
UNSUPERVISED RESTORATION IN
GAUSSIAN PAIRWISE MIXTURE MODEL
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ABSTRACT
The idea behind the Pairwise Mixture Model (PMM) we pro-
pose in this work is to classify simultaneously two sets of ob-
servations by introducing a joint prior between the two corre-
sponding classifications and some inter-dependence between
the two observations. We address the bayesian restoration of
PMM using either MPM or MAP criteria, and an EM-based
parameters estimation algorithm by extending the work done
for classical Mixture Model (MM). Systematic experiments
conducted on simulated data shows the effectiveness of the
model when compared to the MM, both in supervised and
unsupervised contexts.

1. INTRODUCTION

An important problem in signal processing consists in restor-
ing an unobservable process x = {xn}n∈N from an observed
process y = {yn}n∈N. In the so-called probabilistic Mixture
Model (MM), observations are assumed mutually indepen-
dent and the restoration problem is to classify the data into a
finite set of K classes. Coupled models appear when trying
to co-analyse two series of observations, ie y1 and y2, to get
two classifications denoted by ie x1 and x2 [6, 1].

In the field of image processing, such models can be of
interest in several situations:

• The joint segmentation of two co-registered satellite
radar and optical images. The number of observed
classes can be different for the two modalities since the
technologies to capture earth ground information are rad-
ically different. This problem can also be faced in med-
ical imaging, e.g. T1, T2 and Proton-Density modalities
from magnetic resonance imaging.

• The joint segmentation of two images with the same
modality but some part of one image being hidden (miss-
ing data). This is the case when trying to compare two
optical satellite images from the same site, but one of
them has been acquired under cloudy conditions. Change
detection after a major natural disaster also requires the
co-segmentation of one old image of reference with a re-
cent image showing the impact of, e.g., earthquake, tor-
nado or eruption damages.
The “Coupled Mixture Model” (CMM) in [6] was devel-

oped to co-analyse transcriptomic and proteomics sequences
by mean of a joint prior on the mixtures components. In
this work, we extend the CMM to get a “Pairwise Mix-
ture Model” (PMM) by adding an inter-dependence between
observations themselves, resulting in a rich mixture of bi-

dimensional densities. We limit ourself to Gaussian densi-
ties, but the model can be easily parameterized with non-
Gaussian distributions, e.g. with copula-based models [5, 2].

This paper addresses the bayesian restoration of PMM
using either MPM or MAP criteria, and an EM-based [3] pa-
rameters estimation algorithm by extending the work done
for classical MM. Section 2 presents the PMM and estab-
lishes two Bayesian decision rules. Section 3 derives an
EM-based parameters estimation procedure. Section 4 deals
with the simulation and restoration of data following a PMM.
A systematic comparison between MM, CMM and PMM
is performed, in both supervised and unsupervised contexts.
Section 5 gives some segmentation results from a pair of im-
ages. Conclusion and further work are depicted in Section 6.

2. PAIRWISE MIXTURE MODEL

Let y = {y1, . . . ,yN} denotes a set of N observed data (yn ∈
R). Let x = {x1, . . . ,xN} denotes the result of classifying y-
data into a finite set of classes (Ω = {1, . . . ,K}).

In the classical probabilistic mixture model [7], one as-
sumes that data yn are realizations of mutually independent
random variables Yn with the same mixture distribution

fMM (yn) =
K

∑
k=1

πk fk (yn). (1)

Each fk (.) = p(. |k ) is a class k conditional probability den-
sity function (pdf) and priors πk = p(xn = k) are such that
∑

K
k=1 πk = 1.

This model can be interpreted by assuming that observed
data are distributed in K classes, sometimes called mixture
components. The variable Xn ∈ Ω is an essential element of
the problem which has the disavantage of not being able to
be observed in practice (xn is a missing or hidden data).

2.1 Pairwise mixture model
In a PMM, we consider two sets of N observed data y1 ={

y1
n
}

n∈[1,N]
and y2 =

{
y2

n
}

n∈[1,N]
. Let x1 =

{
x1

n
}

n∈[1,N]

and x2 =
{

x2
n
}

n∈[1,N]
denote the corresponding classifica-

tions into K and L classes respectively, ie ∀n ∈ [1,N], x1
n ∈

Ω1 = {1, . . . ,K} and x2
n ∈ Ω2 = {1, . . . ,L}. We also note

yn =
(
y1

n,y
2
n
)′ and xn =

(
x1

n,x
2
n
)′ for latter use.

In this model we assume that pairwise data yn are real-
izations of mutually independent random vectors Yn with the



Table 1: Parameters used to draw mixtures in Fig. 2 and for
simulations in Section 4.

