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ABSTRACT In this paper, we propose a new data-driven traffic state estimation model that estimates traffic
flow based on average speed data only. The model is devised to implement a cost-effective framework
that aggregates heterogeneous sources of vehicles’ GPS and speed measurements to infer traffic flow
using a novel triplet system called Conditionally Gaussian Observed Markov Fuzzy Switching Systems
(CGOMFSM). Unlike its hard counterpart, CGOMFSM allows for a transient and gradual representation
of traffic state transition and hence improves the estimation performance using a tractable scheme. The
potential of the proposed model is illustrated through an application to the problem of traffic incident
detection, particularly sporadic traffic congestion caused by unexpected road conditions. The performance of
the proposed model is assessed using real traffic datasets from England highways. A simulation of traffic in
the city of Salalah inOmanwas conducted to evaluate the efficacy of the CGOMFSM-based traffic estimation
and incident detection schemes with different penetration rates.

INDEX TERMS Traffic state estimation, intelligent transportation systems, traffic monitoring, conditionally
Gaussian observed Markov fuzzy switching systems.

I. INTRODUCTION
Traffic state estimation is of a paramount importance for the
implementation of Intelligent Transportation Systems (ITSs)
in smart cities of the future [1]. Traffic state estimation
has been traditionally achieved using fixed sensors, such as
inductive loops, radars and cameras, which allow for accurate
observation and estimation of speed, flow and occupancy.
The main disadvantage of these sensors is their high instal-
lation and maintenance costs, which doesn’t allow them to
be deployed at a large scale. They are instead deployed on
major and selected road segments only, which limits their spa-
tial coverage for traffic state estimation. Recent advances in
Information and Communication Technologies, Ubiquitous
Computing, Vehicular Networks, and Connected Vehicles
have opened up new opportunities for smart cities to develop
advanced ITSs that combine traditional fixed sensors with
new ubiquitous sensing devices for city-wide traffic state
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estimation, such as Cellular phones [2], GPS-equipped cars
and devices [3], crowd-sourcing [4], VANETs [5], Connected
Vehicles [6]–[9], and recently Vehicle–Infrastructure Inte-
gration (VII) technologies [10], [11]. While all these new
sensing technologies address the coverage limitations of fixed
sensors and allow for city-wide traffic state estimation, some
of them present the other interesting advantage of providing
infrastructure-less and cost-efficient solutions for traffic state
estimation, making them particularly interesting for cities in
developing countries that do not have road and sensing infras-
tructure of trafficmonitoring. Probe Vehicles (PVs) [12]–[14]
and Cell Phones [15] have been widely used for the imple-
mentation of infrastructure-less and cost-effective traffic state
estimation solutions, mainly for travel time and signalized
intersections’ queue length estimation [14], [16]. But beside
the penetration rate issue, these technologies cannot be used
to directly estimate traffic flow. To address this problem,
some research works tried to extend PVs with other data
sources in order to collect traffic flow data, such as equip-
ping PVs with spacing measurement equipment to count
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surrounding vehicles [17]–[20] and combining PV-data with
traditional fixed sensory data (inductive loops, etc.) [21]–
[23]. Nevertheless, traffic flow estimation based on mobile
probe data only remains a challenging research problem that
has been explored to a relatively limited extend in the state
of the art. Recent works have used the fundamental diagram
(FD) to estimate traffic flow or volume from PVs trajectory
data [24]–[26], but these FD-based approaches need large-
data calibration effort for every individual road. Other works
have used Kalman filter [27], [28], Naive Bayes and shock-
wave models [29], [30] to estimate traffic flow from PVs but
are generally applicable only at signalized link approaches
and intersections.

In this paper, we propose a new data-driven traffic state
estimation approach that relies on infrastructure-less smart
city sensing technologies and can therefore be used to sup-
port the implementation of traffic management services of
smart cities in developing countries. We propose a model
that can be used for traffic flow estimation on motorway
segments based only on aggregated speed data collected
from IoT-probe sources moving on these road segments.
IoT-probe sources can be any individual connected devices
such as private cars and drivers’ smartphones, and not only
Floating Cars or dedicated PVs. The model can be used
to implement completely cost-less traffic control systems
without installing or maintaining any road infrastructure. The
increasing amount of vehicles and connected mobile devices
in developing countries allows for maintaining a minimum
penetration rate required for accurate traffic flow estimations.
In this paper we only present the new proposed data-driven
model of traffic state estimation [31] and we assume that the
aggregated speed data are given as input. Issues related to the
development of sensing architectures relying on aggregated
GPS-Data sources and their use for the implementation of
practical traffic state estimation solutions in the context of
smart cities are out the scope of this paper and have been
addressed inmany previous researchworks, such as [32]–[34]
and [3]. More recent insight about the use of GPS data for
city-wide traffic state estimation and monitoring in general
can be found in [35], [36].

