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Abstract. The Hidden Markov Chain (HMC) model considers that the process of unobservable
states is a Markov chain. The Pairwise Markov Chain (PMC) model however considers the
couple of processes of observations and states as a Markov chain. It has been shown that the
PMC model is strictly more general than the HMC one, but retains the ease of processings that
made the success of HMC in a number of applications. In this work, we are interested in the
modeling of class-conditional densities appearing in PMC by bi-dimensional copulas and the
mixtures estimation problem. We study the influence of copula shapes on PMC data and the
automatic identification of the right copulas from a finite set of admissible copulas, by extending
the general “Iterative Conditional Estimation” parameters estimation method to the context
considered. A set of systematic experiments conducted with eight families of one-parameters
copulas parameterized with Kendall’s tau is proposed. In particular, experiments show that the
use of false copulas can degrade significantly classification performances.

Keywords. Hidden Markov Chain, Pairwise Markov chain, Copulas, Iterative Conditional
Estimation, Unsupervised classification.

1 Introduction

Let x1:N = (x1, . . . , xN ) and y1:N = (y1, . . . , yN ) be two series of data. Each xn takes its value
in the finite set Ω = {1, . . . ,K} and each yn in the set of real numbers R. When looking for the
unobservable data series x1:N from the observable one y1:N , and when there is no deterministic
link between them, probability theory provides a rigorous framework to lead to results that are
generally effective and sometimes spectacular. The couple (x1:N ,y1:N ) is considered as a realiza-
tion of two random processes X1:N = (X1, . . . , XN ) and Y 1:N = (Y1, . . . , YN ) and the stochastic
links between the two series are modeled by a law p (x1:N ,y1:N ) of couple (X1:N ,Y 1:N ). Despite
the lack of deterministic relationship between x1:N and y1:N , it is possible to propose optimal
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methods for finding x1:N , in mean or in long-term, when dealing with the problem a “large
number” of time.

However, it is impossible, when N increases, to consider the general law p (x1:N ,y1:N ) be-
cause of the high algorithmic complexity, and we are led to consider specific laws. Among these
the most spread law is the “Hidden Markov Chain” (HMC), which writes

p (x1:N ,y1:N ) = p (x1) p (y1 |x1 ) p (x2 |x1 ) p (y2 |x2 ) . . . p (xN |xN−1 ) p (yN |xN ) . (1)

This model was later generalized to “Pairwise Markov Chain” (PMC) [14]:

p (x1:N ,y1:N ) = p (x1, y1) p (x2, y2 |x1, y1 ) . . . p (xN , yN |xN−1, yN−1 ) . (2)

HMC model is very effective and commonly used, but the PMC model, which allows the same
processing as the HMC, can improve performances significantly, even in an unsupervised way [3].

Consider a PMC such that the law p (xn−1, yn−1, xn, yn) of (Xn−1, Yn−1, Xn, Yn) does not
depend on n = 1, . . . , N − 1. Law p (x1:N ,y1:N ) is then entirely characterized by

p (x1, y1, x2, y2) = p (x1, x2) p (y1, y2 |x1, x2 ) . (3)

Our work deals with the modeling of laws p (y1, y2 |x1, x2 ) by means of copulas [11]. Copulas
are used for a long time in the field of economy and finance without considering Markovian-
ity) [5, 6, 12], and only more recently in signal processing without markovianity [10, 8] and with
markovianity [2, 1].

The first work that combined copulas and Markov model was proposed in [2], where the
process X1:N is a Markov chain (such a model is called a HMC “with dependent noise”).
In addition, a method for parameters estimation has been proposed, allowing unsupervised
processings. Note that both HMC and copulas are known and used for several decades. It
may then seem surprising that the two concepts have been considered in the same model only
recently. This is likely due to the fact that in traditional models (1) the noise is “independent”,
which implies that p (y1, y2 |x1, x2 ) = p (y1 |x1 ) p (y2 |x2 ), and therefore the problem of modeling
the dependence of random variables Y1 and Y2 conditional on (X1, X2) does not arise. However,
as discussed in this article, this dependence can have a significant influence on the processings.

