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1. Abstract

Our work deals with the unsupervised statistical segmentation of SAR
images. However the method here developped is a general parameter esti-
mation technique and can be used for most types of images. We adopt a
contextual method in which each pixel is classified from the measurements
taken in its neighborhood. In this approach the previous statistical problem
is the estimation of components of a distribution mixture. We showed in some
previous studies that the SEM is well adapted to the problem in this frame,
when stationary random fields are considered. In this paper we present a new
distribution mixture estimator in which priors can depend on the position of
the considered pixel. This makes it valid in the non-stationary case. We de-
scribe some situations, based on synthetic images sampled by stationary or
non stationary random fields, in which the contextual method based on pa-
rameters estimated by our algorithm is more efficient than the same method
based on parameters estimated by the SEM algorithm.

2. Introduction

When considering the statistical segmentation of images authors gen-
erally suppose the existence of two random fields : the field of ”classes”
X = {X, : s € S}, and the field of "measurements” ¥ = {Y, : s € S}.
Then at each pixel s € S, the random variable X, takes its value in a finite
set @ = {w1,...,wk} of classes and Y, in IR. So the segmentation is in fact
an estimation of an ”ignored” realization of X from an ”observed” realization
of Y. There are two families of bayesian methods :

2.1. global methods

A global method uses all available spatial information : each X, is
classified from the whole observation ¥ = y. By choosing two different
loss functions we get the two global methods : MAP and MPM. Neither
the solution of MAP nor the solution of MPM can be computed directly.
However their solutions can be approached by the simulated annealing
{4 and Marroquin et al’s algorithm [8]. Both require the two following
hypothesis : the field X is markovian and the random variables Y, are
independent conditionally to every realization of X. When the used model
verifies these conditions and when all parameters are known several authors
showed the great efficiency of global methods. When the needed parameters
are not known (unsupervised case) the problem becomes much more difficuit.
Methods based on the EM algorithm demand strong hypothesis : the same
noise variance for all classes and discrete or Gaussian noise.

2.2. local methods

A local, or contextual, method uses the information contained in the
neighborhood of each pixel. Its disadvantage is to loose a great part of
information (the size of the neighborhood has to be small, since the methods
are rather time consuming). Its advantage is the ability to take the noise
correlation into account. This approach does not need the modelling by
Markov random fields : if ¥ € S designates the context used we have
only to know the distribution of (X,,Y,), the restriction of (X,Y) to v.
In the non-supervised case we have then to choose a sequence of contexts
Vi,Va,..., Vs in S and estimate the parameters defining this distribution
fromY,,,Y,,, .., Yu..
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The comparison of the efficiency of these two families is difficult in the
general case. Local methods, in appearance more rudimentary, can turn out
to be more efficient in some situations {7].

In this paper we present a new unsupervised image segmentation method
and show its superiority over the SEM in the case of unsupervised SAR image
segmentation.

Its organization is as following.

In the next section we briefly recall the hierarchical image model (HIM)
from Kelly and Derin based on Markov random fields, generally agreed to
model SAR images.

The third section is devoted to the description of our method and the
principle of SEM is carried out.

The forth section contains results of experiments and some comments.

Concluding remarks constitute the fifth and last section.

3. Modeling SAR images

This chapter explains the image model HIM from Kelly and Derin. We
use it for the modeling of our test scenes and generally for the Bayesian
approach of image segmentation. The main idea of the HIM are : the model
consists of two independent random process, and the observed image is the
superposition of these two processes. This model can easly be adapted to most
image producing systemes by changing the statistics of the texture generating
process.

We resume very briefly the chapter ”Model for speckled images” from
{5]. The hierarchical image model consists of two random fields. One governs
the grouping of pixels, called region process. The other consists of K random
fields which represent the speckled appearance of the K types of nature, the
classes. We have chosen Kelly and Derin’s image model for two reasons.

Firstly, this model points clearly out the idea that the ”observed speckle”
is not only a worthless disturbance, but carries information about the nature
of ground.

Secondly, the hierarchical character fits well to Bayesian decision theory
and this model allows quite easily the generation of a great number of images
with real SAR image statistics.

3.1. Region process

The region process is responsible for the distribution of pixels within the
different classes.
The field z is said to be markovian, with :

W | 2 = wy, (s) £ ®)

wy | ¢ = wy, (8) € 1)

Plz,
=P[z,

where v, designs a neighborhood of s.

