

  %�1� , 1�-�� � %���, ��-�� %���, ��-�|�� , ��-��         (5) 

 

When we deal with the stationary PMC, the 

distributions %���, ��-�� do not depend on /, and the model 

is fully defined through the distribution: 

 %�1�, 1*� � %�2, 3� 45,6���, �*�,         (6) 

 

where %�2, 3� is a probability on Ω², and 45,6���, �*� are 

distributions in �². 

Let us assume now that the distributions %���, ��-�� 

depend on /. (6) becomes: 

 %�1� , 1�-�� � %��2, 3� 45,6���, ��-��         (7) 

 

Hence, the parameters estimation procedures, such as 

EM and ICE, applied on such data considered as stationary, 

will provide a common value %8�2, 3� of the 

distribution %��2, 3�. 
Another alternative is to use an evidential mass 

function to model the lack of precision in %8like authors did 

in the hidden Markov chains case [8]. 

 

2.2. Dempster- Shafer theory of evidence 

 

In this section, we give an overview about the so called 

theory of evidence introduced by Dempster in the 1960s and 

reformulated by Shafer in the 1970s [12].  Let us consider a 

frame of discernments Ω � ���,  �*� and let us consider the 

set of all the subsets of this latter 9�Ω� � �:, ����, ��*�, Ω�. 
A mass function is ; is a function from 9�Ω� to �- that 

fulfills that following: 

 

< ;�:� � 0∑ ;�?� � 1A���Ω� .          (8) 

 

Let us now consider a family of probability 

distributions �%B�B�C defined on Ω � ���,  �*�, and let us 

define the following “lower” probability %D���� �2/4B�C %B����. Hence, ; defined by ;������ � %D����, ;���*�� � %D��*� and ;����,  �*�� � 1 E %D���� E %D��*� 

is a mass function and the latter quantity models the “lack of 

precision” in the exact probability %. 

A mass ; defined on 9�ΩF� is said to be an evidential 

Markovian chain (EMC) if it vanishes outside �9�Ω��� and 

if it can be written:  

 ;�?�, ?*, . . , ?�� � ;�?��;�?*|?��, . . , ;�?�|?�)��    (9) 

 

Hence, it can be seen as a generalization of the 

standard Markov chain and will be used instead of it within 

the PMC formalism to take the nonstationary aspect of the 

model into account. 

 

2.3. Evidential PMC 

 

Let ;� be an EMC whose distribution is given by (9) and 

let ;*���, �*, . . , ��� � G�HI ,HJ|KI,KJ�…G�HMNI,HM|KMNI,KM�G�HJ|KJ�…G�HMNI|KMNI�  be 

the Bayesian distribution defined by the observation � ����, �*, … , ���. Let us consider the triplet O � �P, �, �� 

defined on 9�Ω� Q Ω Q �, and whose distribution is given 

by: 

 %�R�, … , R�� S T��R�, R*�T*�R*, RU�…T�)��R�)�, R��       (10) 
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where for 3 W / W X, we have: 

 

YT��R�, R*� � 1�KI�ZI�1�KJ�ZJ�;��[��;��[*|[�� G�HI,HJ|KI,KJ�G�HJ|KJ�T�)��R�)�, R�� � 1�K\�Z\�;��[�|[�)�� G�H\NI,H\|K\NI,K\�G�H\|K\�     .  
 

Such a model is a particular triplet Markov chain 

(TMC) [13]. The Dempster-Shafer fusion of  ;� and ;* 

gives the posterior distribution %��|�� defined by %��, ��, 

which is, itself, the marginal distribution of the TMC O ��P, �, ��. According to the TMC formalism, the 

distributions %���, [�|�� are workable, and the 

computational complexity of the processing is linear to the 

size of the data [13]. 

 

2.4. MPM restoration of EPMCs 

 

Let us consider the model  O � �P, �, �� defined previously. 

We define the generalized Forward 

probabilities +��� , [�� � %���, … , �� , ��, [�� and Backward 

probabilities ,��� , [�� � %���-�, … , ��|��, �� , [�� that can 

be computed iteratively as follows: 

 +����, [�� � %���, ��, [��, +����, [�� � ∑  +�)����)�, [�)��%�R�|R�)��K\NI,Z\NI    (11) 

 ,���� , [�� � 1, ,����, [�� � ∑ ,�-����-�, [�-��%�R�-�|R��K\]I,Z\]I     (12) 

 
where  %�R�, R�-�� S           1�K\�Z\�1�K\]I�Z\]I�;�[�, [�-��%��� , ��-�|�� , ��-��  
 

Notice that the joint mass ; is used instead of the 

transition mass ;� for the sake of simplicity. 