The contributions of this work are as follows:

• A new traffic state estimation algorithm based on
the Conditionally Gaussian Observed Markov Fuzzy
Switching model (CGOMFSM) and which relies on an
explicit representation of the dependence between the
traffic flow, speed and state, represented as stochastic
processes. The proposed algorithm is used to estimate
traffic flow based on average speed data only.

• A new parameter estimation algorithm based on the
CGOMFSM model.

• An application of the proposed algorithm to the problem
of abnormal traffic event (congestion) detection.

The remainder of this paper is organized as follows:
Section II presents an overview of the techniques and
approaches used for infrastructure-less traffic flow estima-

tion in the state of the art, and depicts the proposed esti-
mation framework. Section III details the triplet model used
to represent the traffic state evolution over time along with
the underlying traffic state estimation algorithm. Section IV
presents the derivation of the fuzzy parametrization of the
triplet model. Section V details the parameter estimation
scheme adapted for the proposed fuzzy parametrization and
presents an application of the scheme to the problem of
sporadic traffic incident detection. Section VI introduces an
extension of the proposed estimation algorithm for a one-step
ahead prediction of traffic state. In Section VII, we report the
results of the experimental study using both real datasets and
simulated traffic data for traffic event detection applications.

II. STATE-OF-THE-ART AND PROPOSED FRAMEWORK
A. REVIEW OF UBIQUITOUS AND COST-EFFECTIVE
TRAFFIC FLOW ESTIMATION
This section reviews themain state-of-the-art works related to
the problem of ubiquitous and infrastructure-less traffic flow
estimation, in terms of both sensing technologies and estima-
tion models. Traffic flow estimation works using VANETs,
Connected Vehicles and Vehicle-Infrastructure Integration
are not considered given that these technologies require cer-
tain infrastructure to be deployed either on vehicles or on
road sides or on both. An exhaustive review of traffic state
estimation technologies and models can be found in [31].

GPS-data have been widely used for traffic state estima-
tion purposes, collected either by PVs [3], [36] or smart-
phones [32], [34]. PVs are recognised as cost-efficient
sources of traffic data, especially for traffic speed and travel
time estimation, but their use for traffic flow or traffic density
estimation is challenging. Some researchers equipped PVs
with range measurement sensors, such as cameras, to have
a local flow estimation of surrounding vehicles [18], [37],
while other have combined PV data with data collected on the
ground, such as loop detectors [22], [23]. There is a relatively
limited number of works on estimating traffic flow or traffic
density from PV data only. The Fundamental Diagram (FD)
has been used to estimate traffic flow or volume from PV
trajectory data [24]–[26] on highways and major arteries.
The major drawback of the FD method is that it requires
calibration for each individual road with a sufficiently large
amount of traffic data [21]. Aside the well-studied issue of
penetration rate [38], [39], the main problem of traditional
PV-basedmethods concerns the nature of fleets –mostly com-
mercial such as taxis and buses– which biases the estimation
given that these types of fleets have their own specific driving
and spatio-temporal mobility patterns that are different from
private vehicles.

Cellular systems [40] have also been used to provide alter-
native methods to the cost and coverage limitations asso-
ciated with infrastructure-based solutions, and some works
have been proposed to estimate volumes of vehicles from
anonymous cellular phone call data [41], [42]. These sys-
tems cannot generally provide fine-grained traffic volume
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estimates and require long processing time which make them
unsuitable for real-time estimation [15], [43].

Smartphone applications have also been widely used for
traffic monitoring in general, including traffic state and con-
gestion estimation, commonly deployed as a crowd-sourcing
approach [4] where traffic data are collected from mobile
applications that run on road users’ mobile phones. By com-
bining the computing capabilities and variety of sensors
(GPS, accelerometers, microphones, cameras, etc.) of the
smartphones, different types of traffic data can be collected
and processed on the phone side before being sent to the
server side for further processing. Several research and com-
mercial projects have been proposed (a good review can be
found in [44]). Other works have also explored the use of GPS
data streams [33], [34], [45], [46]. Smartphone applications
and GSP data streams have been mainly used for average
speed and travel time estimation, but, to the best of our
knowledge, not for traffic flow estimation.

