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ABSTRACT

We consider a general triplet Markov Gaussian linear
system (X,R,Y), where X is hidden continuous, R is hidden
discrete, and Y is observed continuous. Exact Kalman filter
(KF) is not workable and two approximations are considered
in the paper. The classical one consists of particle filtering,
which is a new extension of the classical method we
propose. Another new method we propose consists of
replacing the model by a simpler one, in which (R,)Y) is
Markovian and in which exact KF can be performed. We
show the interest of our method via experiments.

Index Terms— Gaussian switching system, exact
Kalman filtering, particle filter

1. INTRODUCTION
Let us consider three random sequences X' = (X |,..., X ),

RY =(R,,..,Ry), and Y =(Y,..7,),

sequences X' and Y," are real valued, while R is

where the

discrete finite, each R, taking its values in S = {1,...,[( }

XY and R are hidden, while ¥," is observed.
The problem we deal with is the sequential search of
(R", Xy from Y,". In classical linear Gaussian models, in

which R is Markovian and X" is a linear Gaussian

system conditionally on R/, exact computation of optimal

filter is not workable and different approximations must be
used [1, 3, 4, 5, 6, 10]. Here we consider more general
model and we compare two filtering methods: the particle
filter based one, which is a simple extension of the classical
method [1, 5] to the general model considered, and a new
method, which is an exact one in an approximated model

[2], the latter being a particular case of the model proposed
in [8].
Letus set 7, =(X,,R

7" =(T,,...,Ty) Markovian and stationary. In addition,

Y ), and let us assume the triplet

n>

(X,",Y,") will be assumed Gaussian conditionally on R/,

and the transition p(¢

¢,) will be assumed of the form:

n+l

p(tnﬂ tn) :p(rnH rn )p('xnﬂ ’yn+l rn ’rn+l ’xn ’yn) s (1'1)

which implies that R" a Markov chain. Such a model will

be called “Triplet Markov Gaussian Switching Model”
(TMGSM).
The aim of our paper is double:

(1) Extend the particle filter based method of searching X

and R from ¥V, valid in the case of classical systems [1,
5], to TMGSM ;

(2) Compare its efficiency with a new method based on
exact computation in an approximate model suggested in
[2].

Thus we compare an approximate filter (particle filter)
based on the true model with an optimal exact filter,
proposed in [2], based on an approximate model. We show
that the latter method can be slightly better, and, above all,
is much faster than the former.

2. TRIPLET MARKOV GAUSSIAN SWITCHING
MODEL

There are two equivalent representations of TMGSM :
(i) the distribution of 7," is defined by the distribution
p(t,,t,), which is given by p(r,r,) and the Gaussian

distributions p(x,,y,,x,,y,[r.7) . Setting r* =(r1,r,), we
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will assume that all the means of these Gaussian
distributions are null, and that the variances-covariances
matrix is given by [2]:

X Y X, Y
Xl 1 b)) aG?) dr})
Y b)) 1

) o) <) {nm A(rﬁf}

X,lae?) o) 1 b)) | |AGD) ()
Y, |d?) o) b)) 1 ’

with F(r‘):{b(lr) b(lr‘)}, A(rlz)=ngZ; jggﬂ (12)

(i) the distribution of 7" is defined by the distribution
p(x,n,3) = p(r)p(x,y|r) . with p(r) the marginal
distribution of p(r,r,) and p(x,, y1|r1) Zero means

Gaussian distribution with covariance matrix /7(7;), and the

linear system

X _ a(”nnﬂ) ﬂ(”nﬁl) X, LI Uy (13)
Yool [rGry oG LY, S N
with {a(r;”:) AT

LG BTG

ay e[ 1 be)]
A"y oMb 1]

1 {a(r:“)—e(r:*‘ o) —at” )b(rn)+e(r:“>} ind

1=b(r,)* [ d(r,"™) = (7 ™b(r,) - —d(™)b(r,) +cr,™)

} = A" =

£# () such that £* (7" )E* (") =2(r*"), with

2 = L) = A D) A =

_ {a‘(r;’“) ﬁl(r,,””)} ond [U,m} N([O}[l oj),
Bl(ry 8N Vi 0J10 1

independent from (X',Y,") foreach n=1,..., N -1.

Thus for K possible switches the general model is defined
by the probability distribution p(r,r,) on S*={,..,K}’
and by the parameters a(r’), b(r), c(r7), d(r’), e(r),
with the constraint that the covariance matrix A(>) must be
positive definite.

