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ABSTRACT 

Hidden Markov chains (HMCs) have been extensively used to solve a wide range of problems related to computer vision, 
signal processing (Cappé, O., et al 2005) or bioinformatics (Koski, T., 2001).  Such notoriety is due to their ability to 
recover the hidden data of interest using the entire observable signal thanks to some Bayesian techniques like MPM and 
MAP. HMCs have then been generalized to pairwise Markov chains (PMCs), which offer similar processing advantages 
and superior modeling possibilities. However, when applied to nonstationary data like multi-textures images, both HMCs 
and PMCs fail to produce tolerable results given the mismatch between the estimated model and the data under concern. 
The recent triplet Markov chains (TMCs) have offered undeniable means to solve such challenging difficulty through the 
introduction of a third underlying process that may model, for instance, the switches of the model along the signal. In this 
paper, we propose a new TMC that incorporates a switching PMC to model non stationary images. To validate our 
model, experiments are carried out on synthetic and real multitextured images in an unsupervised manner. 
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1. INTRODUCTION 

The hidden Markov chains have widely been applied to various image processing problems including 
supervised and unsupervised image segmentation. When the image under consideration is stationary, these 
models are quite proficient and their corresponding unsupervised Bayesian segmentation techniques using 
EM (Expectation- Maximization) yield suitable results. However, when the image is nonstationary, they fail 
to establish a satisfactory association with the image to be modeled and the segmentation results can be 
relatively poor. To overcome this limitation, authors in (Lanchantin, P. et al, 2011) propose a particular TMC 
called switching hidden Markov chains (S-HMC) to take the switches of the model into account. In such a 
model, each stationary part of the image is modeled via a classical HMC and the switches between these 
different parts are assumed to be Markovian. The same thing happens when we consider a multi-textured 
image; it is intuitive to consider a HMC per each texture. Furthermore, the gain in using S-HMC is that the 
switches between different textures are governed by a Markov chain rather than independent on each other, 
which may serve as a regularization tool to prevent the “pepper and salt” aspect of the unobserved image 
which is being determined.  

In this paper, we deal with the problem of non stationary image modeling with application to multi-
textured image segmentation. For this purpose, we propose an original approach, based on a switching PMC 
rather than a switching HMC to model textured images. Supremacy of PMCs over HMCs has already been 
shown in previous works (Derrode, S. and Pieczynski, W., 2004). It hinges essentially on their ability to take 
complex noises into account. In particular, in PMCs, one can easily model the fact that pixels near region 
boundaries inside the image may have different visual aspect than those located inside region. 

The remainder of this paper is organized as follows: the next section summarizes the hidden, pairwise and 
triplet Markov chains. The third section presents the proposed switching pairwise Markov chains. 
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Experimental results are provided in the fourth section. Concluding remarks and future improvements end the 
paper. 

2. HIDDEN, PAIRWISE AND TRIPLET MARKOV CHAINS 

In this section, we briefly describe three families of Markov chains with strictly increasing degrees of 
generality: HMCs, PMCs and TMCs. Let us notice that HMCs, which are the most basic ones, were extended 
in different directions. However, to our knowledge, in all these extensions, the hidden process remains 
Markovian and the resulting models are still hidden Markov models (Pieczynski, W., 2010). On the other 
hand, PMCs in which the hidden process is not Markovian exist and are therefore firmly more general. 
Similarly, TMCs form a family which is strictly more general than PMCs since TMCs that are not PMCs 
exist and were used to deal with several data irregularities that neither HMCs nor PMCs can handle 
(Boudaren, M. E. Y., et al, 2011).  

All along this section, we consider an observable signal � = ��������  that is to be indexed into 	 =
�	������ where	��	take their values in ℝ and 		�	take their values from a finite set of classes	Ω = 
��, . . , ���. 
Realizations of the processes will be denoted by lowercase letters. To simplify the notations, we will write 
����� instead of	��	 = ���. Accordingly, we recall the formalisms of HMCs, PMCs and TMCs. 

