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SEM Algorithm and Unsupervised
Statistical Segmentation of Satellite Images

Pascale Masson and Wojciech Pieczynski

Abstract—This work addresses Bayesian unsupervised satellite
image segmentation. We propose, as an alternative to global
methods like MAP or MPM, the use of contextual ones, which is
partially justified by previous works. We show, via a simulation
study, that spatial or spectral context contribution is sensitive to
image parameters such as homogeneity, means, variances, and
spatial or spectral correlations of the noise. From this one may
choose the best context contribution according to the estimated
values of the above parameters. The parameter estimation step
is treated by the SEM, a densities mixture estimator which is
a stochastic variant of the EM algorithm. Another simulation
study shows good robustness of the SEM algorithm with respect
to different image parameters. Thus modification of the behavior
of the contextual methods, when the SEM-based unsupervised
approaches are considered, remains limited and the conclusions
of the supervised simulation study stay valid. We propose an
“adaptive unsupervised method” using more relevant contextual
features. Furthermore, we apply different SEM-based unsuper-
vised contextual segmentation methods to two real SPOT images
and observe that the results obtained are consistently better than
those obtained by a classical histogram based method.

Index Terms— Random fields, image segmentation, mixture
estimation, Bayesian classification, unsupervised segmentation.

[. INTRODUCTION

OUR study deals with unsupervised image segmenta-
tion. We adopt the statistical approach which assumes
modeling by random fields. With S the set of pixels, two
collections of random variables X = (Xo)ses Y = (Ys)ses
called “random fields” are considered. The first one models
the field of “classes”: each X, takes its values in a finite
set 2 = {wl,wg,-~~,wm}. The second one is the field of
“measurements” or “observations”: cach Y, takes its values in
R%, with d € {1,2,--,n,--}. Thus, in modeling we adopt
Y, = ys as a “noisy” observation of the “class” Xs = Zs. Let
us clarify the two concepts “noise” and “class” used in what
follows. Let us suppose that we have to segment an image
where “forest” and “water” are present. Thus, in our modeling,
we have two classes. The class “forest” does not provide a
unique measure because of the “natural variability”, and it is
the same for the class “water”. However, although this “natural
variability” is not a noise in the common “anti-information”
meaning, we will in order to simplify things call it “noise”. It
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will be seen as a part of the “global” noise, the other part being
the “real noise” due to the transmission of the data. Let us note
that our model does not allow us to take into account pixels
where “forest” and «water” are simultaneously present; to do
so we would have to incorporate “fuzzy” modeling [3], [15].

In the statistical context the problem of segmentation is that
of estimating the “hidden” or “ynobserved” realization of X
from the “observed” realization of Y. The Bayesian approach,
which is widely used, gives rise to two families of methods:
global and local.

The global methods take into account all the information
Y = y simultaneously. There are two global Bayesian meth-
ods: the MAP method consists of estimating the unobservable
realization of X by x, whose a posteriori (conditioned upon
Y = y) probability is maximized. The MPM chooses for the
estimated realization z = (z5)ses such that for each s € S, %
maximizes the a posteriori marginal probability (i.e., the dis-
tribution of X conditioned upon ¥ = y). In fact, both MAP
and MPM are Bayesian solutions corresponding to different
loss functions. Neither MAP nor MPM are computable and one
must resort to iterative methods. Such methods exist under the
following two hypotheses: X is a Markov random field and the
random variables (Y;) are independent conditionally to every
realization of X. The solution of MAP can be approached
by the simulated annealing algorithm [11] and one can use
Marroquin et al.’s algorithm [18] in order to approach the
solution of the MPM. When the simulation model verifies the
above hypotheses and when all useful parameters are known
both MAP and MPM give excellent results.

The local, or contextual, methods consist of estimating the
realization of each X, from the information contained in a
small neighborhood of s. These methods are much simpler:
When all parameters are known one need only compute the
classical discrimination functions.

In the unsupervised case, as described in this work, things
are more difficult. One has to estimate, in a previous step
or simultaneously, all parameters relevant to the chosen seg-
mentation method. This is a difficult problem in the case of
global methods. The estimation step can be performed by
EM, Stochastic Gradient (SG, [32]) or lterative Conditional
Estimation (ICE, [24], [25]) methods. The use of the EM
algorithm is nontrivial and its theoretical justification requires
strong hypotheses [6], [8], [26]. In particular, most authors
assume that the noise variance is the same for all classes. SG
and ICE seem better suited in this context but the important
problem of the choice of the energy form (see next section)
remains. Furthermore, we showed in our previous work [16],
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[17] that these methods can become very unstable, even
when the exact form of the energy is known, in the case
of nonhomogeneous images and correlated noise. Thus, we
presume that these methods are not well adapted to deal with
SPOT images containing urban areas. In fact, these areas
are not particularly homogeneous, and estimations described
below show that the noise is usually strongly correlated and
that its variance depends on the class.

Thus we opt for local methods. By doing so we do not
exhaust the choice problem. In fact, when dealing with SPOT
data we have several spectral bands and we are rapidly faced
with computational problems. For instance, if there are eight
classes and if we want to take into account two spectral
bands and use a context containing just one neighbor we have
already a mixture of 64 distributions defined on R*. This
leads us to the principal goals of this work. First, in what
circumstances is the use of a context relevant? If it is, should
we choose to exploit the information concentrated in several
spectral bands or the information contained in some spatial
context? What could be criteria to make a better choice? We
try to answer these questions via numerous simulations. In our
method the estimation step is treated by the recent Stochastic
Estimation Maximization (SEM, [4], [5]) algorithm which
is a stochastic improvement of the well-known Estimation
Maximization (EM, [7]) method.

The organization of this paper is as follows. In the next
section we briefly recall the hierarchical model generally
used in problems of statistical image segmentation. The third
section is devoted to the SEM algorithm, which is described
in some detail. The fourth section contains some simulation
results and in the fifth we show the correct behavior of
the SEM algorithm in the context considered. The results of
unsupervised segmentations of two real images are given in the
sixth section and the seventh section contains the concluding
remarks.

II. HIERARCHICAL MODEL

As mentioned in the introduction we consider two random
fields: the field of “classes” X = (Xs)scs, and the field of
“measurements” Y = (Y;)ses. Bach X takes its values in
a finite set © = {w1,ws, -, wn} of classes and Y; in R?,
with d € {1,2,--+,n,---}. The problem of segmentation is
the problem of estimating an “unknown” realization of X
from an “observed” realization of Y. We will suppose that
realizations of Y depend on realizations of X as well as two
noises of a different nature: “natural variability” or “texture,”
and “transmission.” The distribution of (X,Y’) is defined by
Py, distribution of X, and the family P§ of distributions
of Y conditioned on X = e. The field X will be assumed
Markovian with all realizations possible; thus its distribution
is a Gibbs distribution

P[X = ¢] = Pxle] = ce V(0 (1)

where ¢ is unknown and the form of U (“energy”) is simple
enough to allow the computation of conditional distributions
P[X./Xs,s # t] of each X,. The field modeling the “natural
variability” will be denoted Z.
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The distribution of Z is defined by m distributions
Pl p?,... P™ of Z conditional to m uniform realizations
(X, = wy for each 5,X, = wy for each 8, , Xs = Wm
for each s, respectively) and the hypothesis according to
which of the random variables Z; (with Z; restriction of Z
to Q; = {s € /(s = w;}) are independent. In order to allow
simulations of P!, P2, ..., P™ we will suppose that they are
Gibbs distributions (each “texture” or “natural variability” is
modeled by a Markov random field). The “transmission noise”
will be denoted by N = (N,)ses. Once more the field N
will be assumed to be Markovian; furthermore, the random
variables (X, Z) and N will be supposed independent. Finally
the observed field Y will depend on (Z, N) in some way:
Y = U(Z,N). When considering satellite images one often
takes Y = Z + N for optical and Y = ZN for radar data.