(k, l) γk,l µ
(1)
k,l σ

2(1)
k,l µ

(2)
k,l σ

2(2)
k,l ρk,l

(1,1) 0.30 0 2 1 2 0.8
PMM (1,2) 0.20 0.4 2 -0.6 2 0.3

(2,1) 0.15 1.6 2 0.7 2 0.3
(2,2) 0.35 2 2 -1 2 0.7
(1,1) 0.30 0 2 1 2 0

CMM (1,2) 0.20 0 2 -1 2 0
(2,1) 0.15 2 2 1 2 0
(2,2) 0.35 2 2 -1 2 0

same (finite) mixture distribution

fPMM
(
y1

n,y
2
n
)
=

K

∑
k=1

L

∑
l=1

γk,l fk,l
(
y1

n,y
2
n
)
, (2)

where γk,l = p
(
x1

n = k,x2
n = l

)
is the joint prior with

∑
K
k=1 ∑

L
l=1 γk,l = 1. The dependence graph for such a

model is given in Fig. 1d. All 2D pdf fk,l (., .) are as-
sumed Gaussian in this work. Hence the set of PMM pa-
rameters is given by Θ =

{
Θk,l
}
(k,l)∈Ω1×Ω2 with Θk,l =(

γk,l ,µ
(1)
k,l ,σ

(1)
k,l ,µ

(2)
k,l ,σ

(2)
k,l ,ρk,l

)
, where µ and σ denote the

mean and standard deviation of Gaussian margins and ρ their
correlation coefficient.

This model is different from a 2D mixture model (or vec-
torial MM) in which yn is used to estimate one classification
xn only, cf Fig. 1a. It is also more general than the product
of two independent MMs defined by

fIMMs
(
y1

n,y
2
n
)
=

K

∑
k=1

π
(1)
k f (1)k

(
y1

n
) L

∑
l=1

π
(2)
l f (2)l

(
y2

n
)
, (3)

and whose dependence graph is depicted in Fig. 1b.
Remark: Let ∀(k, l)∈Ω1×Ω2, ρk,l = 0, ie fk,l

(
y1

n,y
2
n
)
=

f (1)k,l

(
y1

n
)

f (2)k,l

(
y2

n
)
. Assuming further f (1)k,l (.) = f (1)k (.) and

f (2)k,l (.) = f (2)l (.), we get the coupled mixture model (CMM)
studied in [6]

fCMM
(
y1

n,y
2
n
)
=

K

∑
k=1

p(k) f (1)k

(
y1

n
) L

∑
l=1

p(l |k ) f (2)l

(
y2

n
)
. (4)

whose dependence graph is shown in Fig. 1c.
Fig. 2 shows an example of K = L = 2 mixtures obtained

from the CMM and PMM models with the parameters re-
ported in Table 1.

2.2 Bayesian restoration in PMM
The estimation of xn from yn is done by performing a deci-
sion rule s. Such a rule is characterized by a cost function
L which measures the error between xn and its estimate x̂n.
The Bayesian estimator x̂n = s(yn) is the one that minimizes
the mean cost:

x̂n = arg min
x̃n∈Ω1×Ω2

E [L(xn, x̃n) |yn ]

= arg min
x̃n∈Ω1×Ω2 ∑

xn∈Ω1×Ω2

L(xn, x̃n) p(xn |yn )

(a) CMM

(b) PMM

Figure 2: Example of CMM and PMM mixtures with param-
eters given in Table 1.

Two “0-1” cost functions L1 and L2 can be considered

L1 (xn, x̃n) = 1x1
n 6=x̃1

n
+1x2

n 6=x̃2
n

L2 (xn, x̃n) = 1xn 6=x̃n = 1x1
n 6=x̃1

n or x2
n 6=x̃2

n

where 1c = 1 if condition c is true, else 0. L1 refers to the
Maximum Posteriori Mode (MPM) and L2 to the Maximum
A Posteriori (MAP). After simple calculations, the two rules
write:

MPM :


x̂1

n = arg max
k∈Ω1

p
(
x1

n = k |yn
)

x̂2
n = argmax

l∈Ω2
p
(
x2

n = l |yn
) (5)

MAP : x̂n = arg max
(k,l)∈Ω1×Ω2

p(xn = (k, l) |yn ) (6)

where p
(
x1

n = k |yn
)

= ∑
L
l=1 p(xn = (k, l) |yn ) and

p
(
x2

n = l |yn
)
= ∑

K
k=1 p(xn = (k, l) |yn ). In the classi-

cal mixture model, the distinction between the MAP and
MPM criteria does not exist.