In this paper we extend work [2] in two directions. First, we consider general PMC, in which
X1:N is no more necessarily a Markov chain. Second we consider the problem of generalized
mixtures estimation : for all (i, j) ∈ Ω2, the copula associated with p (y1, y2 |x1 = i, x2 = j ) is
unknown and is automatically searched for in a finite set of eligible copulas, from Y 1:N = y1:N

only. The experiments performed allow to affirm the importance of choosing the true copula.
They also show the effectiveness of automatic identification method of copulas, based on the
Bayesian selection method proposed in [7].

The remainder of the paper is organized as follows. Section 2 provides a brief overview of
the PMC model and its various special cases, and the notion of copula. Section 3 is devoted to
highlighting the importance of using the right copula for supervised restoration. The method
of generalized mixture estimation, which is an extension of the general “Iterative Conditional
Estimation” (ICE) method [13], and the results of several Bayesian unsupervised restorations
are proposed in Section 4. The final section contains conclusions and perspectives.
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Figure 1: Oriented dependence graphs for the HMC-IN and the PMC models.

2 Copulas and PMC

The aim of this Section is to present the Pairwise Markov Chain (PMC) model with copulas,
including both supervised and unsupervised Bayesian data restoration according to this model.

PMC basics

Let Z1:N = (Z1, . . . , ZN ) with Zn = (Xn, Yn) for all n = 1, . . . , N . The process Z1:N is said to
be a “Pairwise Markov Chain” (PMC) [14], if it is a Markov chain:

p (z1:N ) = p (x1, y1) p (x2, y2 |x1, y1 ) . . . p (xN , yN |xN−1, yN−1 ) . (4)

Transition probabilities can write in the following way

p (zn |zn−1 ) = p (xn, yn |xn−1, yn−1 ) = p (xn |xn−1, yn−1 ) p (yn |xn−1, yn−1, xn ) . (5)

In PMC, the law p (x1:N |y1:N ) is always Markovian, allowing the estimation of X1:N from
Y 1:N = y1:N , while X1:N being Markovian or not. A particular case of special interest is
given by the so-called “Hidden Markov Chain with Independent Noise” (HMC-IN) in which
p (xn |xn−1, yn−1 ) = p (xn |xn−1 ) and p (yn |xn−1, yn−1, xn ) = p (yn |xn ), so that transitions in
eq. (5) write

p (xn, yn |xn−1, yn−1 ) = p (xn |xn−1 ) p (yn |xn ) . (6)

Process X1:N is then a Markov chain and random variables Y1, . . . , YN are independent condi-
tionally to X1:N . This classical model is traditionally called the hidden Markov chain.

In this work, we will only consider the general PMC modem given by eq. (5) and classi-
cal HMC-IN model given by eq. (6). Oriented dependence graphs for the HMC-IN and the
general PMC model are reported in Fig. 1. Note also that the PMC model in eq. (4) can be
evaluated online at url www.fresnel.fr/perso/hmcext/index.php. Furthermore, in the fol-
lowing, we consider Stationary and Reversible PMCs (SR-PMC). The first hypothesis means
that p (zn, zn+1) does not depend on n = 1, . . . , N − 1 and the second one means that the two
families of conditional laws p (zn+1 |zn ) and p (zn |zn+1 ) are identical. We then get the following
result, whose demonstration within a general framework can be consulted in [9]:

Proposition Let Z1:N be a SR-PMC, then the three following conditions are equivalent: (i)
X1:N is a Markov chain; (ii) p (y2 |x1, x2 ) = p (y2 |x2 ); (iii) p (yn |x1:N ) = p (yn |xn ), for all
n = 1, . . . , N .
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Given eq. (4), eq. (6) and previous proposition, we can assess how the PMC generalizes the
HMC-IN model. Note that this greater generality can result in greater efficiency in unsupervised
image segmentation: as experimented in [3], the error rate can be halved. The main purpose
of this paper is to study various models for laws p (y1, y2 |x1, x2 ) in eq. (4) with copulas. This
problem has been addressed in the case of an HMC with correlated noise in [2]. Results obtained
in unsupervised image segmentation are very encouraging. Here, we extend this study in two
directions: (i) We consider the general case of SR-PMC, abbreviated by PMC, where X1:N is
not necessarily Markovian; (ii) We study the estimation of p (z1, z2), including the automatic
choice of copulas within a finite set of admissible copulas.