We will not use explicitly the above model when dealing
with the local methods except for image simulations. Let us
denote by W the set containing the considered pixel and the
context used. The aim of the previous step is to estimate the
distribution of (X, Yy ). In the sequel we will suppose the
field Y is Gaussian conditionally to each realization of X.
Then the distribution of (Xw, Yw ) is defined by the parameter
(e, B), where a designates the priors (distribution of X w) and
(3 defines the distributions of Yy conditional to Xw . So, it W
contains ¢ pixels, a has m? components (it is a distribution on
Q9) and f3 is composed of m? mean vectors piy, -, fma in
R and m? covariance matrices I';, - - -, T'ye of size qd x gd
(each Y, takes its values in Rd). Thus we have to estimate
(o, B) from a sequence Y, , Yu,, -+, Yw, of restrictions of
Y to a sequence Wy, Wa, -+, W, of sets of shape W in S.
The distribution of Y3y is a mixture of distributions, and thus
the previous problem is that of mixture estimation. We propose
the use of the SEM algorithm, which is a stochastic version
the EM method and is well adapted to the problem [4], [S].

As we said in the introduction, contrary to global methods,
we can use directly the discriminating functions, once the
parameters (a, 3) are known. Let us clarify this point. Each
pixel is classified, i.e., each unknown realization of X, is
estimated, by the class w; whose probability conditional on
Yy is maximal. The latter condition is equivalent to:

filyw) = sup  fi(yw)
1<j<m
f1,f2y -

fj(yw) = Z P[XS = wj»XW—{s} = €]f€(yw)
ecQa—!

, fm being the discriminating functions defined by:

where f. is the density of the distribution of Yy conditioned
on Xyww = (wj,e).

For instance, if we consider two classes, m = 2, one spectral
band, d = 1, and the context reduced to one neighbor, ¢ = 2,
we have two discriminating functions defined on R?

fi = i fin + miafiz

where 7;; = P[(X,, X:) = (wi,w;)] and fi; is the density of
the distribution of (Y3, Y;) conditional on (X, X:) = (wi,w;).
The parameter ¢ is then a = (711,712, M1, T22) and, when
fi; are assumed Gaussian, 3 = (m1,ma, 01,02, p11, P12, P22),



620 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 31, NO. 3, MAY 1993

where m; and o; are respectively mean and standard deviation
of Y, conditional on X, = w; and pij is the covariance of
Y,,Y; conditional on (Xe, Xt) = (wirwj)-

III. SEM ALGORITHM

The mixture estimation problem above is a particular case
of the following one: let us consider a pair of random variables
(¢,Y), ¢ taking its values in a finite space E = {e1, - ,eK}
and Y in R”. We change notation in order to simplify things:
we have v = qd and K = m? according to the previous
notation where g is the cardinal of W,d is the number of
spectral bands and m is the number of classes in the image
to be segmented. Let us denote by I, = P[¢ = em] the @
priori distribution and f., the Gaussian density (mean fim, and
covariance matrix I'r,) of the distribution of Y conditioned
upon { = em. Let us put:

pm(y) = Pl =en/Y = 1]

which are the a posteriori distributions. We observe a sample
Y1, Y2, YN of realizations of Y whose distribution has for
density:

K
fr= anfp 2

and we have to estimate the parameter (M, pm,Lm),1 <
m < K.

There are a number of iterative methods for dealing with
this problem; one can find in [5] numerous references. All
methods, except the SEM, have the following two limita-
tions:

« the number of classes is assumed to be known

« the solution depends strongly on the initialization

The first limitation is a serious handicap in satellite image
processing: in fact, in real images the number of classes is
frequently difficult to determine a priori.

The SEM algorithm is an improvement of the EM algorithm
obtained by the addition of a stochastic component. This
addition results, with respect to the EM algorithm, in the
following improvements:

« it is sufficient to know an upper bound on the number

of classes

« the solution is essentially independent of the initialization

+ the speed of convergence is appreciably improved.

The SEM algorithm works as follows:

Let M be an upper bound on the number of classes and let
§ €]0,1[ be a chosen threshold.

Initialization

Take, for every observation y;, a probability P (y;) of its
belonging to the class em,1 < m < K. In the absence of
any information take for 20, (3:),1 < m < K the uniform
distribution. The superscript will denote the iteration number.

For every n > O:

Step S (Stochastic):

For each y; select from the set of classes {€1,€2," ", € K}an
element according to the distribution Pr(yi), > P (yi)- This
selection defines a partition Qr,Q5,- -, Q of the sample

Yy1,Y2, HYN-

Step M (Maximization)

The idea of the SEM algorithm is to suppose that every yi
belonging to Qp,, for each1 <m < K,is realized according
to the distribution defined by fm, the density corresponding
to the class en. By denoting Cp = card(Qn), Q@m =
(YT s Yo ms ™" o m) We can estimate the mean fin, and the
covariance matrix I+ by an empirical mean and covariance
matrix:

cn
1 << »

lj’:ln+1 = '5; z Yim (3)
m =1

o
1 K n
I = o S (W~ H) Wi — )’

™ =1

©)

and the priors by the frequencies:

%

et = =+
m =N ®)

If for m the prior estimated by (5) is inferior to the threshold
§ eliminate the corresponding class and go to the initialization.

Step E (Estimation)
For each ¥ define the  next distribution—
T+1(yi),-~-,p';<+1(yi)] on the set of classes by the

a posteriori distribution based on the current parameter
(T, o1, T, 1 < m < K

Hn+1f"+l(yi
) = S )

ZHZ+1 f;z+l (yl)

g=1

(©)

where f7t! designates the Gaussian distribution correspond-
ing to pitt Tt

Return to step S.

Numerous simulations [4] show the correct behavior of the
SEM. Its theoretical study is performed in the case of the
mixture of two Gaussian distributions [5].

The SEM algorithm has been presented by authors as
a viable alternative to the EM algorithm which is widely
used in mixture estimation problems. EM is a deterministic,
i.e., without stochastic sampling, iterative method. The next
value (IT%F1, prt T )1 <mek Of the parameter is obtained
from the current value (II7, pm, I )1<m<k and the sample
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Y1,Y2, -+, yn by the formulae:

N
Hn+l — i P™ (y;
m - Nz m(yl)
=1

N
> uiPh(vi)
n+l _ i=1
m =N
> Prlwi)
=1
N
> s = )i = s P (i)
Fn+l — i=1
m

N
> Pr(wi)
=1

The main drawback of this method is the large dependence
of the solution on the initialization.