With respect to estimation approaches, most of the existing
works collect traffic volume data from fixed-location sensors.
Only few works have addressed the problem of estimating
traffic volume frommobile data sources. Different techniques
have been used, such as statistical models [29], [30], [47],
combination of Shockwave theory and Maximum likelihood
estimation (MLE) [26], [48]–[50], Kalman filter [27], [28],
[51], compressive sensing techniques [52], spatio-temporal
correlation data-driven models [23], [47], [53], in addition to
Flow Diagram-based models where travel speeds from probe
vehicle data for each road are estimated and then converted
to traffic volumes by exploiting the relationship between
travel speeds and traffic volumes [54], [55]. A more complete
review can be found in [31]. To the best of our knowl-
edge, none of the previous research works has explored the
use of Conditionally Gaussian Observed Markov Switching
Model for traffic state estimation in general, and particularly
for traffic flow estimation from aggregated mobile speed
measures.

B. PROPOSED FRAMEWORK
There exist many smart devices that allow for a quite accurate
and timely measure of vehicles’ speed. Smart speedometers
are available at reasonable prices and operate on almost
any type of vehicle. There is also a myriad of mobile
applications that can perform as good as smart tachome-
ters. In addition to the radar guns and speed traps used
by law enforcement officers and mobile patrols, the num-
ber of smart vehicles with embedded smart speed measur-
ing devices has been substantially increasing over the last
few years.

Our framework exploits the speed data collected from sens-
ing devices that correspond to a specific road segment within
a certain time interval In =]tn−1, tn]. We assume that traffic
state is estimated in regular time intervals In =]tn−1, tn], 0 <
n. The collected speed data are used to estimate the average
velocity denoted hereafter as vsn, where s refers to the road
segment and n to the period In. For GPS and speed data,

FIGURE 1. Architecture of the proposed framework.

we consider the following model:

< tn,Ln, ln, ωn, dn >,

where tn refers to the timestamp, Ln to the longitude, ln to the
latitude, ωn to the speed and dn to the direction of the vehicle
movement during In. The GPS coordinates of the vehicle
are mapped to the road segment using the map matching
procedure described in [56]. It is worth mentioning that the
issues related to network connectivity such as latency and
those related to power consumption are not considered in the
scope of this research. We mainly focus on the data-driven
model and its ability to infer complete traffic state from a
single traffic variable.

Once the location of a vehicle is matched to the road seg-
ment of interest, the vehicle speed is recorded throughout the
journey. As soon as the period In is elapsed, the vehicle speed
data are averaged to vn. Whenever possible, traffic flow data
during In, denoted as fn, are recorded as a training set for the
estimation module and used afterwards to infer traffic state
using speed data only, as will be presented later. For the sake
of simplification, we assume that connectivity related issues
incurred by transmission lags are not considered. Hence,
we assume that the time intervals In are sufficiently large so
that communication delays do not impact the accuracy of the
model. We distinguish between two phases (Figure 1):
• Training phase:During this phase, both flow and speed
data are recorded on a regular basis spanning a certain
period of time T . The corresponding N time intervals In
are such that

N⋃
n=1

In = T .

The recorded speed data vN1 = (v1, . . . , vN ) and the flow
data f N1 = (f1, . . . , fN ) are used to infer a set of parame-
ters corresponding to the traffic condition. The duration
T of this phase is determined by the convergence of the
estimated state towards the observed one.

• Monitoring phase: The trained model is used during
this phase to estimate traffic state, i.e. road occupancy
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FIGURE 2. Dependence graph of the considered CGOMFSM during the
training phase. Red labels correspond to observed variables while blue
labels refer to hidden ones.

and traffic flow and fluency from the observed speed vi
only.

We propose to model the depicted framework by three
stochastic processes F , V and S, where F represents the flow
variation, V the speed variation and S the traffic fluency.
The difference between two consecutive switches Sn and
Sn+1 depicts the change of traffic condition. Let us note
that the training phase can be conducted using a sample-
based approach. Since we focus on motorways, we can
select road segment samples based on common character-
istics (basic section, on-ramp/off-ramp, speed limit, etc.).
Ideally, the trained model could be directly transposed to road
sections that share the same features.