Copulas in PMC

From p (z2 |z1 ) = p (z1 |z2 ), and so p (x1, x2) = p (x2, x1) and p (y1 |x1, x2 ) = p (y2 |x2, x1 ), a
stationary and reversible PMC is characterized by (1) K(K+1)/2−1 joint a priori probabilities
p (x1, x2); (2)K2 bi-dimensional densities p (y1, y2 |x1, x2 ) = fx1,x2 (y1, y2) with onlyK2 margins.

Densities p (y1, y2 |x1, x2 ) can be parameterized using the theory of copulas [11]. This theory
allows us to define a 2D density f from its two marginal densities f (1) and f (2), and a dependence
structure c, called “copula”, f (y1, y2) = f (1) (y1) f (2) (y2) c

(
F (1) (y1) , F (2) (y2) ;θ

)
, where

F (.) denotes Cumulative Distribution Function (CDF) associated with f (.) and θ denotes the
set of parameters to characterize the parametric copula c. One can see that a copula is any
bi-dimensional cumulative function with uniform marginals on [0, 1]. It is then possible to
construct distributions over R2 by considering various marginal distributions (Gaussian, gamma,
beta of first and second kinds. . . ) and various copulas (Gaussian, Student’t, Clayton. . . ) in an
independent manner. A bi-dimensional Gaussian density is a particular case of Gaussian margins
combined with a Gaussian copula.

For all experiments presented, we will consider the eight one-parameter copulas presented
in Appendix 1, and the zero-parameter product copula which gives the independence case (see
below). These copulas can all be parameterized by Kendall’s rank correlation (denoted by
τ ∈ [−1, 1]), allowing comparison between copula shapes with the same correlation. We will
write either c (., .; θ) or c (., .; τ). Note that the range of possible value for τ is not the same for
all copulas. Some of them do not allow τ = 0, whereas some others do not allow τ < 0. In the
list considered here, Gaussian and Student’t copulas are the only ones which cover the entire
range of possible values for τ .

To simplify notations, let for x1 = i and x2 = j, p (x1, x2) = pij , cxn,xn+1(., .; θxn,xn+1) =
cij(., .; τij), fxn,xn+1(., .) = fij(., .) (and so forth for marginal densities)

3 PMC supervised data restoration

The aim of this Section is to evaluate the influence of copula shapes in the supervised restoration
of PMC data. We start by providing a method to simulate PMC data whatever the copula shapes
involved. Then systematic results of data restoration are presented, with varying Kendall’s rank
correlation and margin shapes.

COMPSTAT 2012 Proceedings
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Simulation and supervised restoration of PMC data

According to [3], PMC data can be generated using the following procedure. Starting data
(n = 1) are simulated according to

p (x1) =

K∑
x2=1

p (x1, x2), p (y1) =

K∑
x2=1

p (x1 |x2 ) fx1,x2 (y1).

Simulation of y1 requires a sampling from a mixture of, possibly non-Gaussian, 1D densities.
Then, next data (n > 1) are generated by alternating the simulation of xn+1 (conditionally to
zn = (xn, yn)) and the simulation of yn+1 (conditionally to zn and xn+1) according to

p (xn+1 |xn = i, yn ) ∝ p (i, xn+1) fi,xn+1 (yn) , (7)

p (yn+1 |xn+1 = j, xn = i, yn ) =
fij (yn, yn+1)

fij (yn)
= fji (yn+1) cij (Fij(yn), Fji(yn+1); τij)

Note that inversion of indices in fji (yn+1) and Fji(yn+1) in eq. (8) comes from the reversibility
hypothesis of PMC models.

The simulation of yn+1 can be performed using the rejection principle, as presented in Ap-
pendix 2. Although very general, the method can be computer demanding since it involves
an acceptance criterion which can result in many rejected draws for every accepted one (the
rejection rate depends on the copula).