IV. CONTEXTUAL SEGMENTATION

In this section we do not consider the parameter estimation
problem. Our purpose is to study the relevance of using
the spatial or spectral context. We present the results of
numerous simulations which express the contribution of spatial
or spectral context with respect the number of neighbors used,
signal-to-noise ratio (SNR), homogeneity of the image, and
correlations of the noise. Let us point out that we do not need a
precise definition of the “signal-to-noise ratio” in what follows.
We will say that this ratio decreases when the image becomes
noisy and, in each case, this evolution will be clear with the
evolution of specific parameters. What we are interested in
is above all the evolutions of different methods when images
become noisy. The aim of this study is to deduce the most
relevant choice according to the parameters above. Our study
is limited to binary images and Gaussian noise.

In order to distinguish different cases let us introduce the
following notations. The MD will designate the “means dis-
criminating” case: at each pixel the two Gaussian distributions
corresponding to two classes only differ by the means (they
have the same variance). The “variance discriminating” case,
denoted by VD, is the case where these distributions, having
the same mean, only differ by variances. These cases are
extreme: in real situations we have generally to deal with
“mixed”, i.e., “means” and “variances” discriminating, case.
In each of them we can be interested in the contribution of
the spectral or spatial context: we will put spe in the first
case and spa in the second one. Thus, for instance, speVD
is the case where the model is “variance discriminating”
and we are interested in spectrally contextual and spatially
blind segmentation. In each of cases speMD, speVD, spaMD,
spaVD the noise can be independent or correlated: we will de-
note speMDI, speVDI, spaMDI, spaVDI, speMDC, speVDC,
spaMDC, spaVDC the corresponding possibilities. In “spe”
I and C designate the spectral independency and correlation
respectively and in “spa” they designate the spatial ones.
Let us note that speMDI and spaMDC can refer to a same
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model: The noise can be spectrally independent and spatially
correlated. The difference is that in the first case we look at
the spectral context contribution and in the second case at the
spatial one. The same remark can be made about the cases
speMDC and spaMDI and these two remarks remain valid
when “MD” is replaced by “VD”. As we said above the “spe”
cases are spatially blind, i.e., the corresponding segmentation
methods use just one pixel, and thus the homogeneity of
the image does not play any role. On the other hand, the
homogeneity can be important when considering the “spa”
cases [16]. Thus, in each of four “spa” cases we will consider
two possibilities: a homogeneous image: spaMDIH, spaVDIH,
spaMDCH, spaVDCH and a nonhomogeneous one: spaMDIN,
spaVDIN, and spaMDCN, spaVDCN.

Thus we have 12 cases to study. In each of them we look
at contexts of different sizes. This point is important given
that the computational time strongly depends upon the size
of the context used. Furthermore, in each of them we look
at different signal to noise ratios: In MD cases we vary the
distance between the means and, in VD cases, the distance
between the standard deviations.

Finally, we propose below the study of the following cases:
Spe MDI, Spe MDC (Table I), Spe VDI, Spe VDC (Table II),
Spa MDIH, Spa MDCH (Table 1V), Spa MDIN, Spa MDCN
(Table V) and Spa VDI, Spa VDC (Table VI). The results are
given in percent of incorrectly classified pixels.

A. Contribution of the Spectral Context

Let us denote by mg,ms, 01,02 the noise means and
standard deviations, which will be assumed to be the same
in each spectral band, corresponding to the classes wy,ws
considered. o will designate the spectral noise correlation.
Furthermore, let us put A = my — m; and let us denote
by d the number of spectral bands. The elements of tables
below are the percent of wrongly classified points, which
can be explicitly computed. We do not consider the spatial
context, so the homogeneity does not intervene in this section.
We give results concerning three cases: means discriminating
(m1 # mag,01 = 09), standard deviations discriminating
(m1 = ma,01 # 02), and mixed (m; # mg,01 # 02).
We put the case d = 1 apart, as it corresponds to blind
segmentation and is a “reference case”.

1) Means Discriminating Case: (m; # mg,01 = o2):
This case is the most commonly studied. As we mentioned in
the introduction the condition o1 = o2 is required when using
an unsupervised global method based on the EM algorithm
(6], [8], [26].

Thus Table I corresponds to the cases Spe MDI, Spe MDC
(we look at the contribution of the spectral context, the cases
studied are “mean discriminating”, the noise is independent or
correlated).

The results obtained are not surprising, however we note that
in the case of strong correlation, o = 0.8, the contribution of
the spectral context is negligible.

2) Standard Deviations Discriminating Case:

(my = mg,01 # 03): It is possible to show that in this case
the Bayesian classification error is independent of the spectral
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TABLE 1
PERCENT OF THE MISCLASSIFIED PIXELS IN THE CASES speMDI AND speMDC WITH
A = mg — mi,d NUMBER OF SPECTRAL BANDS, & SPECTRAL CORRELATION OF THE NOISE

A=1 A=2 A=3

=l 30.9 16 6.5
d=2 d=5 d=9 d=100 d=2 d=5 d=9 d=100 d=2 d=5 d=9 d=100
o=0 239 131 67 00 75 22 14 00 17 005 00 00
0=0.4 274 245 232 217 117 82 72 38 37 19 14 06
o=0.8 29.8 294 291 289 147 138 136 131 5.5 51 49 47

TABLE 11
PERCENT OF THE MISCLASSIFIED PIXELS IN THE CASES speVD WITH 01 AND 02 STANDARD DEVIATIONS
OF THE NOISE CORRESPONDING TO THE CLASSES, 7 = 01 /o2 AND d NUMBER OF SPECTRAL BANDS

r=2
a=l 33.8
d=2 d=5 d=9 d=20

d=2 d=5 d=9 d=20

r=3 r=4
258 209
d=2 d=5 d=9 d=20

o=0 264 147 77 10 16.1 51 13 003 108 2.1 03 0.00
TABLE 111
PERCENT OF THE MISCLASSIFIED PIXELS IN THE MIXED CASE: mom1 = 2 g1 = 1,02 = 2 IN EACH OF d SPECTRAL BANDS

&=l 224

d=2 d=5 d=9
o=0 135 27 09
0=0.4 164 80 438
0=0.8 183 114 97

correlation of the noise. Let us put 7 = o1/02. The results
obtained are given in Table II.

We observe that the context contribution is quite significant
in this case.

3) Mixed Case: (m1 # ma, 01 # 02): The explicit compu-
tation of the Bayesian error classification is impossible, so the
results in Table III are obtained by simulations using the Monte
Carlo method. As it was possible to guess, the results obtained
are halfway between the two previous cases. In practice, we
must nearly always deal with the third case. Thus we can say
in conclusion that the contribution of the spectral context is
relevant when the considered case is close to the “standard
deviations discriminating” one and useless, except in the case
of a little noise correlation, when it is close to the “means
discriminating” one.

