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Abstract. We consider a general pairwise Markov Gaussian linear system (X,Y), where X is
hidden and Y is observed, in which an exact Kalman filter (KF) is workable. There are two
kinds of particular cases: either X is Markov and Y is not, or vice versa. We show that when
the processed data suit the general model, the KF based on both particular cases produce
similar approximate results. This is of importance when introducing stochastic Markovian
switches. In fact, it is well known that the KF is no longer workable in the first case, while it
is, as detailed in the paper, in the second one.
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1 Introduction

Let us consider a couple of random variables X' =(X,,..,X,),
YW =(,..,Y,), and let us set Z' =(Z,,...Z,), with Z =(X,,Y,) for each
n=1..N. To simplify, we will consider all variables real valued. The chain
zN =(Z,,..,Z,) will be assumed to be a Gaussian « Pairwise Markov Chain”
(GPMC), which means that it is Gaussian and Markovian. Let us underline the fact
that in GPMC the hidden chain X" is not necessarily a Markov one, which makes

GPMC different from other known models in which the hidden chain is
Markovian. However, as studied in Pieczynski and Desbouvries[S], Kalman
filtering (KF) remains possible in GPMC. Now, there are two possible particular

cases of GPMC. In the first one the hidden chain X" is a Markov one and thus
this particular case is the very classical Gaussian “Hidden Markov Chain”
(GHMC) model. The second one is a “symmetrical” case : the observed chain Y,"

is Markovian. These two models, which can thus be seen as being two
“approximate” submodels of GPMC, are “symmetrical” and each of them is

obtained from the other by inverting X' and Y," . However, the interest of these
two approximations is very different in the presence of switches. In fact, while
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using the classical GHMC and while modeling the random switches by a third
Markov chain R' =(R,,...,R,), it has been well known since Tugnait[7] that KF

can no longer be performed with complexity linear in time and different
approximations must be used. These can be stochastic (Andrieu et al.[1], Cappé et
al.[2]), or deterministic (Costa et al.[3], Giordani et al.[4]). In particular, different
particle filters are being widely studied and applied at present. On the contrary,
according to different recent results in Pieczynski and Abbassi[6], KF can still be
performed with complexity linear in time in the symmetrical approximation.

Finally, we have three switching “triplet” Markov models TIN =(T,,....,Ty) , with
T,=(X,,R,Y,) foreach n=1,.,N:

- Model 1: the switching GPMC, in which R" is Markovian and (X/',Y,") is a
PMC conditionally on R," ;

- Model 2: the classical switching GHMC, in which R is Markovian, X"
Markovian conditionally on R, and Y, is Markovian conditionally on
(RY.X]) ;

- Model 3: the recent switching model, in which R," is Markovian, ¥," Markovian

conditionally on R", and X" is Markovian conditionally on (R",Y,").

As said above, the advantage of Model 3 over Model 2 is the possibility of exact
KF computation with complexity linear in time.

The aim of this paper is to study whether one among Models 2 and 3 is better
suited to approximate Model 1.

As the switching chain R," plays the same role in Models 2 and 3, we begin with
comparing the two approximations without switches.

2 Kalman filtering in a Gaussian Pairwise Markov Chain

Let us consider X' =(X,,...,X,), Y, =(¥,,...Y,),and Z" =(Z,,...,Z,) , with

Z,=(X,,Y,) for each n=1,.,N. We will assume that the chain Z' is

Gaussian, Markovian, and stationary. Moreover, all means are null and all
variances are equal to 1: E[X,]=E[Y,]=0 and Var[X,]=Var[Y,]=1 for each

n=1..,N.
The Gaussian distribution of Z is then defined by the distribution of

Z} =(Z,,Z,) , which is given by the covariance matrix
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Thus the distribution of Z," is defined by the five parameters a,b,c,d,e.
For p(w) the probability distribution of a Gaussian vector /¥ of mean vector m,,
and covariance matrix I',, we will set p(w)~N(m,,I',). Let us recall two

classical results of Gaussian distributions which will be useful to derive KF
formulae, which in this case are somewhat different from KF proposed in
Pieczynski and Desbouvries[5]. For two random Gaussian vectors U,V we have :

Property 1. If p(u) ~N(m,,I',) and p(v|u) ~N(Au+b, l"v‘u) ,

th N m” ru (ru)TAT d h
~ t
enp) =N Ll L, + AT A7 |

p(V)~N(Am, +b,T, + AT,) A";

viu

r r )"
Property 2. If p(u,v) ~N( " A (L) ), then
m r I

v uy v

pOJu) ~N(T, (L) (w=m,)+m,.T, =T, ()" ),)").