The Bayesian restoration of X according to the MPM criterion writes

∀n ∈ [1, N ], x̂n = arg max
xn∈Ω

p (xn |y1:N ), (8)

with p (xn |y1:N ) = αn(xn) βn(xn) the marginal a posteriori distributions computed from the
forward-like αn(xn) = p (xn, y1:n) and the backward-like βn(xn) = p (yn+1:N |xn, yn ) probabilities
suited to the PMC model. These probabilities can be computed recursively

α1(x1) = p (x1) p (y1 |x1 ) , αn+1(xn+1) =
∑
xn∈Ω

αn(xn)p (zn+1 |zn ), for 1 ≤ n < N, (9)

β1(xN ) = 1, βn(xn) =
∑

xn+1∈Ω

βn+1(xn+1)p (zn+1 |zn ), for 1 ≤ n < N, (10)

see [3] for details. Let us also define joint a posteriori probabilities p (xn, xn+1 |y1:N ) which write

p (xn, xn+1 |y1:N ) =
αn(xn) p (zn+1 |zn ) βn+1(xn+1)∑

a∈Ω

∑
b∈Ω

αn(b) p (b, yn+1 |a, yn ) βn+1(b)
. (11)

Bayesian restoration according to the Maximum A Posteriori (MAP) criterion is also available
for the PMC model [3] but will not be considered.

Impact of copula shapes on supervised PMC data restoration

In order to account for the numerical influence of the copula shapes only, we conducted the
following experiment: (1) We simulated N PMC data with K = 2 classes (Ω = {1, 2}), according
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Table 1: Margins parameters used for PMC simulation and restoration with K = [1, 2].

Gaussian margins N (µ, σ)

p(x) =
1√

2πσ2
e−

1
2(x−µσ )

2
f11  N (0.0, 1.00); f12  N (0.3, 1.60)
f21  N (1.1, 1.40); f22  N (1.5, 1.00)

Gamma margins G (µ, α, θ)

p(x) =
θα

Γ(α)
(x− µ)α−1 e−θ(x−µ)

f11  G (0.0, 8.00, 0.13); f12  G (0.3, 8.89, 0.18)
f21  G (1.1, 3.08, 0.46); f22  G (1.5, 2.67, 0.38)

Table 2: PMC model. Mean classification error rates using τ#1 = 0.16.

Copula c0 c1 c2 c3 c4 c5 c6

c0 11.09 (0.9) 14.30 (1.2) 13.72 (1.3) 13.90 (1.2) 14.64 (1.2) 14.73 (1.2) 13.88 (1.2)
c1 11.28 (0.9) 14.09 (1.2) 13.81 (1.4) 13.84 (1.2) 14.39 (1.3) 14.43 (1.3) 13.78 (1.3)
c2 11.89 (0.9) 14.65 (1.2) 13.13 (1.3) 14.03 (1.2) 15.31 (1.3) 15.60 (1.2) 14.23 (1.3)
c3 11.71 (0.9) 14.36 (1.2) 13.59 (1.3) 13.67 (1.2) 14.93 (1.3) 15.05 (1.2) 14.38 (1.3)
c4 11.40 (1.0) 14.13 (1.2) 14.06 (1.4) 13.95 (1.2) 14.26 (1.3) 14.28 (1.3) 13.82 (1.3)
c5 11.69 (1.0) 14.22 (1.2) 14.51 (1.4) 14.11 (1.2) 14.34 (1.3) 14.27 (1.2) 13.94 (1.3)
c6 11.81 (1.0) 14.39 (1.2) 13.90 (1.4) 14.46 (1.2) 14.67 (1.3) 14.83 (1.3) 13.50 (1.3)

