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ABSTRACT
The Independent Component Analysis (ICA) model is ex-

tended to the case where the components are not necessarily

independent: depending on the value a hidden latent process

at the same time, the unknown components of the linear mix-

ture are assumed either mutually independent or dependent.

We propose for this model a separation method which com-

bines: (i) a classical ICA separation performed using the set

of samples whose components are conditionally independent,

and (ii) a method for estimation of the latent process. The

latter task is performed by Iterative Conditional Estimation

(ICE). It is an estimation technique in the case of incomplete

data, which is particularly appealing because it requires only

weak conditions. Finally, simulations validate our method

and show that the separation quality is improved for sources

generated according to our model.

Index Terms— Independent Component Analysis (ICA),

blind source separation, Iterative Conditional Estimation

(ICE)
1. INTRODUCTION

For the last decades, Blind Source Separation (BSS) has been

an active research problem: this popularity comes from the

wide panel of potential applications such as audio processing,

telecommunications, biology,. . . In the case of a linear multi-

input/multi-output instantaneous system, BSS corresponds to

Independent Component Analysis (ICA), which is now a well

recognized concept [6]. Contrary to other frameworks where

techniques take advantage of a strong information on the di-

versity, for instance through the knowledge of the array mani-

fold in antenna array processing, the core assumption in ICA

is much milder and reduces to the statistical mutual indepen-

dence between the inputs. However, the latter assumption is

not mandatory in BSS. For instance, in the case of static mix-

tures, sources can be separated if they are only decorrelated,

provided that their nonstationarity or their color can be ex-

ploited. Other properties such as the fact that sources belong

to a finite alphabet can alternatively be utilized [5, 11] and do

not require statistical independence.

We investigate a particular model which combines an

ICA model with a probabilistic model on the sources, mak-

ing them either dependent or independent at different time

instants. Our method exploits the ”independent part” of the

source components. Although it is possible to refine our

model by introducing a temporal dependence, it assumes nei-

ther nonstationarity nor color of the sources. To our knowl-

edge, only few references have tackled this issue in such a

context [2, 4, 8], although the interest in dependent sources

has been witnessed by some works in applied domains [1, 9].

Finally we would like to outline the difference between our

work and [1]: the latter assumes a conditional independence

of the sources, whereas, depending on a hidden process, we

assume either conditional independence or dependence.

In the whole paper, N (0, I) stands for a zero mean Gaus-

sian law, with identity covariance matrix. L(λ) denotes the

scalar Laplace distribution with parameter λ. We will use ∼
to indicate the distribution followed by a random variable and

r |X; θ will refer to the law of r conditionally on X under

parameter values θ.

2. EXTENDED ICA MODEL

2.1. Linear mixture

We consider a set of T samples of vector observations. At

each time instant t ∈ {1, . . . , T} the observed vector is

denoted by x(t) � (x1(t), . . . , xN (t))
T
. We assume that

these observations result from a linear mixture of N un-

known and unobserved source signals. In other words, there

exists a matrix A ∈ R
N×N and a vector valued process

s(t) � (s1(t), . . . , sN (t))
T

such that:

x(t) = As(t), ∀t ∈ {1, . . . , T}. (1)

Let X � (x(1), . . . ,x(T )) be the N × T matrix with all ob-

servations and S � (s(1), . . . , s(T )) be the Q×T matrix with

all sources. The matrix A is unknown and the objective con-

sists in recovering S from X only: this is the so-called blind
source separation problem. We will assume here that A is in-

vertible and the problem thus resumes to the estimation of A
or its inverse B. A solution has been developed for long and

is known as ICA [6]. It generally requires two assumptions:

the source components should be non Gaussian –except pos-

sibly one of them– and they should be statistically mutually

independent. With these assumptions, it is known that one
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can estimate a matrix B ∈ R
N×N such that y(t) = Bx(t)

restores the sources up to some ambiguities, namely ordering

and scaling factor. In the following, B denotes an inverse of

A up to these ambiguities.

2.2. Latent variables

In this work, we extend ICA methods and relax in a certain

way the independence assumption. The basic idea consists

in introducing a hidden process r(t) such that, depending on

the particular value of r(t) at instant t, the independence as-

sumption is relaxed at time t. Let r � (r(1), . . . , r(T )). We

assume more precisely:

A1. Conditionally on r, the components s(1), . . . , s(T ) of

S at different times are independent.

A2. The hidden process r(t) has values in {0, 1} and, con-

ditionally on r(t):

(i) when r(t) = 0, the components of s(t) are mutu-

ally independent and non Gaussian, except possi-

bly one of them;

(ii) when r(t) = 1, the components of s(t) are depen-

dent.