2.1 Hidden Markov Chains 

A HMC is a pairwise process � = �	, �� = �	� , ������� that considers X as a Markov chain which is to be 
recovered from its noisy version Y. Moreover, when the classical noise assumptions hold, the joint 
probability of Z is given by the simple formula: 

                                          ���� = ���������|���∏ ����|��������� ����|���																																					�1� 
Accordingly, X may be recovered from Y by means of some Bayesian decision rules such as marginal 

posterior mode (MPM) or maximum a posteriori (MAP) (Rabiner, L. R., 1989). Throughout this paper, MPM 
will be adopted. Its corresponding formula is the following: 

                                        ��� = ��� ����! ⟺ ���� = #$%&#�	'	���� = �'|��!																																					�2� 
When the model parameters are known, the posterior distributions ����|��	required to perform MPM 

estimation are computed thanks to forward functions )����� = ����, … , ��, ���	and backward functions 
+����� = ��,��-�, … , ��|���	that can be computed in the following iterative way: 

)����� = �������,��|���; 
                                         )�-����-�� = ∑ )�������,��-�|�����,��-�|��-��																															�3�	01∈3  

+����� = 1; 

                                        +����� = ∑ +�-����-����,��-�|�����,��-�|��-��0145∈3 																												�4� 
The posterior margins can then be computed as follows: 

                                                             ����|�� ∝ )�����+�����																																																													�5� 
The indexing is then derived according to equation 2. 
On the other hand, when the model parameters are unknown, several relatively quick algorithms can be 

used to find out these latter. We can cite for instance expectation- maximization algorithm (EM), its 
stochastic version (SEM) or iteratve conditional estimation (ICE) (Pieczynski, W., 2010).  

2.2 Pairwise Markov Chains 

Z is referred to as a PMC if Z is itself Markovian. Hence, Z is said to be a PMC if and only if its joint 
distribution is given by 
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                                                        ���� = �����∏ ����|�����																																								���� 																�6� 
An HMC defined by (1) can then be seen as a particular PMC where ����|����� = ����|���������|��� 

whereas in more general PMC we have����|����� = ����|����, ���������|����, ����, ���. This shows the 
greater generality of PMC over HMC at the local level. At the global level, the noise distribution ���|�� is of 
Markovian form in PMC whereas it is given by the simple formula ���|�� = ∏ ����|�������  in HMC. The 
posterior margins ����|��	required for MPM restoration are computable within linear computational 
complexity like for HMC thanks to the same forward functions )����� = ����, … , ��, ��� and extended 
backward functions +����� = ����-�, … , ��|�� , ���that can be computed in the following iterative way: 

)����� = ����, ���; 
                                        )����� = ∑ )������������� , ��|����, �����01;5∈3 																																					�7� 

+����� = 1; 
                                         +����� = ∑ +�-����-������-�, ��-�|��, ���0145∈3 																																				�8� 
When the model parameters are unknown, they can be estimated via adapted variants of the same 

Bayesian algorithms used for HMCs. For further details, the reader may refer to (Derrode, S. and Pieczynski, 
W., 2004) where some related theoretical developments and experiments are shown. 

2.3 Triplet Markov Chains 

Z is said to be a TMC if there exists a third process > = �>�, … , >�	� with each Un taking its values from a 
finite set Λ = 
λ�, … , λA� such that the triplet B = �	, �, >� is a Markov chain. Let C = �>, 	�. B = �C, �� is 
then a pairwise Markov chain (PMC). This makes the computation of the distributions	����|��, required to 
perform MPM restoration, affordable even when Z is not Markovian. This shows the greater generality of 
TMC over PMC, which is more general than HMC.  

3. SWITCHING PAIRWISE MARKOV CHAINS 

3.1 The Model 

Let � = �������� be an observable signal that is to be indexed into 	 = �	������ where	��	are in ℝ and 
		�	belongs to	Ω = 
��, . . , ���. Let us consider now the situation where the data � = �	, �� follow a 
pairwise Markov chain with parameters depending on the realizations of a third Markovian process > =
�>������ , where each Un belongs to	Λ = 
λ�, … , λA�. More precisely we will assume that the transition 
probability of � is then given by: 

            ���� , D�|����, D���� = ��D�|D��������|����, ����, D������|����, ����, �� , D��												�9� 
This gives a particular TMC that will be referred to as a switching pairwise Markov chain (S- PMC) that 

extends the switching hidden Markov chain (S-HMC) (Lanchantin, P. et al, 2011). The plain PMC can be 
seen as a particular S-PMC where we have a unique regime and thus a unique PMC without any switches. 
The S- PMC may then be applied to all situations where we have regime switches provided that we can 
model each one via a PMC. 