(a) Gaussian margins

Copula c0 c1 c2 c3 c4 c5 c6

c0 8.54 (0.7) 10.58 (1.0) 10.89 (1.0) 10.95 (1.0) 10.87 (0.9) 10.82 (0.9) 10.46 (1.0)
c1 8.75 (0.8) 10.26 (1.0) 10.78 (1.0) 10.75 (1.0) 10.41 (1.0) 10.33 (0.9) 9.93 (1.0)
c2 9.12 (0.8) 10.65 (1.0) 10.18 (0.9) 10.92 (1.0) 11.04 (1.0) 11.07 (0.9) 10.12 (1.0)
c3 8.78 (0.8) 10.36 (1.0) 10.58 (1.0) 10.57 (0.9) 10.65 (1.0) 10.63 (0.9) 10.24 (1.0)
c4 8.81 (0.8) 10.29 (1.0) 10.86 (1.0) 10.81 (1.0) 10.33 (1.0) 10.24 (0.9) 9.93 (0.9)
c5 8.89 (0.8) 10.33 (1.0) 11.09 (1.0) 10.88 (1.0) 10.38 (1.0) 10.22 (0.9) 9.98 (1.0)
c6 9.17 (0.8) 10.48 (1.0) 10.73 (1.0) 11.23 (1.0) 10.69 (0.9) 10.65 (0.9) 9.73 (0.9)

(b) Gamma margins

to some a priori probabilities pij , to some given copulas cij with parameter τij , and to some
margins fij ; (2) Then we restored simulated observations according to MPM, using all simulation
parameters except the copula shape which is replaced by one in the list in Appendix 1.

We set K = 2, N = 2000 and the same copula shape for the 4 copulas cij involved. Joint
a priori probabilities were set to p (1, 1) = 0.5, p (1, 2) = p (2, 1) = 0.05 and p (1, 2) = 0.4.
We conducted systematic experiments for all available copulas according to margin families
(Gaussian and Gamma, see Table 1) and two Kendall’s rank correlation values:

- τ#1 = 0.16. The set of eligible copulas is noted Π#1 =
{
c1, c2, c3, c4, c5, c6

}
.

- τ#2 = 0.70. The set of eligible copulas is noted Π#2 =
{
c1, c2, c3, c6, c7, c8

}
.

For all eligible copula shapes in Π#i, we simulated noisy data according to the corresponding
PMC model. Then we restored data, providing all parameters used at simulation time, except
the true copula shape which we replaced by one from Π#i. The error rates reported below are
means of 300 independent experiments (standard deviation are reported between parenthesis).
Experimental results are reported in Table 2 for τ#1 and in Table 3 for τ#2, using Gaussian and
gamma margins. Comments can be summarized as follows:

• Whatever Kendall’s correlation value and margins shapes, the restoration with the right
copula always gives the lowest mean error rate;
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Table 3: PMC model. Mean classification error rates using τ#2 = 0.70 .

Copula c0 c1 c2 c3 c6 c7 c8

c0 11.06 (1.0) 26.27 (2.2) 25.77 (2.3) 26.27 (2.5) 27.50 (2.3) 25.63 (2.2) 25.71 (2.1)
c1 41.55 (1.1) 14.95 (2.1) 17.84 (2.2) 17.13 (2.1) 19.43 (2.5) 16.90 (2.2) 16.70 (2.2)
c2 36.16 (1.0) 16.01 (2.1) 16.86 (2.2) 15.69 (2.0) 17.07 (2.4) 16.27 (2.1) 15.97 (2.1)
c3 40.50 (1.0) 18.14 (2.2) 18.98 (2.4) 12.43 (1.9) 29.37 (2.7) 20.48 (2.4) 15.78 (2.2)
c6 44.41 (1.9) 21.09 (2.3) 21.84 (2.4) 27.97 (2.4) 6.31 (1.1) 18.68 (2.2) 24.21 (2.5)
c7 37.97 (1.0) 16.56 (2.2) 17.64 (2.2) 19.12 (2.2) 13.62 (2.1) 15.25 (2.0) 17.55 (2.3)
c8 39.25 (1.0) 16.59 (2.1) 17.80 (2.5) 13.71 (1.9) 24.98 (2.8) 17.94 (2.3) 14.99 (2.0)