In a BSS context, one can see that, if r were known, one

could easily apply ICA techniques by discarding the time in-

stants where the sources are dependent. To be more precise,

let I0 � {t ∈ {1, . . . , T} | r(t) = 0} be the set of time in-

stants where the components of s(t) are independent. Then

the subset X0 � (x(t))t∈I0 of the whole set X of the ob-

servations satisfies the assumptions usually required by ICA

techniques. The main idea in our article consists in perform-

ing alternatively and iteratively an estimation of B (corre-

sponding to A−1) and of the hidden data r.

2.3. Typical sources separated by our method

The sources that we consider satisfy Assumptions A1 and A2.

To illusrate Assumption A2, let us give an example with N =
2 sources which will be considered in simulations. Let

u � 1√
2

(
s1(t) + s2(t)
s1(t) − s2(t)

)
. (2)

When r(t) = 1, that is, when the sources are dependent, we

will consider in A2-(ii) that P(s(t) | r(t) = 1) is such that

u ∼ L(λ) × N (0, 1) with λ = 2. The components of u
are hence independent and follow respectively a Laplace and

Gaussian law. It is not required to specify further A2-(i), but

for illustration, we will consider that P(s(t) | r(t) = 0) is

such that the components of s(t) are independent and uni-

formly distributed. Such a distribution density is illustrated

by simulated values in Figure 1(a). A density of some mixed

observations is also shown in Figure 1(b). Considering X0

only amounts to removing the cloud set of dependent points

on the distributions of Figure 1.

(a) (b)

Fig. 1. (a) Density plot of the sources s: independent components

with probability P(r(t) = 0) = p = 0.7. (b) Observations x = As
with: A = ( 0.3 0.8

0.1 0.1 )

3. PARAMETER ESTIMATION FROM
INCOMPLETE DATA

3.1. Context

Let us denote by θ the set of parameters to be estimated from

the data: here, θ consists of the matrix B and of the param-

eters which give the distribution of r. Let us call (r,X) the

set of complete data, whereas X alone is the set of incomplete
data: since r is a hidden process, the model described in Sec-

tion 2 corresponds to the situation where only incomplete data

is available for estimation of the searched parameters θ. Note

that the adjective blind is used to emphasize that S is unavail-

able, whereas incomplete emphasizes that r is unavailable.

3.2. Iterative conditional estimation

Iterative conditional estimation (ICE) is an iterative estima-

tion method that applies in the context of incomplete data and

that has been proposed in the problem of image segmenta-

tion [10, 12]. Starting from an initial guess of the parameters,

the method consists in finding iteratively a sequence of esti-

mates of θ, where each estimate is based on the previous one.

More precisely, if θ̂[0] is the first guess, the sequence of ICE

estimates is defined by:

θ̂[q] = E{θ̂(r,X) | X; θ̂[q−1]} (3)

where E{. | X; θ̂[q−1]} denotes the expectation condition-

ally on X and with parameter values θ̂[q−1]. In practice, the

previous conditional expectation can be replaced by a sample

mean, that is (3) can be replaced by:

θ̂[p] =
1
K

K∑
k=1

θ̂(r(k),X) (4)

where K ∈ N
∗ is fixed and each r(k) is drawn according to

the a posteriori law r|X; θ̂[q−1]. The prerequisites in order to

apply ICE are thus the following:
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• there exist an estimator from complete data θ̂(r,X),

• one is able either to calculate E{. | X; θ̂[q−1]} or to

draw random variables according to r|X; θ̂[q−1].

These two conditions are very weak, which is the reason of

our interest in ICE. In fact concerning the former one, there

would be no hope to perform incomplete data estimation if no

complete data estimator exists, whereas the second require-

ment consists only in being able to simulate random values

according to the a posteriori law.

4. ASSUMED DISTRIBUTION FOR (r,S)

In this Section, we describe the assumptions on which our

method relies. These assumptions on the probabilistic model

describing the unknown data (r,S) do not exactly correspond

to the source model given in section 2.3, although they are

used in the ICE method.

As specified above, the observed data is given by a linear

transformation of S according to Equation (1). Combining

a statistical model on (r,S) with an ICA model on (S,X)
yields a genuine model. In a more classical context, we would

indeed have:

• either the ICA model of Equation (1) with an indepen-

dence assumptions on s(t), which is much simpler than

assumption A2.

• or a probabilistic model written on (r,X) and no par-

ticular relation such as (1).

For simplicity, we assume in the following N = 2, which also

corresponds to our simulation settings. However, the method

is theoretically valid for any value of N .

4.1. Specification of assumption A2

In the estimation algorithm, we assume, similarly to A1, that

the probability law P(r,S) factorizes:

P(r,S) = P(r)
T∏

t=1

P(s(t) | r(t))

where P(s(t) | r(t) = 1) is such that the components ui, i =
1, 2 of the vector u in (2) both follow ui ∼ 1

2L(λ)+ 1
2N (0, 1)

with λ = 2. In the other words, when r(t) = 1, each com-

ponent of u is modelized as a mixture of the probability den-

sities of a Gaussian and a Laplace law. This distribution is

a symmetrical analog to the one in Section 2.3: although it

is not the real distribution of the sources, such a symmetry

is necessary in our method because ICA methods generally

leave permutation ambiguities. Finally, when r(t) = 0, we

consider P(s(t) | r(t) = 0) ∼ N (0, I). Again, because of

A2-(i), this does not correspond to the true distribution but to

the model used by the ICE method.