3. PARAMETERS ESTIMATION

The aim of this section is to derive an EM-based parameters
estimation algorithm [3, 7] for the Gaussian pairwise mixture
model. Denoting Θ the true value of parameter θ that should
be estimated and Θ(`) an estimation of θ at iteration `, EM-
based estimation [4] consists in computing

Θ
(`) = argmax

Θ

Q
(

Θ
(`−1),Θ

)
, (7)
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Figure 1: Dependence graphs for the (a) 2D, (b) product, (c) coupled and (d) pairwise mixture models.

with

Q
(

Θ
(`−1),Θ

)
= E

lnH
(
x1,x2,y1,y2)︸ ︷︷ ︸

H

∣∣∣y1,y2;Θ
(`−1)


recursively until convergence.

The joint log-likelihood of observations and hidden states
writes

H =
N

∑
n=1

lnγk,l fk,l
(
y1

n,y
2
n
)

=
N

∑
n=1

ln
K

∑
k=1

L

∑
l=1

γk,l fk,l
(
y1

n,y
2
n
)
1xn=(k,l)

=
N

∑
n=1

K

∑
k=1

L

∑
l=1

ln
(
γk,l fk,l

(
y1

n,y
2
n
))
1xn=(k,l)

Taking the expectation of H with respect to x1 and x2, we
can write ξ

(`−1)
n (k, l) = E

[
1xn=(k,l)

∣∣∣y1,y2;Θ(`−1)
]

in the
following way

ξ
(`−1)
n (k, l) =

K

∑
i=1

L

∑
j=1
1xn=(k,l)p

(
xn = (i, j)

∣∣∣y1,y2;Θ
(`−1)

)
= p

(
xn = (k, l)

∣∣∣y1,y2;Θ
(`−1)

)
= p

(
xn = (k, l)

∣∣∣y1
n,y

2
n;Θ

(`−1)
)

=
p
(
xn = (k, l),yn;Θ(`−1)

)
p
(
yn;Θ(`−1)

)
so that

ξ
(`−1)
n (k, l) =

γ
(`−1)
k,l f (`−1)

k,l (y1
n,y

2
n)

K

∑
i=1

L

∑
j=1

γ
(`−1)
i, j f (`−1)

i, j (y1
n,y

2
n)

. (8)

Finally, we get

Q
(

Θ
(`−1),Θ

)
=

N

∑
n=1

K

∑
k=1

L

∑
l=1

ln
(

γ
(`−1)
k,l f (`−1)

k,l

(
y1

n,y
2
n
))

ξ
(`−1)
n (k, l).

According to (7), the next estimation is obtained by max-
imizing Q. Using standard calculations and following the
approach developed for classical mixture models, we get

γ
(`)
k,l =

1
N

N

∑
n=1

ξ
(`−1)
n (k, l) (9)

µ
(`)
k,l =

N

∑
n=1

ξ
(`−1)
n (k, l) yn

N

∑
n=1

ξ
(`−1)
n (k, l)

(10)

Γ
(`)
k,l =

N

∑
n=1

ξ
(`−1)
n (k, l)

(
yn−µ

(`)
k,l

) (
yn−µ

(`)
k,l

)′
N

∑
n=1

ξ
(`−1)
n (k, l)

(11)

The entire algorithm for unsupervised data classification
according to the PMM is sketched in Appendix A.

4. SIMULATION AND RESTORATION OF PMM

Given all model parameters, the simulation of pairwise data
(y1,y2) and (x1,x2) such that (2) holds can be performed ac-
cording to the following 4-steps procedure:

• draws x1, according to p
(
x1
)
= ∑

L
l=1 γx1,l ;

• draws x2, according to p
(
x2
∣∣x1
)
=

γx1 ,x2

p(x1)
;

• draws y1, according to Gaussian margin f (1)x1,x2

(
y1
)
=

p
(
y1
∣∣x1,x2

)
;

• draws y2, according to conditional Gaussian distribution
p
(
y2
∣∣x1,x2,y1

)
.



Table 2: Error rates for experiment in Section 4.1.

MPM MAP
x1 x2 x1 x2

PMM 15.59 14.11 15.85 14.19
CMM 22.78 21.50 21.96 20.73

Table 3: Parameters estimated by EM/PMM for experiment
in Section 4.2. These values should be compared to the ones
in Table 1, row one.

(k, l) γk,l µ
(1)
k,l σ

2(1)
k,l µ

(2)
k,l σ

2(2)
k,l ρk,l

(1,1) 0.30 0.01 2.07 1.02 2.08 0.96
PMM (1,2) 0.18 0.29 1.86 -0.76 1.52 0.38

(2,1) 0.15 1.49 1.67 0.93 1.64 0.44
(2,2) 0.37 2.00 2.02 -0.99 2.04 0.89

Iterating simulations N times, we get two series of obser-
vations y1 and y2, and their corresponding classifications x1

and x2. The latter are used for comparison with supervised
and unsupervised estimates, by mean of classification error
rates. For experiments we simulated N = 10000 pairwise
samples using PMM parameters in Table 1 (first row).