(a) Gaussian margins

Copula c0 c1 c2 c3 c6 c7 c8

c0 8.69 (0.7) 22.48 (2.0) 21.94 (2.2) 22.18 (2.1) 23.45 (2.3) 21.97 (2.2) 21.95 (2.2)
c1 44.89 (2.0) 13.37 (1.8) 16.09 (2.0) 19.39 (2.2) 12.12 (1.7) 14.05 (1.9) 16.72 (1.9)
c2 31.04 (2.0) 14.60 (1.8) 14.91 (2.0) 20.14 (2.1) 9.23 (1.3) 13.36 (1.7) 16.72 (1.9)
c3 35.84 (1.1) 15.71 (1.9) 16.98 (2.1) 18.03 (2.1) 17.69 (2.2) 15.87 (2.0) 16.68 (1.9)
c6 45.64 (2.9) 17.66 (2.0) 17.32 (1.9) 23.23 (2.1) 6.71 (1.1) 14.85 (1.8) 20.08 (2.1)
c7 37.56 (2.0) 14.59 (1.8) 15.24 (1.9) 20.56 (2.1) 8.60 (1.2) 13.09 (1.7) 16.98 (1.9)
c8 35.46 (1.4) 14.43 (1.8) 15.62 (2.0) 18.75 (2.2) 12.97 (1.7) 13.87 (1.8) 16.05 (1.9)

(b) Gamma margins

• When τ is low, the mean error rates can be very close (e.g. Table 2(a) row c1 and Table 2(b)
row c5), showing that confusion can appear in experiments if correlation is low;

• When τ is large, the rates are very different. This is especially true for copula c6, where
the rate is divided up to 4 when compared to copula c3 in Table 3(a);

the main conclusion is that, when correlation is high, using a wrong copula can result in disas-
trous results.

4 Unsupervised PMC data restoration with copula selection

One of the very interesting properties of the PMC model is the ability to estimate parameters
from observations only. Automatic parameters estimation has already been experimented in the
“full-Gaussian” case in [3] (using ICE), and in the HMC-DN sub-model with Gaussian copulas
and non-Gaussian margins (with SEM in [9]), with application in image and signal processing.
Given the full PMC model, one would like to know if it is possible to automatically recover
the proper shape of the copulas involved in simulated data. To that goal, we incorporated the
Bayesian copula selection method introduced by Huard et al [7] in an ICE-based parameter
estimation scheme, allowing to select the “best shape” for the K2 copulas at each ICE iteration.
Several experiments finally illustrate the nice behavior of the entire algorithm.

Bayesian copula selection

Bayesian identification of marginal and joint CDFs, and copula selection are the subjects of
numerous recent papers, among them [6, 16]. In this work, we used the Bayesian copula selec-
tion method [7] (i) for its simplicity and low computational burden, and (ii) since all copulas
considered can be parametrized by Kendall’s τ .

@ COMPSTAT 2012
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For short, given a set of 2D observations y =
{
y1,y2

}
with y1 =

{
y1

1, . . . , y
1
N

}
and y2 ={

y2
1, . . . , y

2
N

}
, the “best copula” cs within a finite set of copula shapes Π =

{
c1, . . . , cR

}
is

selected according to

s = arg max
r∈[1,R]

1

τ rM − τ rm

∫ τrM

τrm

N∏
n=1

cr
(
F 1(y1

n), F 2(y2
n); τ

)
dτ, (12)

where F 1 and F 2 are the CDF of marginal data series y1 and y2 (their shapes are supposed
known). Coefficients τ rm and τ rM for copula cr represent the minimal and maximal admissible
values for Kendall’s tau (see Table 5 for copulas considered here). One interesting specificity of
the method is that it does not rely on the estimation of Kendall’s τ .