3.2 Application to Textured Images Modeling 

We apply now our model S-PMC to model texture images. Let us consider the most general case where the 
image contains more than one texture. Let F = �FGH�G,H��I 	be such an image where FGH 	is the pixel with 
position�#, J�and let	Λ = 
λ�, … , λA� be the set of M textured classes present in the image. The problem of 
image segmentation consists then in assigning each image pixel to one of these classes. To make our model 
applicable, we need first to convert the two-dimensional image F into one-dimensional signal. For this 
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purpose we use the Hilbert-Peano scan.  This gives a mono-dimensional signal � = �������� that is to be 
indexed into	> = �>������ where	��	are assumed to be real numbers and 	>�	are in Λ. According to S-PMC 
formalism, we have to model each texture class KL via a stationary PMC. Since we assume each mono-
texture sub-image to be stationary, only stationary PMC in which ������, ��|>� = KL�does not depend on M 
will be considered. Let us denote �L�N, O� = �P,	��� = �' , 	� = �QR>� = KLS	and	TL',QP����,��S =
�P����, ��R	��� = �' , 	� = �Q , >� = KLS. The distribution of � is then given by: 

                                                ������, ��|>� = KL� = �L�N, O�TL',QP����,��S																																								�10� 
The distribution of the Markov chain Z can be equivalently determined by the initial probabilities 

��,��|>� = KL�	given by ��,��|>� = KL� = ∑ �L�N, O� V TL',Q��� , ��� W��	
ℝXY∈	3 = ∑ �L�N, O�TL',Q����XY∈	3 	and 

the transition matrix given by ����|����, >� = KL� = Z�[1;5,[1|\1�]^�
Z�,[1;5|\1�]^� = Z^�',Q�_̂`,YPa1;5,a1S

∑ Z^�',Q�_`,Y�a1;5�bY∈	c
. 

In this work, only Gaussian S-PMC will be considered. An S-PMC is called Gaussian if and only if all its 
densities TL',Q 	are Gaussian. Hence, an S-PMC Z can be specified through the transition matrix A = P#],]eS 
where #],]e = ��>� = K′|>��� = K,�, the g matrices	ΓL = PiL',QS where iL',Q = �L�N, O� and the means 

jL,�',Q , jL,�',Q ,	the standard deviations kL,�',Q , kL,�',Q  and the correlation coefficient lL',Qof the g × n² bi-dimensional 
densitiesT',Q. 

3.3 Bayesian MPM Segmentation of a Textured Image 

To accomplish the segmentation D�  of the image F, one has to compute the marginal distributions	��D�|��. 
When the parameters of the model are given, the posterior marginal distributions��D�, ��|��are workable via 
the forward function )��p�� = ����, … , ��, p��	 and extended backward one 
+����� = ����-�, … , ��|p� , ���	that may be computed in the following iterative way: 

)��p�� = ��p�, ���; 
                               )��p�� = ∑ )����p������D�|D��������|����, D��q1;5∈r×3 																																�11� 

+��p�� = 1; 
                              +��p�� = ∑ +�-��p�-����D�|D��������-�|�� , D�-��q145∈r×3 																													�12� 
The posterior distributions of C and >can then be derived as follows: 

                                                           ��p�|�� ∝ )��p��+��p��																																																															�13� 
                                                           ��D�|�� = ∑ ��p�|��																																																														�14�01∈3  

3.4 Parameters Estimation 

When the model parameters Θ = PA, ΓL, jL,�',Q , jL,�',Q , kL,�',Q , kL,�',Q , lL',QS are unknown, we propose to estimate 
them using the EM iterative algorithm according to the following steps: 

i) Choose an initial set of parameters	tu = PA, ΓL, jL,�',Q , jL,�',Q , kL,�',Q , kL,�',Q , lL',Q 	S
u
. 