Using (2.1) and applying Property 2to U =(X,,Y,) and V =(X,,,,Y,.,) gives:

xn
p(xn+1’yn+l xnayn)NN(B{y i|7z) > (22)

n

Lo la el b 1 |[a—eb —ab+e a B
B= Al = . - - .23
d c|b 1 1-b"|d—-cb —db+c y 0

L=T-AT"'A" = (2.4)
1 1-b*> —a® —e* +2abe b(1-b* +ed +ac)—ad —ec
1-b° | b(1-b* +ed +ac)—ad —ec 1-b* —d* —c* +2dbc




Applied Stochastic Models and Data Analysis, ASMDA 2011, June 7-10, Rome, Italy, 2011

KF consists of computing p(x

) fromp(x,|y/) and y,,. Let

n+l

yanrl)NN(mnH’O-nzH) and p(xn

p(x,., y!')~N(m,,c.). First, we compute

n’

PGy yealyl)  fomp(x|v!). We apply Property 1 to u=x, and

v =(X,,1, V), With the distribution p(.) replaced by the conditional distribution

xn’.yln) =p(‘xn+l7yn+] ‘xn’yn) according to the

(7). Knowing that p(x,,;,y,.

. . N . 2 a ﬂ
Markovianity of Z,", and setting m, =m,, I', =0, , Au+b= [xn]+ 5 [yn],
e

S AT TR e

r

V‘M

=%, we have: p(x,.,V,.

still

P(X1s Vi y{’)~N({m"+'B g Ha p }), (2.5)

ym,+&, [|B* r*

with

a* p*| | a ay
[ﬁ* }/*:|_2+O-n{a)/ 7/21| (2.6)

n+l

Then we obtain p(x,,, |y ) = p(x,,

Vo ¥1) from p(x,.,p,,.|7) by applying
Property 2 to xn+l =V, yn+] =u, mu =7/I’f’l" +5.)/n ’ mv =a’nn +ﬁyn) a*zr

p¥=r,, y*=I,, ad p() replaced by p(|ly/). We have:

n+l

n+l ﬂ* * (ﬂ*)2 :
p(xn+1 yl )NN(F(ynH _mn _@}n)+mn +ﬂyn’a _?)’ Wthh ﬁnally
gives KF :
k k *
- :<a—%y)m,, +(ﬂ—%5)yn +%ym ; 25)

2
n+l

=a* ——(’B**)Z

). (2.9)
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3 Two particular cases of a Gaussian Pairwise Markov Chain

Let Z) =(X,¥,") be a GPMC introduced in the previous section. It is possible
to show that in the general case neither X' nor ¥," is necessarily Markovian. As
specified in the introduction, we will consider two particular “symmetrical” cases :
in the first one X' is Markovian and Y," is not, while in the second one the
situation is the opposite: ¥," is Markovian and X" is not.

Let us consider the dependence graph of the four variables (X,,Y,,X,,Y,)
presented in Figure 1.

Yy c Y2
e
b b
d
X, a X,

Fig. 1 Dependence graph of (X,,Y,,X,,Y,)

The first case, which will be called “Model 2”, is obtained by considering that
e=ab. In fact, this implies that p(x,1+1|xn, v,)= p(x,1+1|xn) and this equality

leads to the fact that the distribution p(x,"), which is obtained from p(x',y.")

by integration with  respect  to Y, is of  the form

PO = pOe) P [ pley[xy )

Similarly, the second case, called “Model 3”, is obtained by considering d = bc .
The main aim of this paper is to study, via simulations, whether there is any
noticeable difference in the degradation of KF quality, when data suit a GPMC
model and when replacing the use of the true GPMC model with Model 2 on the
one hand, and Model 3, on the other hand. Thus different data will be sampled
according to GPMC and the optimal KF will be performed with the true model.
Then two “approximate” KF, based on Model 2 and Model 3, will be performed
and the results obtained will be compared.

Before presenting the experiments results let us make some remarks concerning the
two approximations.

(1) The distributions p(x,,x,.,), p(y,,¥,.),and p(x,,»,), are identical, for

each n=1,..., N, in the three models. This is of importance because the defenders
of the classical Model 2 sometimes put forward the fact that p(x,,x,,,) often has
a physical meaning and thus has to be defined first, and then the “noise”
distribution p(y,|x,) 1is given, also with a physical meaning. As these
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distributions are equal in Models 2 and 3, using the latter does not contradict this
viewpoint;
(i1) According to (2.2) and (2.3) GPMC can also be defined with the system

Xn+1 o ﬂ Xn Un+1
= +I* , 3.1
Yn+l 7 5 Yn I/n+1

. % T _ Un+1 0 1 O : n n
with Z*(Z*)" =X and ~N( ollo 1 ) independent from (X,Y,") for

n+l

eachn=1,..., N.
Model 2 consists of taking £ =0, and Model 3 consists of taking » =0. We can
see that the very classical model, in which #=0 and ¢ =0, is a particular case of

the Model 2.
We performed numerous experiments and the results of some of them, expressed in

1 & - .
the mean squared errors MSE = —Z(xn —X,)*, are presented in Table 1.