Automatic copula selection in ICE-based parameters estimation

Consider a stationary and reversible PMC whose law is given by pθ (z1, z2), with θ a set of real
parameters. When one wishes to estimate θ from y1:N , we can consider at least two general
methods that produce series of estimates θ0,θ1, . . . ,θq, . . .:

(i) “Expectation-Maximization” (EM) method: from θ0, θq+1 is defined from θq using

θq+1(y1:N ) = arg max
θ

E
[
pθ (X1:N ,Y 1:N ) |Y 1:N = y1:N ,θ

q(y1:N )
]
. (13)

(ii) “Iterative Conditional Estimation” (ICE) method [13]: from θ0 and an estimator θ̂(x1:N ,y1:N )
of θ from complete data (x1:N ,y1:N ), θq+1 is defined from θq using

θq+1(y1:N ) = E
[
θ̂(X1:N ,Y 1:N ) |Y 1:N = y1:N ,θ

q(y1:N )
]
. (14)

ICE is more general than EM since the estimator θ̂(X1:N ,Y 1:N ) can be of any form, in particular
it can be the maximum likelihood estimator or not [15]. In the case we are interested here,
likelihood is difficult to handle and thus we choose to work with ICE.

When conditional expectation in eq. (14) is not computable for some components θm in θ,
we estimate them by simulating L realizations x1

1:N , . . . , xL1:N of x1:N according to

pθq (xn+1 |xn, y1:N ) =
pθq (xn, xn+1 |y1:N )

pθq (xn |y1:N )
, (15)

see eq. (11), and by setting θq+1
m (y1:N ) =

θ̂m(x1
1:N ,y1:N )+...+θ̂m(xL1:N ,y1:N )

L .

Let pθ (z1, z2) = pθ (x1, x2) pθ (y1, y2 |x1, x2 ). As our main objective being to study the
importance of copulas in the estimation of x1:N from y1:N , we assume that the marginal distri-
butions pθ (y1 |x1, x2 ) and pθ (y2 |x1, x2 ) are entirely known, i.e. both the laws family and their
shape parameters are known. Laws pθ (y1, y2 |x1, x2 ) are then determined by their copula. In
order to simplify notations, let pθ (x1 = i, x2 = j) = pij and τij denotes the unique parameter
for copula cij .

We solve the estimation problem using complete data (x1:N ,y1:N ) in the following way:

- Parameters pij can be estimated by the empirical estimate: p̂ij = 1
N−1

∑N−1
n=1 1xn=i,xn+1=j .
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Table 4: Results of automatic copula selection for experiment in Section 4. The integer value
gives the number of times the right copula has been chosen for the 10 experiments. The mean
Kendall’s tau is given between parenthesis (true values are recalled in bold).

Experiment c11 c12 c21 c22

#1 10 (0.69 - 0.70) 9 (0.29 - 0.40) 7 (0.32 - 0.40) 10 (0.71 - 0.70)
#2 10 (0.23 - 0.25) 9 (0.10 - 0.10) 9 (0.11 - 0.10) 10 (0.22 - 0.20)

- We divide the sample y1:N in K2 sub-samples (yij1:N ), i, j ∈ Ω such that for n = 1, . . . , N−1,

yn ∈ yij1:N if (xn, xn+1) = (i, j). For all (i, j) ∈ Ω2, we select the “best copula” csij corresponding

to pθ (y1, y2 |x1 = i, x2 = j ) among Πij =
{
c1
ij , . . . , c

P
ij

}
, according to criterion in eq. (12), and

then estimate its parameter τ sij from yij1:N .

The principle of ICE is then applied according to:

- At first iteration (q = 0), we set initial values p0
ij for pij and initial copulas cs,0ij , based on

a kmeans classification.

- For next iterations, pq+1
ij are estimated from pqij and cs,qij by taking the conditional expecta-

tion of p̂ij (see eq. (21) and (22) in [3]), whereas cij,q+1
s are estimated using the complete data

procedure described above, replacing x1:N by xq1:N .

Finally, the K2 best copulas cs,Qij involved in an estimated PMC model are the copulas
selected when ICE has converged (q = Q).

Experiments on copula selection in PMC model

This section intends to evaluate the combination of ICE and Bayesian copula selection method
for the reliable identification of copulas in a PMC mixture. For data simulation, common
parameters of all experiments presented below are K = 2 , N = 2500, Q = 30, and p(1, 1) = 0.50,
p(1, 2) = p(2, 1) = 0.05, p(2, 2) = 0.40. Specific parameters used for the two experiments are:

- Experiment #1 - Gaussian margins from Table 1 and

Set of admissible copulas: ∀(i, j) ∈ Ω2,Πij = Π#1 =
{
c1, c3, c6

}
.

c11 = c1, c12 = c3, c21 = c3 and c22 = c6 with τ11 = 0.7, τ12 = 0.4, τ21 = 0.4, τ22 = 0.7.