The underlying dependency between traffic speed and
flow, as well as the transient transition between traffic con-
ditions over time, suggest the use of a model that (i) supports
discrete-time discontinuities in a continuous fashion and (ii)
represents the dependencies (supposed here linear) between
the stochastic processes FN1 and VN

1 .
To achieve a time-dependent representation of traffic state,

we introduce a latent process denoted as SN1 and referring to
the traffic switch over time. Hence, the random variable sn
represents the traffic state during the time interval In during
which the speed measure vn has been recorded.
The problem can be formulated as follows: given P mea-

sures of average speed vP1 and traffic flow f P1 at a given road

section spanning a time interval T =
P⋃
n=0

In, where In are

time periods of equal length, the goal is to determine a model
that can be used to (i) explicitly represent the dependence
between the stochastic processes F and V using an auxiliary
process S and (ii) construct a tractable procedure to estimate
the traffic state from the speed data V observed during a

monitoring time interval
M⋃

n=P+1
In, M > P. To this purpose,

we propose to exploit a recent fuzzy linear model called
Conditionally Gaussian Observed Markov Fuzzy Switching
Model (CGOMFSM).

III. TRAFFIC STATE MODELING AND ESTIMATION USING
CGOMFSM
First, let us briefly present the model we will deal with. The
CGOMFSM is an extension of the classical Conditionally
Gaussian Markov Switching Model (CGMSM) defined as

follows. Let us consider three discrete-time stochastic pro-
cesses FN1 , V

N
1 , and S

N
1 , where, for each n ∈ [1,N ], Fn is

a (hidden) real-valued random variable, Vn is an (observed)
real-valued random one and Sn is a (hidden) discrete-valued
random variable with two states: Sn ∈ � = {0, 1}.

Definition 1: Let us set Zn = (Fn,Vn)ᵀ, Tn =
(Fn, Sn,Vn)ᵀ and assume the following:
1) TN1 is Markov;
2) p (sn+1 |tn ) = p (sn+1 |sn ), which implies that SN1 is

Markov;
3) ZN1 = (Z1, . . . ,ZN ) is Gaussian conditionally on SN1 .

The CGMSM is defined by p(t1), transitions p (sn+1 |sn ), and
the inductive relationship: ∀n = 1, . . . ,N − 1

Zn+1 = An+1(Sn+1n )Zn + Bn+1(Sn+1n )Wn+1 + Nn+1(Sn+1n ),

(1)

where
• Wn = (Un,Rn)ᵀ with U1,R1, . . . ,UN ,RN Gaussian
zero-mean independent vectors with identity covariance
matrices;

• Matrices An+1(sn+1n ) and Bn+1(sn+1n ):

An+1(sn+1n ) =
[
a1n+1(s

n+1
n ) a2n+1(s

n+1
n )

a3n+1(s
n+1
n ) a4n+1(s

n+1
n )

]
,

Bn+1(sn+1n ) =
[
b1n+1(s

n+1
n ) b2n+1(s

n+1
n )

b3n+1(s
n+1
n ) b4n+1(s

n+1
n )

]
;

• Means Nn+1(sn+1n ) = (NF
n+1(s

n+1
n ),NV

n+1(s
n+1
n ))ᵀ are

given by

Nn+1(sn+1n ) = Mn+1(sn+1)− An+1(sn+1n )Mn(sn),

with

Mn(sn) = E
[(

Fn
Vn

)∣∣∣∣ sn] = [MF
n (sn)

MV
n (sn)

]
. (2)

Recursive filtering is not tractable in the general CGMSM
setting, but becomes tractable under the condition that, for
each sn+1n ∈ �2,

a3n+1(s
n+1
n ) = 0. (3)

This particular CGMSM, called ‘‘Conditionally Gaussian
Observed Markov Switching Model’’ (CGOMSM) [57]
allows for recursive optimal filtering even with a switching
setup [58].
A fuzzy extension of the CGOMSMhas been proposed and

studied in [59] in which the switch process SN1 is no longer
assumed discrete but takes its values in the interval [0, 1]
instead. Hence, the distribution of each Sn is defined by den-
sity hn : [0, 1] −→ R w.r.t. the measure ν = δ0+ δ1+µ]0,1[,
with δ0, δ1 two Dirac’s distributions on 0, 1 respectively, and
µ]0,1[ a Lebesgue’s measure on ]0, 1[. Thus, we have:

1∫
0

p(sn)dν(sn) = p(0)+ p(1)+

1∫
0

p(sn)dsn = 1, (4)
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and

p(sn+1) =

1∫
0

p(sn)p(sn+1|sn)dν(sn)

= p(sn = 0)p(sn+1|sn = 0)

+ p(sn = 1)p(sn+1|sn = 1)

+

1∫
0

p(sn)p(sn+1|sn)dsn. (5)

The distribution of the fuzzy Markov chain SN1 =

(S1, . . . , SN ) is defined by density p (s1) and the conditional
densities p (sn+1 |sn ). All of them are densities on� = [0, 1]
w.r.t. the measure ν = δ0 + δ1 + µ]0,1[. Figure 2 shows the
dependence graph between the model processes.