In fact it can be a very simple type of a MF, called multilogistic level
(MLL) field [3]. In this model a parameter exists for each clique type : &
for the K differently colored singletons, v for the four types of clique-pairs.
For the sake of simplicity all cliques consisting of more than two pixels are
ignored. Under a positivity condition the field x has a Gibbs distribution :

P[x=w1=§exp{—2vc<w)}
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Where the potential function V,(w) is defined as :
for ¢ a clique of pairs :

v if all w, are equal for (s) € ¢

Velw) = { —+ otherwise

for ¢ a clique of one singleton :

Ve(w) = 63 if 7, =wy, for (s) € ¢

3.2. Speckle process

The speckle process generates for each class k a random field W) or
V() which modelize the textures of the different classes. The speckle consists,
in analogy with the physical model, of a field of complex, gaussian, zero-mean
random variables Z = {Z, : s € §}. At each site s, the intensity w and the
phase ¢ are defined by :

Im [z,]
Re [2,]

w, = ]z,]z, and ¢, = arctan

The joint probability P [w] may be expressed explicitly with :

E = [ Wu,uy Wu—l,u: Wu+1,v: Wu,v—lx Wu,u+1] (u,v) €S

For multi-look images with
L
1
V= I z]: Wi
the joint density can be expressed by a (L — 1) fold convolution of either

P[w] or P[w]. Deriving P[] analytically fails at the evaluation of the
convolution integral.

3.8. Hierarchical model

At each pixel s the value of X; = wy, determines the marginal distribution

of the speckle process. The color of the pixel s from speckle process W,(k) gives
the final value v,.

Y,=W® or V® if g, =uwy

4. Local SEM distribution mixture estimation

The aim of this section is to expose our method which we will note LSEM
(local SEM [1],[2]). In order to simplify things we will consider a simple case :
the neighborhood is limited to one pixel (v, consists of (s) and its neighbor)
and a image is binary (two classes, m = 2). The generalization is possible,
however, the number of parameters to estimate increases quickly. To be more
precise, if K is the number of classes and m the cardinal of v we have a
mixture of K™ distributions. So, for K > 3 it is difficult to consider more
than one neighbor.

We first recall the SEM algorithm and expose then the modifications
leading to the LSEM. Let v be of the shape above defined and vy, vs,..., 1,
a sequence of subsets of this shape in S. This sequence does not necessarily
recover S. We will denote by X;,Xs,...,X, and Y1,Ys,...,Y, the restric-
tions of X and Y to v1,v,...,u, respectively. Thus we have to estimate the
parameters defining the distribution of (Xj,Y;), which is independent from
1 in the stationary case. In our cage this distribution is given by the priors
pij = P{ X, = (w;,w;)] and fi; distribution densities of Y, conditional to
X, = (wi,w;) (1 <4,5 £ 2). According to the hierarchical model the densities
fi; are defined by the means m; = E{Y, | X, 1z, =wi] ,ma = E[Y, | X, :
z; = wy]| and covariance matrices C; = cov | (¥s,Y2) | (X5, X)) = (wi,wi)]
(1 £ 7 < 2), where s and ¢ are horizontal neighbors. In order to simplify, let
us put ¢y = p11,92 = P12,93 = P21, 94 = P22-

Finally the problem consists of estimating the parameter 8 = (g1, g2,
43, 94, ™M1, Mg, Ci, Ch) from a realization of X1, X3, ..., X,. As it will appear
in the sequence, it is convenient to separate the priors a = (g1, g2, ¢3, ¢4) and
the parameter 8 = (my, m3, Cy,C3) defining the conditional distributions.

4.1. SEM Algorithm

The idea of this algorithm is to use the ”artificial” (sampled according
to the a posteriori distribution) realizations of X1, X,,...,X,. This is an
iterativ method which runs as follow.
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* initialization : consider a first realization z° = ({,...,28) of X1,..., X,
somehow obtained. In the image segmentation problem it can be the
restriction to vy, ve,...,v, of a segmentation obtained from a classic
method (for instance based on the histogram). In absence of any in-
formation each X? is sampled according to the uniform distribution
Lo = (0.25,0.25,0.25,0.25). Consider Q9,Q3,Q%, QY a partition of the
set, of pixels such that for every j € Qf the realization of X} corresponds
to ¢i. Suppose that z¥ is the actual realization of X. The estimation of 2
is than quite easy : m1 can be estimated by the empirical mean from the
first component of the ¥; such that i € Q{UQY and the second component
of ¥; such that j € @3, the same for my by using Q3 U Q? and Q3. We
estimate C) by empirical covariance from Y; such that i € QY, the same
for C; by using Q9. This gives us a first value 8° = (m$,m$, C?, CY).

For 7 > 1 67*! is obtained from 6" and (Yi,...,Y,) = (31,...,Un) 88

follows :
(i) compute, for each 1 < ¢ < n, the a posteriori distribution based on
Y; = y; and 7.

(it) sample, for each 1 < ¢ < n, a realization z] in O™ according to Py,
(iii) estimate 67! by using Q, @3, Q3, Q3 as in the initialization.

The SEM was already used as a parameter estimation step in contextual
segmentation in the case of optical (SPOT) data [6] and gives satisfying
results. This could be due to the gaussian conditional distributions used. In

the SAR case they are not Gaussian and the programmation becomes more
difficult [9].