ii) For each iteration, we compute v��p� , p�-�� = ��p�, p�-�|�� and w��p�� = ��p�|��	according	to	t� 
thanks to: 

                              v��p�, p�-�� ∝ )��p��#�1,�145��,��-�|��, D�-��+�-��p�-��																															�15� 
                              w��p�� = ∑ v��p� , p�-��q145 																																																																																								�16� 
Then we derive t�-� as follows 
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                             PjL,�',Q S�-� =
∑ ∑ �1�q1,q145�a1����1,�1,�145����^,b`,bY���1,�145�;51�5
∑ ∑ �1�q1,q145�����1,�1,�145����^,b`,bY���1,�145�;51�5

																																	�17� 

                            PjL,�',Q S�-� =
∑ ∑ �1�q1,q145�a145����1,�1,�145����^,b`,bY���1,�145�;51�5
∑ ∑ �1�q1,q145�����1,�1,�145����^,b`,bY���1,�145�;51�5

																															�18� 

                           PkL,�',Q S�-� =
∑ ∑ �1�q1,q145��a1���^,5

`,Y ��45�
�
����1,�1,�145����^,b`,bY���1,�145�;51�5

∑ ∑ �1�q1,q145�����1,�1,�145����^,b`,bY���1,�145�;51�5
																				�19� 

                    PkL,�',Q S�-� =
∑ ∑ �1�q1,q145��a145���^,�

`,Y ��45�
�
����1,�1,�145����^,b`,bY���1,�145�;51�5

∑ ∑ �1�q1,q145�����1,�1,�145����^,b`,bY���1,�145�;51�5
																		�20� 

 PlL',QS
�-� =

∑ ∑ �1�q1,q145��a1���^,5
`,Y ��45��a145���^,�

`,Y ��45�����1,�1,�145����^,b`,bY���1,�145�;51�5
∑ ∑ �1�q1,q145�����1,�1,�145����^,b`,bY���1,�145�;51�5

																		�21� 

                                                 #�,L�-� =
∑ ∑ �1�q1,q145�����1,�145��P��,�^S��1�;51�5

∑ ∑ �1�q1����1�����1�;51�5
																																										�22� 

                                       PiL',QS
�-� =

∑ ∑ �1�q1,q145�����145,�1,�145����^,b`,bY���1�;51�5
∑ ∑ �1�q1����145��^!�1�;51�5

																																	�23� 
iii) We repeat the previous step until an end criterion is reached. 

4. EXPERIMENTS 

In this section, we present three series of experiments. In the first one, synthetic textured images are 
considered and MPM segmentation is achieved in an unsupervised manner via EM algorithm according to S-
HMC and S-PMC proposed here. In the second set of experiments, we judge our model via experiments 
conducted on one Brodatz texture image (Brodatz, P., 1966). In the last set of experiments, we consider an 
assorted image that we assembled by combining some mono-class texture images from CGT database. All 
along this section, one-dimensional chains are converted to and from 2D images using the Hilbert-Peano 
scan. 

4.1 Unsupervised Segmentation of Synthetic Textured Images 

For this set of experiments, we will consider two real classes Ω = 
��, ��� and three texture classes	Λ =

λ�, λ�, λ��. Textures images of size 128 × 128 are generated according to S-PMC formalism as follows: 
> = D	realization sequence is fixed in the following manner: pixels of the image upper left quarter are 
assigned to λ�(black), pixels of the second quarter are assigned to λ� (grey) and pixels of the last half are 
assigned to	λ� (white). The realizations 	 = �	and � = �	are simulated from Ω = 
��, ���	(where �� is 
depicted in black and �� in white) and ℝ according to the matrices �ΓL�L���  and the noise parameters as 
described in section 3. The parameters used for experiments 1, 2 and 3 are given in Tables 1, 2 and 3 
respectively. The corresponding segmentation results are provided in Table 4.  
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> = D 	 = � � = � 	 = �����G��	� ≈ 16% 

	 = ������  	� ≈ 11% > = D�����  	� ≈ 11% 	 = ���� �  	� = 3.58% > = D��� �  	� ≈ 0%  

Figure 1. Unsupervised segmentation of a synthetic image from experiment 2 according to different models. 