A. TRAFFIC STATE MODELING USING CGOMFSM
We assume that the average speed data are measured and
recorded on a regular basis, while the total carriageway flow
data are not necessarily observable. The main rationale for
considering such assumption is that it is easy to aggregate
traffic speed from sampled measures while it is more difficult
to determine the traffic volume unless necessary nay intrusive
equipment has been installed.
The proposed traffic modeling framework is composed of

two main stages:
• Stage 1: Traffic model parameter estimation. At this
level, historic traffic data are utilized to infer the
CGOMFSM model parameters and fit the fuzzy
parametrization to a particular dataset. Let us denote
by {1, . . . ,N } the measurement time points for which
both traffic volume and average speed data are avail-
able. ZN1 = (FN1 , V

N
1 ) data are used to estimate the

CGOMFSM parameters and the associated switch pro-
cess SN1 .

• Stage 2: Traffic state estimation. For any time point n >
N , only speed data are recorded from a variable number
of road users. The aggregated speed data Vn are hence
used to extrapolate the traffic volume Fn|Vn

1, the current
switch Sn|Vn

1 using a recursive filtering scheme and to
predict the next measurement Vn+1|Vn

1, S
n
1 . Within the

CGOMFSM framework, let us denote by 0Zn,Zn+1 (s
n+1
n )

the covariance matrix of the vector
[
Zn
Zn+1

]
.

0Zn+1n
(sn+1n ) =

[
0(sn+1n ) 6(sn+1n )
6(sn+1n )ᵀ 0(sn+1n )

]
, (6)

where 0(sn+1n ) =
[
0V (sn+1n ) b(sn+1n )
b(sn+1n )ᵀ 0F (sn+1n )

]
and 6(sn+1n ) =

[
a(sn+1n ) d(sn+1n )
e(sn+1n ) c(sn+1n )

]
B. TRAFFIC STATE ESTIMATION
As mentioned earlier, the traffic state is assumed to be
modeled by a continuous state-space � = [0, 1] in which

the boundary conditions correspond to 0 for unoccupied
road and to 1 for extremely congested. Depending on the
estimated switch sn+1 (from the observed vn+1), and sn,
the unlikely transitions are detected. Let us denote by1n+1

n =

|E
[
sn+1| vn1

]
−E

[
sn| vn1

]
| the random variable corresponding

to the switch variation during the time interval In. The higher
1n+1
n , the more likely an incident could have occurred. Nor-

mally, traffic conditions transition gradually over time unless
a sporadic or routine incident has occurred and spurred a rel-
atively abrupt switch. Using the assumption of CGOMFSM,
the computation of the filter becomes tractable using the
following equations:

p
(
sn+1n

∣∣∣vn+1n

)
=

p
(
sn+1n , vn+1

∣∣vn1 )
p
(
vn+1

∣∣vn1 )
= p

(
sn
∣∣vn1 ) p (sn+1, vn+1 |sn, fn, vn )p

(
vn+1

∣∣vn1 )
= p

(
sn
∣∣vn1 ) p (sn+1 |sn ) p (vn+1

∣∣sn+1n , vn
)

p
(
vn+1

∣∣vn1 ) ,

(7)

with

p
(
vn+1

∣∣vn1 ) =
1∫

0

1∫
0

p
(
sn
∣∣vn1 ) p (sn+1 |sn )

p
(
vn+1

∣∣∣sn+1n , vn
)
d(ν(sn+1n )), (8)

and where
• d(ν(sn+1n )) = d(ν(sn)⊗ ν(sn+1));
• p (sn+1 |sn ) is given by the fuzzy parametrization (see
section IV);

• according to the Gaussian assumptions and (1), (3),
p
(
vn+1

∣∣sn+1n , vn
)
is Gaussian with mean a4n+1(s

n+1
n )vn

and variance b3n+1(s
n+1
n )b3n+1(s

n+1
n )ᵀ+

b4n+1(s
n+1
n )b4n+1(s

n+1
n )ᵀ.