B. Contribution of the Spatial Context

When considering the contribution of the spatial context the
homogeneity of the image considered is important; indeed,
it influences the discriminating functions via the priors (see
Section II). So we will consider, for each possibility above,
two kinds of priors: II; will denote priors corresponding to
a homogeneous image (Im.1) and IIy those corresponding
to a nonhomogeneous one (Im.2). For each context con-
sidered II;,II, are estimated from Im.1, Im.2, respectively.
The Bayesian classification errors below are estimated by the
Monte Carlo method. We consider one spectral band and N
denotes the number of pixels (the pixel considered and the
neighbors in the context used).

Im.1

Im.2

1) Means Discriminating Case: (m1 # m2,01 = 09):
The results corresponding to II, are in Table IV and those
corresponding to I, are in Table V.

We can notice that, when the means discriminating case is
considered, the homogeneity of images plays a major part in
the behavior of Bayesian segmentation. When the image is
homogeneous and the noise independent it is interesting to
use the spatial context. This tendency is reversed in the case
of a nonhomogeneous image: the contribution of the spatial
context increases with the spatial correlation. This property
of the local methods is particularly interesting. In fact, in real
satellite images the noise is often strongly correlated and some
of them contain very few homogeneous parts, like urban areas.
On the other hand, we showed in our previous work that global
methods are completely ineffective in this case [16], [17].

Finally, the contribution of the spatial context, in the “mean
discriminating” case, is significant when the image is very
homogeneous and the noise nearly uncorrelated or when the
image is not homogeneous and the noise strongly correlated.
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TABLE 1V
Cases spaMDIH AND spaMDCH witH A = mamy, N : NUMBER OF PIXELS (THE
PixEL CONSIDERED AND THE NEIGHBORS) AND p: SPATIAL CORRELATION OF THE Noise

A=] 4=2 4=3
N=1 309 16 6.5
N=2 N=5 N=9 N=2 N=5 N=9 N=2 N=5 N=9
p=0 256 146 11.9 104 38 20 38 11 10
p=0.4 29.3 262 258 137 102 9.3 51 25 21
p=0.8 30.9 289 300 150 138 126 60 43 40
TABLE V

CasEs spaMDIN AND spaMDCN with A = mami, N : NUMBER OF PIXELS (THE
PIXEL CONSIDERED AND THE NEIGHBORS) AND p: SPATIAL CORRELATION OF THE Noisg

A=1 A=2 A4=3
N=1 30.9 16 6.5
N=2 N=5 N=9 N=2 N=5 N=9 N=2 N=5 N=9
p=0 308 290 287 156 145 145 65 59 62
p=0.4 304 280 282 147 134 126 5.5 43 33
p=08 28.0 255 246 127 103 7.5 43 27 14
TABLE VI
Casgs spaVDI AND spaVDI witH r = oo/01, N : NUMBER OF PIXELS AND p: SpATIAL CORRELATION OF THE NOISE
r=2 r=3 r=4
N=1 330 215 20.6
N=2 N=5 N=9 N=2 N=5 N=9 N=2 N=5 N=9
p=0 27.8 186 138 179 96 83 132 69 70
p=0.4 279 188 14.8 17.8 100 88 132 75 &0
p=0.8 27.8 20.1 19.2 179 11.8 120 132 9.0 100

2) Standard Deviations  Discriminating Case:
(my = ma,01 # 02): As above we put r = o2/01. The
homogeneity does not play any part in this case, and the results
obtained are shown in Table VI.
We note that the spatial context contribution is much less
relevant than the spectral context one in this case; however,
in some situations it can turn out to be nonnegligible.

C. Conclusions and a “Context Choice” Algorithm

We propose the following evaluation of the context contribu-
tion in each of the cases considered. Let ER;, ER. designate
the blind and contextual errors. The context contribution CC
can be defined by:

ER, - ER.
C=—F7gps—.
¢ ERy

This gives us an idea about the importance of the additional
contextual information. To be more specific, CC can be seen
as the proportion of pixels well classified by the corresponding
contextual method of the pixels wrongly classified by the blind
method. CC so defined depends on the number of neighbors
in the context used and the SNR. We take four neighbors in
the case of the spatial context, thus N = 5, and 5 spectral
bands, d = 5, in the case of the spectral context. In the MD
case we will take for CC the mean of the CC corresponding
to the cases A = 1 and A = 2, and, in the VD case it will be

the mean of the CC corresponding to 7 = 2,7 = 3. We will
take for the noise correlation p = o = 0.8 in both spatial and
spectral correlated noise cases.

As an example let us compute the CC in the case speMDI.
We have to consider the cases A = 1 and A = 2. According
to Table I, ERp and ER, are in the first case respectively 30.9
and 13.1 (we look at the errors corresponding to d =1 and
d = 5,0 = 0). Thus the “context contribution” corresponding
to A = 1is:

ER,— ER. _ 30.9-13.1

CCavy = "~ = 0.576.
A=t ERy 30.9 576

By looking at the column A = 2 in Table I we obtain in the
same way:

ER,—ER. 16.0—2.2
ER, ~16.0

Finally, CC defined as the mean of CCa=1 and CCa=; is:

CCa=2 = = 0.863.

CC = 3(0.576 + 0.863) = 0.72.

The results obtained are shown in Table VIla.
When ordering these results according to the context con-
tribution we obtain Table VIIb.
Thus we can put forth the following two conclusions:
1) The VD case is always more relevant that the MD case.
Moreover, it is relevant in all situations tested and is,
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TABLE Vlla
cC cC
Spa VDC 0.53
Spa MDIH 0.65 Spe MDI 0.72
Spa MDCH 0.10 Spe MDC 0.09
Spa MDIN 0.08 Spe VDI 0.85
Spa MDCN 0.27 Spe VDC 0.85
Spa VDI 0.64
TABLE VIIb
Spe VDI 0.85 Spa VDC 0.53
Spe VDC 0.85 Spa MDCN 0.27
Spe MDI 0.72 Spa MDCH 0.10
Spa MDIH 0.65 Spe MDC 0.09
Spa VDI 0.64 Spa MDIN 0.08

in both spectral and spatial case, widely independent of
the noise correlation.

2) The MD case is more complicated. The spectral context
contribution strongly depends on the noise correlation: it
can be dominant or insignificant. When using the spatial
context the relevant cases are “independent noise and
homogeneous image” or «correlated noise and nonho-
mogeneous image”. As we shall see below the latter case
is especially relevant when dealing with SPOT images
containing urban areas.

The results above lead us to propose the following “context

choice” algorithm:

If Spe VD use spectral context, if not see Spe MDI

If Spe MDI use spectral context, if not see Spa MDIH

If Spa MDIH use spatial context, if not see Spa VD

If Spa VD use spatial context, if not see Spa MDCN

If Spa MDCN use spatial context, if not use blind segmen-

tation

This is to be read as follows: first decide if the considered

image is of type Spe VD, which is, according to Table VII,
the most relevant case. If so, use the spectral context; if not,
decide if it is of type Spe MDI which remains relevant when
the spectral context contribution is considered. If so, use the
spectral context; if not, decide if it is of Spa MDIH type, and
SO on.