Table 1. Parameters of experiment 1 

Texture Γ j� j� k� k� l 
λ� �0.49	0.01; 0.01	0.49! �1	1; 3	3! �1	3; 1	3! �1	1; 1	1! �1	1; 1	1! �0	0; 0	0! 
λ� λ� 

�0.25	0.25; 0.25	0.25!
�0.01	0.49; 0.49	0.01!

�1	1; 3	3! 
�1	1; 3	3! 

�1	3; 1	3! 
�1	3; 1	3! 

�1	1; 1	1! 
�1	1; 1	1! 

�1	1; 1	1!
�1	1; 1	1!

�0	0; 0	0! 
�0	0; 0	0! 

Table 2. Parameters of experiment 2 

Texture Γ j� j� k� k� l 
λ� �0.49	0.01; 0.01	0.49! �1	1; 3	3! �1	3; 1	3! �1	1; 1	1! �1	1; 1	1! �0.1	0.1; 0.1	0.1! 
λ� λ� 

�0.25	0.25; 0.25	0.25!
�0.01	0.49; 0.49	0.01!

�1	1; 3	3! 
�1	1; 3	3! 

�1	3; 1	3! 
�1	3; 1	3! 

�1	1; 1	1! 
�1	1; 1	1! 

�1	1; 1	1!
�1	1; 1	1!

�0.5	0.5; 0.5	0.5! 
�0.9	0.9; 0.9	0.9! 

Table 3. Parameters of experiment 3 

Texture Γ j� j� k� k� l 
λ� �0.49	0.01; 0.01	0.49! �1	1; 3	3! �1	3; 1	3! �1	1; 1	1! �1	1; 1	1! �0.5	0.5; 0.5	0.5! 
λ� λ� 

�0.25	0.25; 0.25	0.25!
�0.01	0.49; 0.49	0.01!

�2	2; 4	4! 
�0	0; 2	2! 

�2	4; 2	4! 
�0	2; 0	2! 

�1	1; 1	1! 
�1	1; 1	1! 

�1	1; 1	1!
�1	1; 1	1!

�0.5	0.5; 0.5	0.5! 
�0.5	0.5; 0.5	0.5! 

 

The interest of the first experiment is to check whether the proposed S-PMC performs well when the data 
are generated according to an S-HMC. As shown in Table 4, the answer is affirmative; this permits to 
confirm that S-PMC generalizes S-HMC. The aim of the next experiments is to provide examples of 
situations where the former S-HMC is not suitable. In experiment 2, synthetic texture classes are governed by 
different transition matrices and noise correlation coefficients. In experiment 3, textures have different 
transition matrices and means values but the same covariance matrix. As illustrated in Table 4 and Fig. 1, the 
S-PMC yields significant gain in segmentation accuracy.  

Table 4. Misclassification rates of synthetic textured images using different Markov chains models 

Experiment KMeans S − HMC S − PMC 

1 
τ« 15.26 4.58 

0.00 
4.61 

τ¬ - 0.00 

2 
τ« 15.93 10.95 

10.96 
17.03 
3.83 

3.58 
τ¬ - 0.00 

3 
τ« 22.75 13.25 
τ¬ - 0.00 
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Figure 2. EM-MPM segmentation of D22 texture image according to S

4.2 Unsupervised Segmentation

For this experiment, we consider the D22 texture image 
of size	256 m 256. Then, we apply an average filter on the upper half of the image, which gives two 
stationary parts (Fig. 2). We perform then MPM
and S-PMC formalisms. For both models, we consider two real classes 
classes	Λ � 
λ�, λ��. The obtained results are 

The segmentation results confirm the ability of S
latter property is of crucial importance since it permits to distinguish between two stationary parts of the 
same texture and having almost the same visual aspect. 