Hence, the next switch is estimated using the equation:

E
[
sn+1| vn+11

]
=

∫ 1

0
sn+1p

(
sn+1

∣∣∣vn+11

)
dν(sn+1),

where

p
(
sn+1

∣∣∣vn+11

)
=

1

p
(
vn+1

∣∣vn1 )
1∫

0

p
(
sn+1n , vn+1

∣∣vn1 ) dν(sn)
(9)

Finally, the traffic state estimation algorithm runs as follows:

• Compute p
(
sn+1

∣∣∣vn+11

)
using equations (7) and (8).

• Compute the estimated traffic state at time point n + 1
using:

E
[
Zn+1| sn+1n , vn1

]
= An+1(sn+1n )

[
E
[
Fn| sn, vn1

]
vn

]
+Nn+1(sn+1n ),
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and

E
[
Zn+1Z

ᵀ
n+1

∣∣ sn+1n , vn1
]

= Bn+1(sn+1n )Bn+1(sn+1n )ᵀ

+An+1(sn+1n )
[
E
[
Fn| sn, vn1

]
vn

]
An+1(sn+1n )ᵀ[

E
[
Fn| sn, vn1

]
vn

]ᵀ
,

Var
[
Zn+1

∣∣∣sn+1n , vn1
]

=

[
αn+1(sn+1n ) βn+1(sn+1n )
χn+1(sn+1n ) δn+1(sn+1n )

]
= E

[
Zn+1Z

ᵀ
n+1

∣∣ sn+1n , vn1
]

−E
[
Zn+1| sn+1n , vn1

]
E
[
Zᵀn+1

∣∣ sn+1n , vn1
]
.

• Estimate the traffic flow Fn+1 using:

E
[
Fn+1| sn+1n , vn+11

]
= E

[
Fn+1| sn+1n , vn1

]
+
βn+1(sn+1n )

δn+1(sn+1n
)
(
vn+1 − E

[
Vn+1| sn+1n , vn1

])
,

E
[
Fn+1| sn+1, vn+11

]
=

1∫
0

p
(
sn
∣∣∣sn+1, vn+11

)
E
[
Fn+1| sn+1n , vn+11

]
dν(sn), (10)

• Finally, the switch gradient is calculated using p
(
sn
∣∣vn1 )

and p
(
sn+1

∣∣∣vn+11

)
using the following equation:

1n+1
n = |

∫∫ 1

0
snp

(
sn
∣∣vn1 )

− sn+1p
(
sn+1

∣∣∣vn+11

)
dν(sn)dν(sn+1)|

Remark: Integrating with respect to ν is not always possi-
ble in a closed form. Hence, we use the following approxima-
tion:

1∫
0

h(t)dt ≈ h(0)+ h(1)+
1
L

L−1∑
i=1

h
(
i
L

)
, (11)

where L is the number of fuzzy levels. Since the set of
integration here is compact, the approximation (11) remains
tractable.

IV. PARAMETRIZATION OF THE FUZZY MARKOV CHAIN
In this section, we outline a possible parametrization of the
density p

(
sn+1n

)
of the Markov chain SN1 suited to our tar-

get application. As we assume the model to be stationary,
p
(
sn+1n

)
is time-independent and hence p

(
sn+1n

)
∼ p

(
s21
)
.

FIGURE 3. Three examples of joint density p
(
s21

)
(left) as defined in

eq. (12), with corresponding p
(
s1

)
marginal (right) as defined in eq. (13).

(a) m = 4, α0 = 0.265, α1 = 0.007, β = 0 and η = 0.175, (b) m = 1,
α0 = 0.248, α1 = 0.008, β = 0 and η = 0.278 and (c) m = 0.25,
α0 = 0.248, α1 = 0.007, β = 0 and η = 0.684.

The density of P(S21)
w.r.t. ν⊗ν –where ν = δ0+ δ1+µ]0,1[–

is assumed of the following shape:

p
(
s21
)
=


α0 if s1 = s2 = 0,
α1 if s1 = s2 = 1,
β if (s1, s2) ∈ {(0, 1), (1, 0)},
η (1− |s1 − s2|m) otherwise,

(12)

with m > 0, and
∫∫ 1

0 p(s1, s2) dν(s1) dν(s2) = 1. This
parametrization is defined by 5 parameters (m, α0, α1, β and
η). It is an extension of the parametrization studied in [59]
and used for the estimation of buildings power consumption
from outdoor temperatures.