n=1

d e M1 M2 M3 d e | Ml | M2 | M3

.05 .05 .37 .67 47 .35 .05 1] .50 | .60 | .51
.05 15 .49 .55 .49 .35 A5 | .51 | .55 | .51
.05 25 46 48 47 .35 25| .48 | 49 | 49
.05 .35 41 41 41 .35 35| 44 | 44 | 45
.05 45 .36 37 .36 .35 451 .38 | 39 | 40
.05 .55 28 33 28 .35 55130 | 35 | .32
.15 .05 .49 .62 .49 45 .05 (.50 | .59 | .51
15 15 .50 .54 .50 45 A5 ] .50 | .54 | .50
15 25 47 48 47 45 25 | 48 | .49 .50
.15 .35 43 43 43 45 35| 44 | 44 | 46
15 45 .37 .38 37 45 451 .38 | 39 | 41
.15 .55 .30 .34 .30 45 S551.29 | 35 | .33
.25 .05 .50 .60 .50 .55 051 .50 | .59 | .52
.25 15 .50 .54 .50 .55 A5 | .50 | .55 Sl
.25 25 48 .49 48 .55 25| .48 | .50 | .50
.25 .35 43 43 44 .55 35| .44 | 44 | 47
.25 45 .38 .39 .39 .55 45 .38 | 39 | 42
.25 .55 .30 .35 31 .55 S5 .27 | .33 .34
Tab. 1 In all experiments a =0.5, »=0.7,and ¢=0.15. True d and e
corresponding to the true Model 1 (M1) are presented in columns 1, 2, 6, and 7,
and the optimal MSE based on them is in columns 3 and 8. The MSE obtained with

Model 2 (e =ab and X' Markov) is in columns 4 and 9, while the MSE obtained

with Model 3 (d = bc and Y;" Markov) is in columns 5 and 10. The sample size is
N =1000.
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Thus considering Model 2 consists of taking e =ab =0.35, and considering Model
3 consists of taking d =c¢b=0.105. According to the results in table 1, and
different other results we obtained, we can put forward the following conclusions:
(1) neither of the approximate models has the upper hand over the other in all cases
considered ;

(i1) when the true d varies between .05 and .45, the approximation with the Model
3, in which d =c¢b=0.105, produces acceptable results, which are close to the
optimal results ;

(iii) when the true e is small (.05 or .15) or large (.45 or .55), the Model 2
approximation, in which e=ab=0.35, produces less acceptable results than
above. This is especially the case for e =0.5, where the difference between the
optimal MSE and the MSE obtained with the Model 2 is systematically about 0.1.

4 Switching models

Let us consider the random chain of switches R,' =(R,,...,R,), each R, taking
its values in a finite set {1,...,K}. Let TIN =(T,,...,Ty) be a stationary TMC, with
T,=(X,,R,.Y,), whose distribution is given by

p(tlatz):p(rlarz)p(xlaylax29y2|r19r2) . The distributions p(xl,yl,xz,y2|r1,r2)
will be assumed to be defined by the matrix (2.1) depending on (r,,7,). Applying

Property 2 to u=(x,,y,,v,;) and v=x,, we have E[X ,[X.7,V, 70 Vm]=

A yx, + By, + C(r"*")y,., » which means that

Xy = A0 DX, + B0 ™Y, +C ™Y, + D W, 4.1

+1

Assuming that d(r,r,)—b(r)c(r;,r,)=0 for each #,r, (we have Model 3

conditionally on #"), let us specify how to compute p(r,,['") and

E[X n+l
First,  (R",YY) being a hidden Markov chain we have
ylrlﬂ):[zp(rn rn’.yn)]/[zp(rn

Tohs

+1

n+l

eyt from p(r, 7, v/ ], and y".

), E[X

n

p(rnH yln )p(rn+1 ’yn+l yln )p(rl1+l ’yn+1 rn ’yn )] . SeCOnd, in

n+l

Model 3 we have  p(x,|r,, 7.y )=px,

E[X,
we obtain
E[XnH 7"" H rn+1 b y1n+1 ] = A(r):H—l )E[Xn

r,y'), which implies

n+lq _
Vs Tar1o M1 ]_ E[Xn

r,, v/']. Thus taking the conditional expectation of (4.1)

7"" H rn+1 H y;Hl] + B(r):H—l )yn + C‘(rnn-‘-1 )yn+l =
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A(r"HELX, |

E[Xn+1 rn+1 b .yl,H-1 ] = z E[X/H']

w1+ By, +Cr )y, » and thus

=

1
rn7rn+l7yln+ ]p(rn

Y+ By, +CO Y, =

A(rn)Hl )[ZE[X)I rn > yln ]p(rn

D HX,
A(l"n+] ) "

n

1 V1 p(r,

yln)p(ynﬂ rn’yn)

Zp(r,,|y{’)p(y,,+1

+ B(rnm-l )yn + C(rnnH )yn+l .

rn’yn)

5 Conclusions

We considered a general pairwise Markov Gaussian linear system (X,',¥,"), in

which an exact Kalman filter (KF) is workable, and we showed that there are two
kinds of particular cases, which can be seen as two kinds of approximations of the

general case. In the first classical case X" is Markovian while ¥," is not, and in

the second Y¥,¥ is Markovian while X' is not. The main contribution of this

paper was to show that when the processed data suit the general model, both
particular cases produce similar approximate results. This is of importance when
introducing stochastic Markovian switches. In fact, it is well known that KF is no
longer workable in the first case, while it is in the second one, as recalled in section
4 above.
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