4.3 Unsupervised Segmentation

For this experiment, we consider an assorted textured image that we assembled using four different mono
textured images from CGT database (Fig. 3). Segmentation is achieved through MPM
S-PMC and S-HMC models where 

As shown in Fig. 3, the segmentation results demonstrate the supremacy of S
applied to images presenting different texture classes. In fact, as shown in Fig. 3, S
satisfactorily recover the auxiliary process realization 
λ�(dark grey) and λ­(white). This is due to the fact that these latter present analogous visual aspects. Hence, 
noise correlation represents an important complementary feature that permits to discriminate similar texture 
classes that classical models fail to differentiate.

5. CONCLUSION 

In this work, we have proposed an original 
contribution was to extend the recent switching
This extension offers more modeling potential while the parameters estimation and MPM restoration remain 
workable via some Bayesian methods

  
Extracted 256 m 256	image � � � 

  
D®¯¦°g±	τ¬ � 45% 	 � ���� �   

 

MPM segmentation of D22 texture image according to S-HMC and S-

Segmentation of Textured Images hidden with 

For this experiment, we consider the D22 texture image of Brodatz album from which we extract a sub
. Then, we apply an average filter on the upper half of the image, which gives two 

perform then MPM-EM unsupervised segmentation according to both S
For both models, we consider two real classes Ω � 
��

The obtained results are shown in Fig.2. 
The segmentation results confirm the ability of S-PMC to take more complex noises

latter property is of crucial importance since it permits to distinguish between two stationary parts of the 
same texture and having almost the same visual aspect.  

Segmentation of Mosaic Textured Images 

For this experiment, we consider an assorted textured image that we assembled using four different mono
textured images from CGT database (Fig. 3). Segmentation is achieved through MPM

HMC models where Ω � 
��, ��, ��� and four texture classes	Λ � 
λ�,
he segmentation results demonstrate the supremacy of S-PMC over S

applied to images presenting different texture classes. In fact, as shown in Fig. 3, S
satisfactorily recover the auxiliary process realization > � D (τ¬ � 2%) whereas S-HMC confounds textures

. This is due to the fact that these latter present analogous visual aspects. Hence, 
noise correlation represents an important complementary feature that permits to discriminate similar texture 

at classical models fail to differentiate. 

In this work, we have proposed an original model designed for textured images segmentation
contribution was to extend the recent switching- HMC by substituting the PMC model for the classical HMC. 
This extension offers more modeling potential while the parameters estimation and MPM restoration remain 
workable via some Bayesian methods. The efficiency of our new model was assessed against the former one 

 
> � D 

 
> � D®¯¦²g±	τ¬ � 2% 

-PMC models. 

hidden with Average Filter 

Brodatz album from which we extract a sub-image 
. Then, we apply an average filter on the upper half of the image, which gives two 

supervised segmentation according to both S-HMC 

 �, ��� and two texture 

more complex noises into account. This 
latter property is of crucial importance since it permits to distinguish between two stationary parts of the 

For this experiment, we consider an assorted textured image that we assembled using four different mono-
textured images from CGT database (Fig. 3). Segmentation is achieved through MPM-EM according to both 


 λ�, λ�, λ­�.  
PMC over S-HMC when 

applied to images presenting different texture classes. In fact, as shown in Fig. 3, S- PMC allows to 
HMC confounds textures 

. This is due to the fact that these latter present analogous visual aspects. Hence, 
noise correlation represents an important complementary feature that permits to discriminate similar texture 

segmentation. Our main 
HMC by substituting the PMC model for the classical HMC. 

This extension offers more modeling potential while the parameters estimation and MPM restoration remain 
. The efficiency of our new model was assessed against the former one 
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via some experiments conducted on synthetic and real texture images. It turned out that the S-PMC yields 
better segmentation results. As perspectives, let us cite two promising directions for further improvements. 
We may mention the use of the Markov fields instead of the Markov chains, which seems promising 
according to some preliminary results given in (Benboudjema, D., and Pieczynski, W., 2007). Another 
direction may concern the family of Markov trees, which can be applied to image segmentation, in particular 
when multiresolution images are concerned (Bouman, C., and Shapiro, M., 1994). 
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Figure 3. EM-MPM segmentation of assembled textured image according to S-HMC and S-PMC models. 
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