V. PARAMETER ESTIMATION BY THE
SEM AND UNSUPERVISED SEGMENTATION

This section treats the crucial aspect of the problem: what
is the behavior of the unsupervised method with respect to
the parameters like SNR or noise correlation. The theoretical
study of this problem is, without doubt, extremely tedious. In
fact, its efficiency depends on three independent factors:

1) the behavior of the contextual method based on the real

parameters, an aspect studied in the previous section;

2) the behavior of the parameter estimators used;

3) the robustness of the segmentation method with respect

to the parameters.

Here we are interested in the points 2), 3). Note that 2) has
its own importance outside the segmentation problem.

1EEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 31, NO. 3, MAY 1993

A. Blind Unsupervised Segmentation

We begin with the study of the blind segmentation. Points
2), 3) are examined with respect to two discriminating cases
(means or standard deviations), SNR and the noise correla-
tion.

1) Means Discriminating Case: We take 07 = 02 =1 and
consider two cases: mg —mp = 1,ma =M1 = 2. For each of
them case A designates the independent noise and case B the
strongly correlated one (for ¢, s neighbors cov(Y:, Ys) = 0.72
if X; = X, and 0.04 if X; # X,). We designate by E.V.
(empirical values) the estimations obtained from the image and
its noisy observation by the classical estimators, i.¢., frequency
and empirical means and variances. The results obtained are
shown in Table VIIL

We note that the efficiency of the SEM is excellent in
this case and approaches the efficiency of the E.V. This is
particularly striking in the case my —mo = 1 where the noise
is significant. Furthermore, the efficiency of the SEM based
unsupervised method is comparable with the efficiency of the
EV based method which can be seen as a supervised one. This
was not automatically implied by the good behavior of the
SEM, in fact, if the segmentation method used were weakly
robust the efficiency of the unsupervised SEM based one could
have been significantly degraded.

2) Standard Deviations Discriminating Case: We take here
m; = mp = 1 and study two cases: (o1 = 1,02 =
2), (0, = 1,02 = 3). The results obtained are shown in Table
IX.

We note that, contrary to the former case, the efficiency of
the unsupervised method decreases when the noise correlation
increases. To be more precise we can say, concerning the
points 2), 3) we are interested in, that SEM is as efficient as
EV, except for the variance estimation and that the Bayesian
method used is sensitive to this parameter.

B. Spatially Contextual Unsupervised Segmentation

We consider the spatial context formed by four nearest
neighbors (N = 5) and take one spectral band.

1) Means Discriminating Case: The results obtained are
found in Table X.

2) Standard Deviations Discriminating Case: The results
obtained are found in Table XI.

C. Spectrally Contextual Unsupervised Segmentation

We present the results corresponding to both “means dis-
criminating” and “variances discriminating” cases in Table X1I
below.

D. Remarks and Unsupervised “Context Choice ” Algorithm

According to the numerical results above the efficiency of
the SEM seems acceptable. In the case of blind segmentation,
where the mixture to estimate contains just two components,
the SEM is nearly as efficient as the EV, even in the case of
a very weak SNR, which is quite surprising. In the MD case
we note that o1, 09,111, I are quite well estimated and the
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MEAN DISCRIMINATING (MD) CASE. REAL VALUES: (1 = 1,mg = 2)or(m; = 1,mg = 3),01 = 02 = 1,1} = I3 = 0.5 E. V.: ESTIMATES FROM THE

IMAGE AND ITS NoISY VERSION BY FREQUENCIES AND EMPIRICAL MOMENTS, S.E.M.: ESTIMATES FROM THE NOISY VERSION BY S.EM., A:
WhITE Noisg, B: CORRELATED NOISE, 7: RATIO OF WRONGLY CLASSIFIED PIXELS BY THE BLIND BAYESIAN ESTIMATES BASED METHOD.

EV.
m;p 096
my 196
o1 100
o2 098
1y 0.52
m 048
(%) 307

A
SEM.
1.00
1.87
1.04
1.05
0.50
0.50
332

mp-mj =1

E.V.
0.99
1.99
1.03
0.94
0.52
0.48
310

B
SEM.
091
1.99
0.97
0.94
0.49
0.51
325

TABLE IX

E.V.
0.98
2.96
1.00
0.99
0.52
0.48
157

A
S.EM.
0.97
2.95
1.00
0.99
0.52
0.48

14.1

my-mj=2

E.V.
0.99
2.99
106
0.94
0.52
0.48
16.3

B
SEM.
0.95
2.99
1.01
0.88
0.55
0.45

16.3

VARIANCE DISCRIMINATING (VD) CASE. REAL VALUES: m1 = ma = 1,{01 = 1,02 = 2)or(oy = 1,02 = 3,11} = Iz = 0.5. E.V.: ESTIMATES FROM THE

IMAGE AND ITs NOISY VERSION BY FREQUENCIES AND EMPIRICAL MOMENTS, S.E.M.: ESTIMATES FROM THE NOISY VERSION BY SEM, A:
WHITE NoOisg, B: CORRELATED NOISE, 7 RATIO OF WRONGLY CLASSIFIED PIXELS BY THE BLIND BAYESIAN ESTIMATES BASED METHOD.

EV.
mj 0.95
m2 09

o1 099
02 407
I 0.52
I 048
T (%) 345

MEAN DISCRIMINATING (MD) CASE. REAL VALUES: m1 = m2 = 1,(01 = 1,02 = 2)or(o1 = 1,03 = 3,II; =TIy = 0.5.
ESTIMATES FROM THE IMAGE AND ITs NOISY VERSION BY FREQUENCIES AND EMPIRICAL MOMENTS, S.E.M.: ESTIMATES FROM
THE NoisY VERSION BY SEM, A: WHITE NOISE (p11 = p12 = p21 = p22 = 0) B: CORRELATED NOISE, 7:RATIO
OF WRONGLY CLASSIFIED PIXELS BY THE CONTEXTUAL (FOUR NEIGHBORS) BAYESIAN ESTIMATES BASED METHOD.

mj
m2
o]
o2
(3]
P12
P13
P21
22
P23
m
I
7 (%)

EV.
0.98
1.96
1.00
1.05
0.05
0.02
-0.04
-0.01
-0.04
-0.05
0.52
0.48
17.0

A
SEM.