Let us interpret this parametrization with respect to the
targeted application. The probabilities that the traffic remains
in the same boundary state are denoted by α0 for very low
traffic volume and by α1 for traffic peaks. Another quite
realistic assumption regarding the traffic dynamics behaviour
with respect to the boundary conditions is the following: a
direct transition from unoccupied road (state 0) to extremely
congested traffic (state 1), and reversely, is fairly improbable
when the number of discrete fuzzy levels L is sufficiently high
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(typically when L > 5). Therefore, we will set β = 0 in the
experimental part, yet this parameter will not be discarded
for the sake of generality and for possible other application
usage.

Parameter m allows to introduce very different behaviors
for the Markov chain that governs the state of traffic. Figure 3
plots three possible shapes of the joint density p

(
s21
)
for

different values of m. When m = 1, the joint density is a
piecewise linear shape and is proportional to the difference
between s1 and s2. When m is large, p

(
s21
)
is almost constant

within the diagonal. Setting m below 1 imposes a low proba-
bility on distant s21, and the closer s1 to s2, the higher p

(
s21
)
.

By marginalizing (12), see calculations reported in
Appendix, the density p (s1) is given by

p(s1) =



α0 + β + η
m

m+ 1
if s1 = 0,

β + α1 + η
m

m+ 1
if s1 = 1,

η
(
3−

(
sm1 + (1− s1)m

)
−
sm+11 + (1− s1)m+1

m+ 1

)
if s1 ∈]0, 1[.

(13)

Still from the appendix, we have

η =
(m+ 1)(m+ 2)
5m2 + 11m

(1− α0 − α1 − 2β) (14)

Hence the joint a priori fuzzy density is only parametrized by
four parameters m, α0, α1 and β.
The density p (s2 |s1 ) is the ratio between the joint den-

sity (12) and themarginal density (13).We have to distinguish
between different cases, according to the value of s1:

p(s2|s1 = 0) =



α0

D0
if s2 = 0,

β

D0
if s2 = 1,

η
(
1− sm2

)
D0

if s2 ∈]0, 1[.

(15)

p(s2|s1 = 1) =


β

D1
if s2 = 0,

α1

D1
if s2 = 1,

ηs2
D1

if s2 ∈]0, 1[.

(16)

p(s2|s1 ∈]0, 1[) =



(1− sm1 )

Ds1
if s2 = 0,

sm1
Ds1

if s2 = 1,

1− |s1 − s2|m

Ds1
if s2 ∈]0, 1[.

(17)

where we set
• D0 = α0 + β + η

m
m+ 1

,

• D1 = α1 + β + η
m

m+ 1
, and

• Ds1=η

(
3−

(
sm1 +(1−s1)

m
)
−
sm+11 +(1− s1)m+1

m+ 1

)
.

V. PARAMETER ESTIMATION AND EVENT DETECTION
In this section we first explain how the parameters of the
model can be estimated from training samples and then we
present how the parameter estimation algorithm can be used
to detect sporadic events from traffic data. The proposed
parameter estimation algorithm is devised based on an iter-
ative scheme in which each step q consists in estimating both
the joint a priori density and the means and covariances of the
CGOMFSM.

A. PARAMETERS OF THE JOINT A PRIORI DENSITY
As specified in eq. (12), the density p (sn, sn+1) is defined by
four parameters β, α0, α1 and m, recalling that the param-
eter η is deduced from them using (14). We consider a
fuzzy parametrization preset to a fixed m. To fit the fuzzy
parametrization to the data of interest, we use the following
sampling-based procedure:

1) Simulate Q realizations of the process SN1 condition-
ally to ZN1 using the a posteriori distribution, i.e.
using p

(
sn+1

∣∣sn, zN1 ). We denote the qth realization by(
sN1
)[q]

.
2) For each realization q ∈ [1,Q],

• count the number of times we observe the sequence
sn+1n = (0, 0) in

(
sN1
)[q]

. Dividing by N − 1 gives
an estimation α[q]0 of α0.

• count the number of times we observe the sequence
sn+1n = (1, 1) in

(
sN1
)[q]

. Dividing by N − 1 gives
an estimation α[q]1 of α1.

• count the number of times we observe the sequence
sn+1n ∈ {(0, 1), (1, 0)} in

(
sN1
)[q]

. Dividing byN−1
gives an estimation β[q] of β.