 

The posterior distributions are then given by: 

 %��� , [�|�� S  +����, [��,���� , [��        (13) 

 

The posterior marginal distribution needed to achieve 

the data segmentation can then be derived as follows: 

 %�.��|��� � ∑ %�.��, [�|���Z\        (14) %�.[�|��� � ∑ %�.��, [�|���K\         (15) 

 

On the other hand, the posterior distributions ^����, [� , ��-�, [�-�� � %��� , [� , ��-�, [�-�|�� needed 

for the parameters estimation procedure are computed as 

follows: 

 ^����, [� , ��-�, [�-�� �                                  +���� , [��%�R�-�|R��,�-���� , [��    (16) 

 

2.5. Parameters estimation 

 

In this paragraph we show how the set of parameters of the 

model can be estimated for the correlated Gaussian noise 

case from the only observation �. For this purpose, we 

propose to use an adapted version of the EM algorithm. Let 

us consider an EPMC O � �P, �, �� as defined in (10). Such 

model is said to be “Gaussian” if, additionally, the 

distributions %���)�, ��|��)�, ��� are of Gaussian form. 

Considering _ classes Ω � ���, … , ���, we have to 

estimate, the following parameters: 2_² means abbc� , abbc* , 2_² standard deviations dbbc� , dbbc* , and _² correlation 

coefficients ebbc, with 1 W f, fg W _, defining the Gaussian 

noise densities %���)�, ��|��)�, ��� and the �2� E 1�² 
elements ;56 � ;�[�, [�-�� of the stationary evidential 

mass function ; defined on � 9�Ω��*. The estimation 

procedure runs as follows: 

- Consider an initial set of parameters hi ��a�..�� , a�..�* , d�..�� , d�..�* , e,;�i. 

- For each iteration T j 1, compute hk-� from hk 

and in two steps: 

o E-step: Calculate +k���, [�� 
and ,k���, [�� and then derive ^k���, [� , ��-�, [�-��. 

o M- step: Compute  hk-� as follows: 

 �abbc� �k-� � ∑ ∑ l\m�K\�$n ,Z\ ,K\]I�$no,Z\]I�H\p\,p\]IMNI\qI∑ ∑ l\m�K\,Z\�5,K\]I,Z\]I�6�p\,p\]IMNI\qI    (17) 

 �abbc* �k-� � ∑ ∑ l\m�K\�$n ,Z\ ,K\]I�$no,Z\]I�H\]Ip\,p\]IMNI\qI∑ ∑ l\m�K\,Z\�5,K\]I,Z\]I�6�p\,p\]IMNI\qI  (18) 

 ��dbbc� �k-��² �
    ∑ ∑ l\m�K\�$n ,Z\,K\]I�$no,Z\]I�rH\)stnnoI um]IvJp\,p\]IMNI\qI ∑ ∑ l\m�K\,Z\�5,K\]I,Z\]I�6�p\,p\]IMNI\qI  (19) 

 ��dbbc* �k-��² �
 ∑ ∑ l\m�K\�$n ,Z\,K\]I�$no ,Z\]I�rH\]I)stnnoJ um]IvJp\,p\]IMNI\qI ∑ ∑ l\m�K\,Z\�5,K\]I,Z\]I�6�p\,p\]IMNI\qI  (20) 

 ��ebbc�k-��* �∑ ∑ l\m�K\�$n,Z\,K\]I�$no,Z\]I�rH\)stnnoI um]IvrH\]I)stnnoJ um]Ivp\,p\]IMNI\qI swnnoI um]IswnnoJ um]I ∑ ∑ l\m�K\,Z\�5,K\]I,Z\]I�6�p\,p\]IMNI\qI    

          (21) ;56k-� � �#5#6 ∑ ∑ ^�k���, [� � 2, ��-�, [�-� � 3�K\,K\]I�)����       

           (22) 

where #i denotes the cardinal of the set i. 

 

3. EXPERIMENTS 

 
In this section, we assess our model against the former 

Markov models. For this purpose, we present two series of 

experiments. In the first one, we deal with synthetic data 
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sampled according to a nonstationary PMC. In the second 

one, we consider a real nonstationary class-image that we 

corrupt in some random manner such that a correlated noise 

is introduced. For all experiments one-dimensional data are 

transformed from and to images via Hilbert-Peano scan [7]. 

 

3.1. Unsupervised segmentation of nonstationary PMC 

 

Let us consider the nonstationary PMC 0 � ��, �� 
described in section 2.1 with Ω � ���,  �*� and N � 16384. 

Let us assume that the nonstationary distributions %��2, 3� 

are governed by two different matrices } and ~: 
 } � �0.48 0.020.02 0.48�, ~ � �0.25 0.250.25 0.25� 
 

For a given value of � we have: 

-  %��2, 3� � T56 for 2�� j 1 W / W �2� j 1��, � � �. 

-  %��2, 3� � �56 for �2� j 1�� j 1 W / W �2� j 2��, � ��. 