- Experiment #2 - Gamma margins from Table 1 and

Set of admissible copulas: ∀(i, j) ∈ Ω2,Πij = Π#2 =
{
c2, c3, c5, c6

}
.

c11 = c2, c12 = c5, c21 = c5 and c22 = c6 with τ11 = 0.25, τ12 = 0.1, τ21 = 0.1, τ22 = 0.2.

Regarding unsupervised restoration, all parameters involved in the PMC model are esti-
mated except the marginal density families, e.g. Gaussian, Gamma, which are supposed known
(but parameters of margins are also estimated). Table 4 gives the number of times the right
copula were selected for the K2 = 4 copulas on 10 independent simulations and unsupervised
restorations for the two experiments. Note that parameters estimated for margin shapes are
not reported. Whatever the margin and Kendall’s tau involved, the right copulas are al-
ways selected for copulas c11 and c22. One can note a few confusions for copulas c12 and c21,
which can be explained by the low number of samples available for copulas estimation (about
p (1, 2)N = p (2, 1)N = 0.05 ∗ 2500 = 125). Nevertheless, these few confusions have a limited
impact on the mean of error rates for the 10 experiments: for experiment #1, the mean is
13.74% for the unsupervised case and 12.16% for the supervised case (i.e. without parameters
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estimation, see Section 3); for experiment #2, the mean is 12.89% for the unsupervised case and
11.35% for the supervised case.

5 Conclusion

This paper examines the influence of copula shapes in the Pairwise Markov Chain model. We
first present supervised restoration results when systematically interchanging copulas used for
PMC data simulation with other copula families. All things being equal, the use of the false
copula can degrade significantly segmentation results, both in the Markovian and non Markovian
contexts. In the case of a noise with strong correlation, the use of an independent noise model
can produce disastrous results. Finally, we also present an algorithm for the automatic selection
of copulas involved in PMC within a finite set of admissible copulas. According to experiments,
the method of copula identification and parameters estimation, based on the general “Iterated
Conditional Expectation” (ICE) allows effective unsupervised classifications.

App 1 - Densities of copulas

Table 5 gives details about the one-parameter copulas considered for experiments: probability
density function (pdf), range for parameter θ and its closed-form solution to Kendall’s tau. For
the Student’t copula (c2) the degree of freedom ν is supposed to be known.

App 2 - Simulation of Y2 |Y1 = y1

Let Y1 and Y2 be two real-valued random variables with probability density function f (1)(.)
and f (2)(.), and cumulative distribution functions F (1)(.) and F (2)(.). Assuming a copula rep-
resentation for f (y1, y2), we can write p (y2 |y1 ) = fy1 (y2) = f (2) (y2) c

(
F (1)(y1), F (2)(y2);θ

)
.

Assuming a real number M and a density g such that ∀x ∈ R, fy1 (x) ≤M g (x), the simulation
of Y2 conditionally to Y1 = y1 can be performed using the rejection algorithm [4]:

1. Sample X = x according to g and V = v according to U ([0, 1]), the uniform law.

2. Accept y2 = x if v ≤ fy1 (x)

M g(x) , else, go back to 1.

Choosing g = f (2) andM = maxu2∈[0,1] c (u1, u2), previous equation writes v ≤ c(u1,F (2)(x))
maxu2∈[0,1] c(u1,u2;θ)

where u1 = F (1)(y1). So, it is possible to generate drawings from Y2 |Y1 = y1 whatever the shape
of the copula, once we know the pdf of the copula and how to generate a random variate for
Y2. Algorithm efficiency, i.e. number of rejections before an acceptance occurs, depends on the
value of M and so on the copula shape. When no closed-form solution is available, a numerical
method to find the maximum value can be easily implemented.
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