Remark 2.1

The classical Conditionally Gaussian Linear State-Space
Model (CGLSSM) can be defined as a system verifying the
following:

R is a Markov chain ;

Xn+1 = a(rn+l )Xn + O-]* (rn+1 )U
Yn+1 = y(rrw-l )Xn+1 + O-; (rn+1 )Vn+1 °

Thus CGLSSM is a particular TMGSM in which
B Yy=0, 5("")=0 and the covariances in X *(r"")

are zero.

n+l 9

Let us consider two particular cases (PC) of the TMGSM. In
the first one, called TMGSM-PCI, we take A(r"')=0,

which means that e(r"")=a(z"")b(r") for each r'*. In

TMGSM-PC1 both R, (X',R") are Markovian, and it is

an extension of the classical CGLSSM mentioned in
Remark 2.1. In the second case, called TMGSM-PC2, we

take y(r’"')=0, which means that d(r"")=c(r"")b(r"™")
for each ""'. In TMGSM-PC2 both R and (R.Y,") are
Markovian.

3. EXACT FILTERING IN TMGSM-PC2

Let us specify how the exact filtering runs in TMGSM-PC2.
In TMGSM-PC2 we have:
X n+l n+l X U
n+l — a(rn ) ﬁ(”n 1 ) n +3 * (rnnJrl) n+l , Wthh
Yn+l 0 5(’,’1"'*' ) Yn Vn+l

n+l

means  that x,,r'",y,) is  Gaussian

P(xn+1 s yn+l

M a(r™)x, + ey, ) | & B

5y, 1B 8
the classical rules of Gaussian conditioning, we can say that
the mean of the Gaussian distribution

p(an xn’rn’yn’ rn+l’yn+l) 18

1o n+l
n+l + n+l + ﬁ (’;1 )
a(rn )xn ﬂ(l’n )yn 51 (rnn+] )

}) . Applying

(Vs =6y, =

_ﬂl(nnﬂ)&(l/hnﬂ) +ﬂl(r;1n+l)
5™ 5™

A(r"Mx, + By, +C(r"")y,., - This means that we can

a(r™)x, +[B("™) 1y, Vst =

write

X, =AR™MX, +BR™MY, +CR™Y,, +DR™W,,,  (2.1)

with  E[W

n+l
E[XVH'I

E[X,|r,,»'],and vy, as follows.

Then

n+l n+ly
neLyt1=0.

X vy and

p(rn+l

n?

n+l

Lasi ] can be

computed from  p(r,|y),
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First, (R",Y,") being a hidden Markov chain we have

zp(rn yln)p(rnﬂ’ynﬂ rn’yn)

plr ™) =2 - Second, in
Zp(rn yl )p(rn+l’yn+l rn’yn)]

TMGSM-PC2 we have p(x,|r,, ..,y )=p(x,|r,, v),

which implies that E[X, |, 7.,y 1= E[X,

taking the conditional expectation of (2.1) we obtain
EX,,
ArTHELX,
A HELX,

ELX, |0 :ylﬁl] = ZE[X;M

rn’ y]n]' Thus

n+lq_
Ts Ty V1 ]_

1 1 1
rn > rn+l 7.)/1"Jr ] +B(},.n”+ )yn + C(r;” )yn+l =

rs W1+ By, +Cr ™)y, » and thus

=

1
rn’ rn-i—l’.yanr ]p(rn

ACT O ELX, s 97 100 ™)+ By ™)y, + CO )y, =

D ELX,
A(rnnﬂ) T
> p(r,

B ™M)y, +C )Y -

rn’ y;l]p(r;1|y{1)p(yn+l rn’.yn)

YOPValls¥,)

4. PARTICLE FILTERING IN TMGSM

Let us consider a general TMGSM. The problem is that

p(rnH

approximated. We briefly specified how the particle filter
can be used, which is not very different from its use in the
classical switching systems developed in [1, 5].

n+l

y") cannot be computed sequentially and is has to be

Let us imagine that R =#" is given. Then the distribution
of (XV,¥") conditional on R" =#" is the distribution of a

. . . . 1 1 .
pairwise Gaussian Markov chain. Thus p(x,,[5"", ") is

n+l

computable from p(x,|i"", ") and y,,, using Kalman filter

technique extended to pairwise Gaussian Markov chains, as
proposed in [7]. Besides, as in the classical models, we have

the following formula, which gives p(""|y/") from
(') and y,,;

il e PO Pl
pr" ) = ; p("y)

PYua|y) 4.1)
Py el ln

= e T PO

zp(ymrl P )P )