The data are sampled considering different values for � 

and the following Gaussian noise parameters: 

 a� � �a*�� � �E5 E3   3    5� ,  d� � �d*�� � �4 44 4�. 
For the correlation coefficient, we considered 3 

different data sets with a different value for e per each set: 

- Set A: e � �0.5  0.50.5  0.5�, 
- Set B:  e � �0.9  0.10.1  0.9�, 
- Set C:  e � �0.9 0.90.9 0.9�. 

MPM restoration is then achieved according to the 

nonstationary PMC with real parameters Θ (used as a 

reference) and the standard HMC, evidential HMC and the 

proposed EPMC using parameters estimated with EM. The 

obtained results are summarized in TABLE I. For data set C 

and s � 4096, the sampled data and their corresponding 

restoration results are depicted in Fig. 1. 

 
TABLE I 

Segmentation Error Ratios of Synthetic Data (%) 

Set � �C)���  ���)���  ���)����  ���)����  

A 

16 64 256 
1024 4096 

9.1 

9.2 

9.2 

9.1 

9 

17.2 

16.8 

16.6 

16.7 

16.5 

17.1 

16.2 

15.9 

15.7 

15.5 

12.8 

10.6 

9.7 

9.2 

9 

B 

16 64 256 

1024 4096 

7.6 

7.3 

7.3 

7.6 

7.8 

20.5 

20.7 

21 

20.4 

21.2 

20.4 

19.9 

20.5 

19.7 

20.4 

8.9 

7.7 

7.7 

7.6 

7.8 

C 

16 64 256 

1024 4096 

3 

2.9 

2.6 

2.4 

2.7 

24.2 

22.9 

23 

22.4 

23 

24.2 

22.6 

22.8 

21.8 

22 

3.7 

3.2 

2.8 

2.6 

2.7 

 

   � � � � � � �� � ����� , � � 23% 

   �� � ������ , � � 22% �� � ������ , � � 2.7% P� � [����  

Fig.1. MPM restoration of synthetic data sampled 

according to a nonstationary PMC 

 

Overall, the segmentation results show that the 

proposed model outperforms the classic ones. Furthermore, 

the mismatch between the standard models and the data is 

higher as the noise correlation is higher. On the other hand, 

the evidential PMC model, not only takes into account the 

data correlation, but rather benefits from the correlation as a 

feature to distinguish between the classes. Another 

important observation is that the EM-MPM restoration 

results according to the proposed EPMC are comparable to 

those obtained with the nonstationary PMC based on real 

parameters, especially for high values of � (1024 and 4096). 

 

3.2. Unsupervised segmentation of nonstationary images 

corrupted with correlated noise 

 

Let us consider the 128 Q 128 “Nazca bird” nonstationary 

class-image (Fig. 2). We have then a realization of the 

hidden process � with Ω � ���,  �*� where �� and �* 

corresponds to black pixels and white ones respectively. 

Then, the image is corrupted with a correlated noise. The 

observed process is �� � dK��� j aK� j �∑ rdK���� j�5��aK��u, where � is a white Gaussian noise with variance 1 

and ��, . . �� denote the four neighbors of the pixel �. The 

realizations of � and � are converted to sequences via the 

Hilbert-Peano scan as in [7]. Hence, the data 0 � ��, �� are 

of very complicated form and do not fit any of the Markov 

models. The interest of this experiment is to check whether 

the proposed model allow to satisfactorily restore the 

genuine image. 

Experiments have been conducted considering 

different values for �,  aK� and dK� . MPM restoration has 

been performed using EM procedure according to standard 

HMC, PMC, evidential HMC and evidential PMC. It turned 

out that the proposed model provides significantly better 

results. 
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  � � � � � � 

  �� � ������ , � � 11.5% P� � [�����  

  �� � ������ , � � 6% P� � [�����  

Fig.2. MPM restoration of a noisy nonstationary image 

 

Figure 2 illustrates the restoration results for � �0.25,  a$I � 0, a$I � 3,  d$I � 1 and d$J � 2. The gain in 

restoration error compared to the EHMC model is close to 

50%. The restoration result of the auxiliary process P shows 

clearly how the evidential PMC is able to distinguish 

between image regions characterized with lot of details (e.g. 

wings and tail of the bird) and those where there is almost 

no exchange between the two classes. The evidential HMC, 

on the other hand, cannot make such a differentiation 

because it does not take advantage of correlation 

information. The restoration results based on HMC and 

PMC are poor given the nonstationary aspect of the data. 

 

4. CONCLUSION 

 

In this paper, we showed how the theory of evidence can be 

used within the pairwise Markov chains to model 

nonstationary data corrupted with correlated noise. We 

proposed an EM-like parameters estimation procedure and 

demonstrated through experiments that the novel model 

outperforms the former evidential hidden Markov chain in 

the sense that it allows to take correlated noise into account. 

As future work, we intend to extend the present formalism 

to pairwise Markov fields to better handle bi-dimensional 

data like images, and to multisensor nonstationary data [14]. 
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