0.92
0.98
0.89
3.90
0.51
0.49
340

A
SEM.
0.92
0.98
0.89
3.90
-0.09
-0.06
-0.08
-0.01
-0.04
-0.06
0.51
0.49
217

(61=1,02=2)

EV.
0.99
0.97
Lo6
375
0.52
048
335

my- mp=1

E.V.
0.99
1.99
1.06
0.94
0.71
0.55
0.50
0.63
0.57
0.46
0.52
0.48
280

SEM.
0.99
0.98
1.90
2.93
0.50
0.50
43.7

TABLE X

SEM.
1.20
1.99
117
0.95
0.72
0.58
0.52
0.64
0.57
0.42
0.69
0.31
386

E.V.
0.87
0.98
893
1.00
0.52
048
25.6

E.V.
0.98
2.96
1.00
0.99
0.05
-0.04
0.02
0.01
-0.03
-0.05
0.52 .
0.48
4.6

A
S.EM.
0.87
0.97
9.07
0.95
0.47
0.53
258

A
S.EM.
101
2.96
1.05
1.00
0.06
-0.06
-0.04
-0.02
0.06
-0.01
0.54
0.46
49

(o1 =1, 02=23).

E.V.
0.96
0.99
1.06
843
0.52
048
250

my-mj=2

E.V.
0.99
2.99
1.06
0.94
0.71
0.55
0.50
0.61
0.57
0.46
0.52
048
12.7

B
SEM.
0.97
0.98
1.85
7.60
0.52
0.48
305

S.EM.
0.91
2.95
0.98
0.97
0.68
0.53
0.46
0.71
0.60
0.50
0.50
0.50
13.1
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TABLE XI
VARIANCE DISCRIMINATING (VD) CASE REAL VALUES: m = m2 = 1,(01 = 1,09 =2)or(oy = 1,02 = 3,II; = Il = 0.5. ESTIMATES FROM THE IMAGE
AND Its NOISY VERSION BY FREQUENCIES AND EMPIRICAL MOMENTS, S.E.M.: ESTIMATES FROM THE NoisY VERSION BY SEM, A: WHITE NoIsg, B:
CORRELATED NOISE, T: RATIO OF WRONGLY CLASSIFIED PIXELS BY THE CONTEXTUAL (FOUR NEIGHBORS) BAYESIAN ESTIMATES BASED METHOD

(oj=1,02=2), (c1=1, o2=3).
A B A B
EV. SEM. EV. SEM. EV. SEM. EV. SEM.
m; 095 091 099 102 087 087 099 101
mz 09 097 097 094 098 096 0.96 095
o] 402 388 375  3.50 893 9.20 843 809
02 099 095 094 103 1.00 100 1.06 103
P11 005 0.08 0.71 059 005 002 071 062
p12 004 010 0.55 049 0.04 013 055 053
P13 002 0.09 0.50 0.38 0.02 003 050 042
P21 -0.01 018 063 071 -0.01 -007 063 070
P22 -005 -013 0.55 058 -0.05 011 0.55 0.6l
P23 006 011 045 052 0.04 0.00 045 053
m 0.52 051 0.52 052 0.52 052 0.52 0.50
I 048 049 048 048 048 048 048 0.50
T(%) 180 257 200 204 9.8 13.6 102 101
TABLE XII

MEANS DISCRIMINATING (MD) AND VARIANCES DISCRIMINATING (VD) CAsEs. REAL VALUES:
mi1 = mye = 1,moy = ma2 = 3,011 = 012 = 021 = 022 = 1.II; = II2 = 0.5 iN THE M.D. CASE AND
mi1 = my2 = ma1 = mo2 = 1,011,012 = l.021 =022 = 4.T1; = II3 = 0.5 IN THE CASE VD. E.V.: ESTIMATES FROM THE IMAGE AND ITs Noisy
VERSION BY FREQUENCIES AND EMPIRICALMOMENTS, S.E.M.: ESTIMATES FROM THE NOISY VERSION BY SEM, A: WHITE NOISE, B: CORRELATED
Noisg, 7: RATIO OF WRONGLY CLASSIFIED PIXELS BY THE CONTEXTUAL (TWO SPECTRAL BANDS) BAYESIAN ESTIMATES BASED METHOD.

means discrimination

(cj=02=1,m; # m3)

C D

EV. SEM. EV. SEM.
mi; 098 097 1.03 125
mi2 104 104 1.10 126
o11 100 100 1.04 1.30
o12 099 099 1.04 1.22
m2; 302 3.02 3.04 329
m22 299 299 3.06 3.33
021 1.00 100 0.97 0.74
02 094 09 0.99 0.76
m 0.52 0.51 0.52 0.64
I 048 049 0.48 0.36

t (%) 78 7.9 150 17.9

estimation of m, , my seems to be more problematic. In the VD
case, Table IX, we note that the variances are badly estimated
in the case of small SNR and correlated noise and this fact
strongly degrades the well-classified pixels ratio. The same
phenomenon appears in the case oy = 1,02 = 3. Thus we
can say in conclusion, when the blind segmentation parameters
estimation is concerned, that all estimations are reliable, except
possibly the variance estimations in the case of correlated
noise.

variances discrimination

(o] # a2, m| =m)

C D
EV. SEM. EV. SEM.
0.98 1.02 1.03 116
1.00 0.98 1.04 1.17
1.04 1.10 1.10 1.03
0.99 0.93 1.04 0.97
1.03 0.98 1.08 0.94
0.99 1.01 1.13 0.99
4.01 3.93 3.89 3.83
3.77 3.81 3.97 392
0.52 0.52 0.52 0.50
0.48 0.48 0.48 0.50
263 26.8 268 276

It would be possible to make the same kind of comments
about the results concerning the estimation of the mixture
corresponding to spatial or spectral context, MD or VD cases:
Tables X—XII. A general tendency does not appear clearly,
thus we will just say that in 12 cases studied two are bad:
Table X column 4 and Table XI column 2. The first one is
due to a bad estimation of priors and the second one to a
relatively bad estimation of the correlations. Two other cases:
Table IX column 6 and Table XII column 4 are bad, but can be
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TABLE XII
SPATIAL AND SPECTRAL INTRACLASS CORRELATIONS IN IMAGES “GUINEE” AND “LA ROCHELLE”

Guinée
class 1 2 3 4 5 6

Ospa 0.80 0.70 0.51 0.80 0.92 0.72
0.71 0.74 0.81 049 045 0.96

Ospe

considered as acceptable. All other results are excellent. We
have done numerous other simulations, 32 in total, the results
of which can be seen iri [19]. Six of them can be considered as
bad, three of which concern the MD case with m; —m2 = 1.
Twenty-four of them are excellent.

Thus we put for in the following two conclusions:

1) The SEM is reliable in about 80% of the situations. The
MD case with small signal to noise ratio is the most
unfavorable.

2) Its efficiency is excellent in about 75% of the situations
studied.

Finally, according to the conclusions above, we can propose

the following “unsupervised” context choice algorithm:

1) Estimate, using the SEM, means, variances, spectral and
spatial correlations, priors.

2) Decide in which case of Table VII they fall.

3) Apply the “context choice” algorithm Section IV.