4.2. LSEM algorithm

Real images contain at least 256 x256 pixels and can therefore rarly
be considered as a realization of a stationary random field. So ordinarly the
image is cutted into little stationary windows. This implies the problem of
their size : if the size is not importent enough, the estimated parameters are
not correct, if the size is to big, the stationarity can not longer be ensured.

The novelty of our approach is to suppose that the non-stationarity of Y
is only due to the non-stationarity of X and the K conditional distributions
fi,fo, ... fxk de Y given X : X, = wg V s € S are stationary, with other
words that the parameter « depends on the position of s in S but J rests
independent of s. As we will see below, this allows us to estimate (L;)ses
on a small window and # in the whole scene S. This modelling is much
more general than the stationary hierarchical model; in fact, the ” conditional
stationarity” of ¥ seems natural. These distributions model the ”natural
variability” of the ground and different noises inside the classes which, in
principle, do not depend on the position of pixel s in S.

The LSEM runs as follows :

e take the same initialization like for the SEM, with o = (03)1<i<n
depends on s. Let us denote by W, a window containing the couple

of pixels at s.

e For 7 > 167 = (67™),cicn with a™*! = (o] *1);¢;¢, and f71 is
obtained from 6™ = (6] )1ci<n and (Y1,...,Ya) = (31,...,¥s) by :
(i) compute, for each 1 < ¢ < n, the a posteriori distribution gj, on &
based on Y; = y; and 6].
(ii) sample, for each 1 < i < n, a realization z] in Q according to py,.
(iii) consider, as in the case of the SEM, the partition Q" = (Q1,Q3,Q1%,
Qi) andputforeach 1 <i<n , QF = (QINW;, Q3NW;, QINW;).
o Estimate 87! from Q7 and each a}'“ from Q7 in the same way then
in the SEM case. This gives the next value 6711 of 4.

5. Results

We present some estimation and segmentations results. We processed
two images with four different methods. The number of classes is equal in
all images, K = 2. The theoretical error of blind segmentation is about 25%.
Image 1.1 contains a special region process which allows us to test the impact
of the stationarity hypotheses. Image 1.2 was created by a non-stationary
version of the hierarchical image model, where the parameters 6; and vx of
the region process changes abruptly from a low level (left, upper coin) to a
high level (right, downer coin). The notations used in this chapter are : When
the neighborhood of s in the speckle process Y is reduced to v, = s, we call
it a ”blind” method. When the neighborhood of s in the speckle process Y
consists of ¥, = s and its neighbors, we call it a ”contextual” method. When
the a priori probabilities of the classes are estimated in the whole scene S,
we call it a ”global” estimation. When the a priori probabilities of the classes
are estimated locally in W, a little (3x3) window centered at s, we call it a
local estimation. We segmented the two images 1.1 and 1.2 with the following
methods :

1) blind-global, 2} blind-local, 3) contextual-global, 4) contextual-local.



Let us notice that we use the terms ”local” and ”global” only to design
the parameter estimation but the segmentation is still made by a ”local”
method.

In Fig. 2 and Fig. 3 image [.1 was segmented by the above defined
four methods. In this particular image local and global estimated priors
are completly different. The result show clearly the influence of the locally
adapted estimation of priors.

The images in Fig. 2/3 are the repartitions Q2°, Q2" of the region
process after 20 iterations. The final segmentation results are slighty different,
because not the statistic picking of the SEM or the LSEM, but the Bayesian
rule is used for discriminating the classes.

Fig. 4 shows the region process X and the synthesized image Y of 1.2. We
tested the influence of the size of the local a priori probabilities estimation
window. Fig. 5 shows left the result of a segmentation using a local 3x3
window for estimating the priors and right the result of a segmentation using
a local 5x5 window.

We notice here another effect of local parameter estimation which we
call the ”cleaning effect”. Since the probabilities of classes are estimated in a
little window, local partition is very determining. The little this window is,
the greater is the impact of the local partition.

The results show clearly the superiority of local a prior parameter
estimation methods in non-stationary scenes. We notice the influence of
contextual segmentation, which is little here due to a very tiny correlation of
the noise.

Fig. 1 : L1. left : region process X, and right : Y

Fig. 3 : 1.1 segmented ; left : contextual-global, right : contextual-local

Image blind-global blind-local contextual-global contextual-local
L1 étripes) 36,50% 07,07% 31,75% 06,90%

Tab. 1 : Error rates of the classification phase Q3°, Q3°
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Fig. 5: 1.2 blind-local, left : 3x 3, right : 5x5

Image

e blind-local 1;3><3) contextual-local (5x5) (blind-global, not shown)
1.2 (gibbs) o 19,80% 34,56%

16,15

Tab. 2 : Error rates of the classification phase Q?°, Q%"

6. Conclusions

We exposed a new "local” parameter estimating method and showed
that in some situations the blind and the contextual segmentation based on
locally estimated parameters is more efficient than the segmentation based
on globally estimated parameters. Furthermore, our method remaind valid
in a more general frame - in fact, the stationarity of the class field X is not
required.
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