4.1 Supervised restoration
We restored the two series of data using both MPM (5) and
MAP (6) Bayesian criteria assuming first a PMM and then
a CMM, with parameters given in Table 1. Error rates are
reported in Table 2.

As expected the error rates are smaller when the PMM
model is considered for restoration: the CMM is not able to
capture the complexity of the PMM model.

4.2 Unsupervised restoration
In this experiment, we assume that model parameters are un-
known and must be estimated before classification. Using
the algorithm sketches in App. A with a number of EM itera-
tions set to £= 100, we get the estimates reported in Table 3.
The log-likelihood evolution against iterations is reported in
Fig. 3. Evolution of coefficients γk,l is plotted in Fig. 4. EM
is converging quickly for this mixture and estimated param-
eters are close to the true parameters, which produces error
rates similar to the ones obtained from supervised classifica-
tion, see Table 4.

5. APPLICATION TO JOINT IMAGES
SEGMENTATION

In this section, the PMM model is used to segment jointly a
couple of synthetic images with different number of classes.

Table 4: Error rates for experiment in Section 4.2.

MPM MAP
x1 x2 x1 x2

PMM 15.70 14.06 16.25 14.21

Figure 3: Log-likelihood evolution for experiment in Sec-
tion 4.2.

Figure 4: Evolution of γk,l for (k, l)∈Ω1×Ω2 for experiment
in section 4.2. Expected values are 0.15, 0.20, 0.30 and 0.35.

Fig. 5 shows original and noisy images alterated with Gaus-
sian noises whose mean vectors have been set to µ1,1 =
(100,150), µ1,2 = (100,170), µ1,3 = (100,190), µ2,1 =
(120,150), µ2,2 = (120,170), and µ2,3 = (120,190), and co-

variance matrices to Γ1,1 = Γ2,2 =

(
110 90
90 110

)
(correla-

tion ρ = 0.82), Γ1,2 = Γ2,1 =

(
110 0
0 110

)
, Γ1,3 = Γ2,3 =(

110 0
0 70

)
.

Fig. 6 shows the two independent unsupervised segmen-
tation results obtained with a classical mixture model with 2
and 3 classes respectively. The unsupervised PMM segmen-
tation of the two noisy images are reported in Fig. 7 for the
MPM criterion only. Error rates are reported under each clas-
sification. Each time the PMM shows some improvements
with respect to the IMMs.



(a) K = 2-classes image (b) L = 3-classes image

(c) (d)

Figure 5: Original and noisy images used in Section 5.

(a) K = 2 - τ = 13.02% (b) L = 3 - τ = 19.01%

Figure 6: Result of unsupervised image segmentation using
two independent MMs with K = 2 and L = 3 classes (τ: error
rate).

6. CONCLUSION

This work describes an algorithm for the joint classification
of two series of observations with a bidimensional mixture
model we called “Pairwise Mixture Model”. This PMM is
able to take into account the inter-dependence between states
and between observations, resulting in a very rich mixture of
components. We proposed an EM-based estimation proce-
dure and two Bayesian criterion for restoration. Numerous
experiments on simulated data and synthetic images confirm
the interest of the model with respect to simpler models (in-
dependent MM and Coupled MM [6]), even if the number of
parameters to be estimated increases.

Next step will be to include a structure of Markov chain
for x1 and for x2 in a way to extend the “Coupled Hidden
Markov Model” (CHMM) in [1] in the same way this PMM
extends the CMM. Another interesting work to develop con-
cerns the replacement of Gaussian distributions with para-
metric models constructed from copulas [5].

(a) K = 2 - τ = 12.87% (b) L = 3 - τ = 14.94%

Figure 7: Result of unsupervised image segmentation using
the PMM with the MPM criterion (τ: error rate).
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A. ALGORITHM

Require: y1, y2, K and L
1. Initialization of parameters at `= 0 :

Classify y1 and y2 separately using a standard
technique such as the k-means algorithm.

Use standard empirical estimators to get Θ(0).
2. EM estimation.
for `= 1 to £ do

Compute a posteriori probabilities ξ
(`−1)
n (., .)

from (8).
Compute a priori probabilities γ(`).,. from (9).
Compute data-driven parameters µ(`)

.,. et Γ(`)
.,.

from (10) and (11).
end for
3. Classification from Θ(£)

Compute MPM and MAP using (5) and (6).