4.2. Hidden process r model

In the simplest version of our method, no assumption is made

on r. This amounts to modeling r as an i.i.d. Bernoulli pro-

cess, that is P(r) =
∏T

t=1 P(r(t)) with P(r(t) = 0) = p and

P(r(t) = 1) = 1 − p. The parameters p can be estimated by

the ICE method.

An extension consists in modeling r as a stationary

Markov chain, in which case the temporal dependence of

r is taken into account. In this case, the probability distribu-

tion of r is given by: P(r) = P(r(1))
∏t=T

t=2 P(r(t) | r(t− 1))
where P(r(t) | r(t − 1)) is given by a transition matrix inde-

pendent of t. The main advantage of considering a Markov

model is that P(r |X; θ) can be calculated by an efficient

forward-backward algorithm [7], making ICE method appli-

cable [10].

4.3. Data parameters

In our simulations, the process r has been generated either

i.i.d. (Section 5.2.1) with P(r(t) = 0) = p, P(r(t) = 1) =
1 − p or as a Markov chain (Section 5.2.2). The sources are

generated following the description in Section 2.3 and mixed

according to (1). The mixing matrix A is drawn randomly.

5. SIMULATIONS

5.1. Summary of the algorithm

Our proposed method combines ICA and ICE. The com-

plete data estimator θ̂(r,X) in Section 3.2 is provided by

one of the existing ICA separation methods. We denote it

by ICA in the summary of our algorithm which follows:

Initialize the parameters θ̂[0] = (B̂[0], p̂[0]).
For q = 1, 2, . . . , qmax, repeat:

• calculate P(r |X; θ̂[q]) and draw r̂[q] according to this

distribution ,

• set: Î [q]
0 = {t | r̂[q](t) = 0} and X̂[q]

0 = (x(t))
t∈Î[q]

0

• ˆB[q+1] = ICA(X̂[q]
0 )

• update the parameters of the process r.

In the simplest case where r is i.i.d., the last step above

consists in updating the estimated value of p according to

p̂[q+1] = 1
T

∑T
t=1 P(r(t) = 0 |x(t), θ̂[q]). Finally, note that

the above method estimates p according to (3), whereas B is

estimated according to (4) with K = 1.

5.2. Results

We compare now the separation quality using only a classical

ICA method or the same ICA method combined with ICE as

proposed. In the simulations, the chosen ICA algorithm is

the JADE algorithm for real data [3]. The number of ICE

iterations has been fixed empirically to qmax = 20. We show
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here the values of the mean square error (MSE) on the two

retrieved sources. All the given results have been obtained by

an average over a set of 1000 Monte-Carlo realizations.

5.2.1. i.i.d. latent variable

We have first tried our method with r i.i.d. Figure 2 shows

the MSE for different values of p and for different methods:

JADE applied on X, our method combining JADE and ICE

(JADE + ICE) and JADE applied on X0 (JADE + r). The

latter case is an ideal situation which would only apply when

complete data is available. We clearly see that our method

succeeded in separating sources for values of p greater than

0.4. The quality improvement of our method in comparison

to JADE is clearly observed for p between 0.4 and 0.9 ap-

proximately. We also studied the influence of the number of

samples. The results are presented in Table 5.2.1, where we

have considered the value p = 0.5. We can see from Table

5.2.1 that our method is advantageous for all samples sizes.

Fig. 2. Average MSE on the sources depending on p and for

T = 5000 samples.

T JADE JADE + r JADE + ICE

1000 3.7 10−1 1.4 10−3 3.8 10−2

2000 4.4 10−1 0.6 10−3 1.4 10−2

5000 5.1 10−1 0.2 10−3 2.9 10−2

10000 5.4 10−1 0.1 10−3 1.3 10−2

Table 1. Average MSE for different sample sizes and p = 0.5.

5.2.2. Markov latent variable

We have tested our method in the case where the process r of

the simulated data is a stationary Markov chain with transition

matrix ( 0.9 0.1
0.1 0.9 ). We have compared the MSE values obtained

with our method ”JADE + ICE” based on a Markov model for

r and ”JADE + ICE” based on an i.i.d. model for r. The re-

sults in Table 5.2.2 show that taking into account the Markov

dependence of r significantly improves the quality result.

T Markov model i.i.d. model

1000 0.9 10−1 1.7 10−1

5000 2.1 10−3 3.3 10−3

Table 2. MSE for the i.i.d. model and the Markov model.
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