This “choice” algorithm would be entirely unsupervised if
the step 2) above were automatic. That means we would have
to define a rule deciding, from the parameters estimated in
1), in what case of Table VII we are. Thus we would have
to decide, from the estimated means, variances, spectral and
spatial correlations and priors in what case, between Spe MD],
Spe MDC, Spe VDI, Spe VDC, Spa MDIH, Spa MDCH,
Spa MDIN, Spa MDCN and Spa VDI, Spa VDC we are.
We can decide about the degree of the spatial and spectral
correlation from pspe and pspe which are spatial and spectral
correlation coefficients, respectively. We can have an idea
about the homogeneity from the distribution, estimated in
1), of (X:, Xs), for t,s neighbors. In fact, if the image is
homogeneous, this distribution charges {(w1,w1), (w2, w2)}
and charges {(w1,w2),(wpw1)} otherwise. We propose to
assume that the following “homogeneity” parameter pp =
PI{(Xe, X,) = (wi,w0)}] + PL{(Xe, X) = (w2,w)}] mea-
sures this homogeneity: pp is close to 1 if the image is
homogeneous and it is close to 0 if not. The last parameter we
have to define should allow the decision between the “means”
and “variances” discrimination. Thus we have to define a
function of my,ma, 01, 02, respectively means and variances
corresponding to two classes and estimated in 1), which would
be close to, for instance, 1 in the VD case and close to 0 in
the MD case. One possible choice is:

pd — e*\ml—me/dl—az\
if 01 # o2 and equal to 0 if oy = 02. Thus we have to decide,
from pspas Pspes Phs Pd evaluated from the estimates obtained
in 1), in which case among Spe MDIL, Spe MDC, Spe VDI,
Spe VDC, Spa MDIH, Spa MDCH, Spa MDIN, Spa MDCN
and Spa VDI, Spa VDC we are. The choice we can propose

La Rochelle
1 2 3 4 5 6
0.83 0.66 0.48 0.92 0.68 0.53
0.86 0.86 0.71 0.84 0.72 0.90

at this stage, which is the simplest, consists of deciding, for
each pspa, Pspes Phs Pd; the possibility corresponding to 0ifit
is inferior to 0.5 and the possibility corresponding to 1 if it is
superior to 0.5. For instance, if we have pepa = 0.2, pspe =
0.8,pr = 0.9,p4 = 0.3 we are in the case SpaMDIH and
SpeMDC. Thus, according to Table VIIb is, SpaMDIH is
more appropriate and we should use the spatially contextual
segmentation. If we have pspa = 0.7, pspe = 0.8,pn =
0.9, p4 = 0.3 we are in the case SpaMDCH and SpeMDC.
Thus, according to Table VIIb use of any context is not useful
and we should call on the simple blind segmentation.
Finally, we can present the following automatical algorithm:
1) Using the SEM estimate the means, variances, spectral
and spatial correlations and priors.
2) Compute pspas Pspes Phs Pd-
3) Decide in which case among Spe MDI, Spe MDC, Spe
VDI, Spe VDC, Spa MDIH, Spa MDCH, Spa MDIN,
Spa MDCN and Spa VDI, Spa VDC the data lie.
4) Choose the better suited method according to the “choice
algorithm” Section IV.C.
5) Perform the segmentation.
Let us note that the rule we propose in order to solve 3) is
rather simple and further studies should allow us to refine it.

VI. REAL IMAGES SEGMENTATION

We consider in this section two real SPOT images, each
of them being taken with two spectral bands Y1 Y2 The
visualization of the data of Y of each of them gives Im.3,
Im.4, respectively. The first one represents a region of Guinee
Bissau and the second one the town La Rochelle, France.

We propose four unsupervised segmentation methods based
on the SEM for each of the two real images available. The
blind method will be denoted by B, the spectrally contextual
(two spectral bands) and spatially blind method by Cspe, the
spectrally blind and spatially contextual (one neighbor) method
Cspa and the spectrally and spatially contextual (two spectral
bands, one neighbor) one by Cspespa. Koon designates the
Koontz et al. method [13] obtained from the bidimensional,
taken from the two spectral bands, histogram.

A. Parameter Estimation Problem

In both images the blind SEM finds five classes and the con-
textual one six. The noise is strongly correlated. For instance
the estimated intraclass correlations, spatial and spectral are
shown in Table XIIL

The quality of the estimations is difficult to appreciate in
absence of the real values. We can roughly perform such an
evaluation by comparison of the histograms with the probabil-
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Fig. 1. Histogram of “Guinee” taken from Y.

S

Density mixture based on the parameters estimated from “Guinee”
by SEM.

Fig. 2.

Fig. 3. Histogram of “La Rochelle” taken from Y!.

ity densities mixture based on the estimated parameters. Fig.
1 represents the histogram of Im3, taken from Y!, and Fig.
2 the density mixture based on the estimated parameters. It is
the same, with respect of Im4, for Figs. 3 and 4.

We note that in both cases “Guinee” and “La Rochelle”
histograms seem quite close to the mixture densities based on
parameters estimated by SEM. The fact that SEM finds six
classes is rather surprising and indicates a good appropriate-
ness of this algorithm in this context.

The bidimensional histograms of Im3, Im4 taken from the
two spectral bands are represented by Figs. 5 and 7, and
the corresponding mixture densities based on the estimated
parameters are given by Figs. 6 and 8, respectively.

The SEM estimation seems to give good results in the
two real image cases considered. In particular, the classical
methods would have some difficuities in finding six classes
from the monodimensional histogram of Im 3 (Fig. 1).

Fig. 4. Density mixture based on the parameters estimated from “La
Rochelle” by SEM.

Fig. 5. Bidimensional histogram of “Guinee” taken from the two spectral

bands Y, Y2

Fig. 6. The density of the distribution of (Y}, Y72) based on the parameters
estimated from “Guinee” by SEM.

B. Unsupervised Segmentation

This is relatively difficult to connect with our simulation
study; the large number of classes in the two images makes the
conclusions of our simulation study, limited to binary images,
uncertain. However, we can note that the spatial and spectral
correlations are always significant. This would favor the use,
in this context, of local methods.
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1) Image Guinee Bissau: Tm 3 below represents the data
of Y' of the considered image and Koon(Im3), B(IM3),
Cspa(IM3), Cspe(Im3), Cspaspe(Im3) the results of its seg-
mentation by Koontz et al.’s algorithm [13] and the four
SEM-based methods mentioned above.

We notice a real improvement of Cspa over Koon at the
class detection level. First, the class 3, situated between the two
peaks of the histogram, is ignored by Koon. Furthermore, Cspa
allows the identification of two other classes, 4 and 5, which
are very “standard deviation discriminating”. In a general
manner the methods based on histograms are ineffective in
finding the “standard deviation discriminating” classes.

The comparison between B and Cspa is difficult. In fact,
Cspa is more efficient at the class detection level (6 instead
of 5) but B seems to better restore the fine structures of the
ground.

Concerning the Cspe we notice that the spectral noise cor-
relations are strong (Table XIV). Our simulation study showed
that the spectral context contribution can be insignificant (case
IV.A.1), or good (case IV.A.2), when all parameters are
known. Here we are at the presence of the two cases and the
first one seems to be predominant. In fact, the results obtained
by Cspe are worse than those obtained by B or Cspa. This
can also be due to the degradation of the parameter estimation
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efficiency. To be more precise, the SEM could turn out to be
much more efficient in case B, where the number of parameters
to estimate remains limited, than in case Cspe, where this
number is important and the strong correlation of data limits
the additional information. In conclusion, we have to opt for
B or Cspa, according to which things we are interested in.