This formula is then used to sequentially approximate

n+l

p(r ™) with the particle filter technique. First, p(#"|y")
is approximated with
N,
p(r' yln)zﬁNp(rl" y{l):Nlipzé‘{,ln.r}’ (4.2)
i=1

where N, is the number of sampled trajectories. Having

p(H"|») gives the searched p(x,|y') with the formula

TR (4.3)

p(x, |y =D p(r" |y p(x,

Injecting (4.2) into (4.3) we obtain

) (44)

N,
p(x, |y = by (x, 91 = -2 plx,
i=1

knowing that the parameters of the densities p(y,.,|r"",»/)

in (4.1) and  p(x, ", y) for ie{l,...,N} in (4.4) are

r

computed for by the Kalman algorithm [7].
5. EXPERIMENTS

Let us consider the matrix (1.2) with b(r)=5b(r,)=>b
a(i’)=a(r,) (i) =c(ry), d(’)=d(r,),  and
e(r’)=e(r,). Our aim is to simulate realizations of
" =(T,..,Ty), with T,=(X,,R,Y,), and estimate
(R", X)) from ¥,¥ . We will consider three methods:

(i) the “reference method”, denoted by RM, where R ="

is considered as known and where X" is obtained by the
optimal Kalman filter;

(i1) the particle filter based method, denoted by PF; and

(iii) the “alternative” method, denoted by AM, which
consists of taking an approximate model by considering that
y(r,)=0 for each r,, and by applying the exact filtering
described in section 3.

We will consider the case of two classes for the switches:
each r, canbe 0 or 1. We will consider four experiments,
corresponding to the following four models. In all of them,
we chose the following parameters »=0.3, «(0)=0.1,

a(1)=0.5, ¢(0)=0.4, c(1)=0.9, e(0)=0.75, e(1)=0.33.
(d'(0),d"'(1))
corresponding
y(r,)) =[d(r,)—bc(r,)]/(1-b>) (see section 1) are: Case 1 :
7(0)=y(1)=0.0; Case 2 : y(0)=y(1)=0.1; Case 3 :

Then we chose five different couples

i=1,.,5, in such a way that the
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7(0)=y(1)=0.2; Case 4
y(0)=y(1)=04.

In each case we simulate 7," =" = (x¥,n", ") according

7(0)=y(1)=0.3, Case 5

to the real parameters and (x;",7")are searched with RM,

PF, and AM. The difference between x and its estimate

Ay . 1 / J .
x" is measured with the squared error v Z:(xn—xn)2 ,
n=1

and the difference between 7" and its estimate 7" is
measured with the error ratio. We took N =1000, and errors
are measured over the last 200 data. In particle filter
method we used 500 particles.

Case 1 | Case?2 Case3 | Case4 | Case5

v 0.0 0.1 0.2 0.3 0.4
Squared error between x," and X"
RM | 0.0591 | 0.0577 0.0562 | 0.0591 0.0555
PF | 0.0616 | 0.0604 0.0599 | 0.0617 0.0587
AM | 0.0616 | 0.0598 0.0590 | 0.0625 0.0595
Error ratio between 7" and 7"
RM | 0% 0% 0% 0% 0%
PF | 251% |27.6% 25.9% | 23.4% 27.1%
AM | 24.2% | 25.1% 26.0% | 24.4% 29.0%
Computer time in seconds

RM 0.15 0.13 0.14 0.14 0.16
PF [ 13391 | 111.87 108.18 | 109.04 | 145.93
AM 0.39 0.31 0.29 0.30 0.48

Tab. 1. Errors obtained with the reference (optimal) method
(RM), a particle filter based method (PF), and the new
alternative method (AM). The results are means of 10
independent experiments.

©

Un example of trajectories (50

Fig. 1.
corresponding to the case 4:(0)=y(1)=0.3. True x;’

last points)

(continuous line) and X' obtained with RM (high), PF
(middle), and AM (bottom).

We can see that even in the case 5, where the true model is
“far” from the TMGSM-PC2 used (they are equal in the
case 1), AM method is comparable to the PF one, and
remains much faster.

6. CONCLUSION

We proposed an original particle filter valid in a general
“Triplet Markov Gaussian Switching Model” (TMGSM),
which extends the classical Conditionally Gaussian Linear
State-Space Model (CGLSSM). We compared its efficiency
with an exact filter valid in a particular TMGSM, which has
been seen as an approximation of the general TMGSM. We
showed that both methods are, at least in the context of our
study, of comparable efficiency; however, the second one is
much faster.
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