2) Image La Rochelle: Im 4 represents the data of Y1 of
the considered image and Koon(IM4), B(IM4), Cspa(Im4),
Cspe(Im4), Cspaspe(Im4) the results of its segmentatlon as
above. R
We note that Koon does not distinguish the “sea” ~class
from the “town” one, which are, according to the estimated
parameter values, very “standard deviations discriminating”.
The blind SEM finds these two classes but the correspondmg
B method does not allow their detection in an unerring
manner. This weakness is almost entirely deleted by the use-~.
of Cspa. This is in accordance with our simulation study.
In fact, we have seen that the spatial context contribution
can be significant in this case (IV.B.2). The quality of the
segmentation performed by Cspaspe seems to be quite superior
to the quality obtained by the three methods below: the
distinction between the classes “sea” and “town” is quite clear.
This can be explained by the following property, which we
have not included in the simulation study. Let us denote by

Image "Guinee", spectral band ¥/,

Im3

Image "La Rochelle", spectral band ¥/,

Im4

Unsupervised segmentation of "Guinee"
by Koontz et al. method
Koon(Im3)

Unsupervised segmentation of "La
Rochelle” by Koontz et al. method
Koon(Im4)
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Unsupervised segmentation of "Guinee" by the

blind method. Parameters estimated by SEM.

B(Im3)

Unsupervised segmentation of "Guinee” by
spatially contextual (one neighbor)
method. Parameters estimated by SEM.

Cspa(Im3)

Unsupervised segmentation of "Guinee" by the
spectrally contextual (two spectral bands) method.
Parameters estimated by SEM.

Cspe(Im3)

Unsupervised segmentation of "Guinee” by
spatially and spectrally contextual (one
neighbour, two spectral bands) method.
Parameters estimated by SEM.

Cspaspe(Im3)

Class no

a; and b; the means in two spectral bands corresponding to a
class A and by as, by those corresponding to a class B. When
by — by = ag — ay the separability of the Guassian densities
on R? decreases when the spectral correlation of the noise
increases (Fig. 9), but when by — by # as —ay this separability
can strongly increase (Fig. 10).

To be more specific, let us denote by fois fo.2 the Gaussian
densities corresponding to two classes with p the correlation
coefficient. Let us put M; = (a1,b1) and My = (a2, bo) as
the means points. When p — 1 the density f,1 becomes
concentrated on a 45° line passing through M, and likewise
for f, 2 and Ms. This leads to two quite different cases. If the
line segment M;M> has unit slope, the two lines above are
the same and, when p — 1, the theoretical classification error

tends to a finite value different from 0. When this segment
does not have unit slope the two lines considered are different,
and thus the densities f, 1, fp2 become concentrated, when
p — 1, on two different subsets of R2. This implies that
the classification error tends to 0. In our simulation study we
consider the first case, in fact a1 = b1,z = by. This means
that in real situations the spectral context contribution could
turn out to be still more relevant.

We notice, through this example, that the conclusions of
our simulation study are not immediately generalizable to an
arbitrary number of classes, but can be quite useful when
we are interested in detecting two given classes. In con-
clusion, we have to opt to Cspaspe in the case consid-
ered.
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Unsupervised segmentation of "La Rochelle” by the
blind method. Parameters estimated by SEM.

B(IM4)
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Unsupervised segmentation of
"La Rochelle” by spatially contextual
(one neighbor) method. Parameters
estimated by SEM.

Cspa(Im4)

Unsupervised segmentation of "La Rochelle” by

the spectrally contextual (two spectral bands) method.

Parameters estimated by SEM.
Cspe(Im4)

VII. CONCLUSION

The aim of this work was to study, in the framework of
local Bayesian unsupervised satellite image segmentation, the
relevance of the use of the spectral or spatial context contri-
bution. We showed via a simulation study that the information
carried by the context strongly varies with specific image
parameters such as homogeneity, standard deviations, as well
as spatial and spectral correlations of the noise. In particular, in
numerous situations the efficiency of fast blind segmentation
cannot be improved and it is useless to refer to any context.
The same study shows that the VD case is more relevant,
in any kind of situation, than the MD case. Furthermore, we
proposed the use of a recent mixture estimation algorithm,
SEM, in order to estimate the parameters above. Another
simulation study, Section V, shows the correct behavior of
the SEM in the context used. The parameter estimation step is
of prime importance: it was shown that the efficiency of global
methods like ICM or MPM can be seriously degraded when the

Unsupervised segmentation of "La Rochelie”

by spatially and spectrally contextual (one
neighbor, two spectral bands) method.
Parameters estimated by SEM.

Cspaspe(Im4)

estimated values of the parameters move away from the real
ones [9]. This phenomenon does not appear when considering
the unsupervised method based on the SEM and the contextual
segmentation. Thus we can say, roughly speaking, that the
properties brought to fore in Section IV are “saved” when
switching to the unsupervised approaches based on the SEM.
The interest of the results contained in these two sections goes
beyond satellite image segmentation problems and can be ap-
plied in any problem of unsupervised Bayesian classification.
In many detection problems occurring in medical imagery,
industrial radiography, or infrared imagery, we know a priori
that there are two classes. In such situations the automatic
“adaptive” algorithm we proposed in Section V could turn out
to be quite useful.

Our real image study, Section VI, shows that the SEM-based
unsupervised methods are always more efficient than Koontz
et al. ’s histogram method. Furthermore, it appears, according
to the visual evaluation, that the context contribution strongly
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Fig. 7. Bidimensional histogram of “La Rochelle” taken from the two

spectral bands } 1y,

Fig. 8. The density of the distribution of (Y"1, Y2) based on the parameters

estimated from “La Rochelle” by SEM.

Fig. 9.

varies with the image parameters. The design of an “adaptive”
algorithm as above is, without doubt, much more difficult.
However, the simulation study of binary images can prove

useful at two levels:

Fig. 10.

1) One can be particularly interested by some part of the

image considered, say a 60 60 pixels array. The number
of classes in such a window can be small, two or three
for instance. The sample being rich enough, one can use
the SEM locally and use the “adaptive” algorithm above
in order to resegment the window considered.

2) As pointed out in Section VI, the results of the simulation

study can be useful in understanding the behavior of the
methods considered.

In a general manner, the SEM seems to be well adapted
to satellite remote sensing problems. It was also used to
estimate the depth and nature of the sea bottom and allowed the
introduction of a reliability measure [19], [20]. The acceptable
SEM based unsupervised SAR images segmentation [27] was
recently improved by its “local” version [28]. Finally, we
propose in [3] the use of a “fuzzy” SEM allowing a statistical
fuzzy unsupervised segmentation.

As we mentioned above, the use of context is, in some
situations, useless. This may be due to the fact that the useful
complementary information remains beyond contexts reduced
to four or eight neighbors, in which case it would be relevant
to look at a global method.

1
2]
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