3) Average the Q estimations α[q]0 , α[q]1 and β[q], to get
α
q+1
0 , αq+11 and βq+1. Deduce ηq+1 using (14).

Figure 4 illustrates the trajectories of Markov chains (S)
simulated using the a priori distribution p (s2 |s1 ) and the a
posteriori distribution p

(
sn+1, sn

∣∣zN1 ).
B. ESTIMATION OF THE MEANS AND COVARIANCES
The model parameters, i.e. means vectors and covariance
matrices are estimated using a fuzzy C-means procedure. Let
Fmax = max(FN1 ), Fmin = min(FN1 ), Vmax = max(VN

1 ) and
Vmin = min(VN

1 ).
1) The state space is divided into two sub-spaces: stable

traffic and unstable traffic. Hence, we make an initial

estimation µk such that ∀k ∈ {0, . . . , b
L
2
c}, µk =Fmin + k

L + 1
(Fmax − Fmin)

Vmax −
k

L + 1
(Vmax − Vmin)


and ∀k ∈ {b

L
2
+ 1, . . . ,L + 2c}, µk =Fmax − k

L + 1
(Fmax − Fmin)

Vmin +
k

L + 1
(Vmax − Vmin)

 and initialize the
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FIGURE 4. Example of trajectories of simulated Markov chains using the
a priori fuzzy distribution with parameters m = 0.5, α0 = 0.05, α1 = 0.05,
β = 0.

FIGURE 5. Examples of traffic anomalies observed by a steep increase of
1n+1

n (Case 2) and constant high switches (Case 1) (red-shaded areas).

membership matrix κ0 = [κij], such that ∀i ∈ 1, ..,N ,

κ0ij =

{
0 if 0 < j < L + 1
1 otherwise

2) Calculate the means vectors µ =

µ0
...

µL

 using:

µj =

∑N
i=1(κ

q
ij)

log(L)zi∑N
i=1(κ

q
ij)

log(L)
(18)

3) Update the membership matrix κq+1 using:

κij =
1

∑L+1
k=0

(
‖zi − µj‖
‖zi − µk‖

) 2
log(L)− 1

(19)

4) If ‖κq+1 − κq‖ ≤ ε, STOP, else repeat step 2.

C. ESTIMATION OF THE A POSTERIORI DISTRIBUTIONS
p

(
sn+1

∣∣∣sn, zN1

)
First, we calculate the a posteriori probabilities ψi(s21) =
p
(
sn, sn+1

∣∣zn1 ) from themembershipmatrix κ usingψi(s21) =
κi,s1κi+1,s2

For each iteration q > 1:

• Compute ps21
= p

(
s21
∣∣zN1 ) = 1

N

∑N
i=1 ψi(s

2
1)

FIGURE 6. Locations of the considered monitoring sites A1/9547A and
A1/9542A. Sites are pinpointed in red.

• Compute the model means and covariances using:

µs21
=

∑N
i=1 ψi(s

2
1)
[
zi
zi+1

]
∑N

i=1 ψi(s
2
1)

(20)

and

0s21
=

∑N
i=1 ψi(s

2
1)
[
zi − µs1
zi+1−µs2

] [
zi − µs1
zi+1−µs2

]ᵀ
∑N

i=1 ψi(s
2
1)

(21)

The matrices An+1(sn+1n ) and Bn+1(sn+1n ) are calculated
using the following formulas:

An+1(sn+1n ) = 6SF
k,l

(
0Fk

)−1
(22)

Bn+1(sn+1n ) = 0Sl − An+1(s
n+1
n )6F,S

k,l (23)

D. EVENT AND ANOMALY DETECTION
Under normal conditions, traffic tends to seamlessly transi-
tion from one state to another. The proposed a priori densities
for the fuzzy joint s21 are designed in a such a way that salient
transitions are prevented. However, when a sporadic traffic
incident occurs it causes the model to pass from a given
switch to a relatively distant one. The severity of the incident
can be intuitively estimated based on the gap between two
consecutive switches: the higher the gap |sn+1−sn|, the more
likely an event has occurred at time n+ 1.

Routine events that occur on a regular basis correspond to
traffic jam at peak hours. These events are detected when
the estimated switch exceeds a specific threshold τ . The
threshold τ is estimated from the jam density and speed and
typically corresponds to 0.8. From a conceptual standpoint,
we should distinguish between two different types of inci-
dents: routine and sporadic. Using the proposed model, rou-
tine events can be detected nay predicted when the estimated
switch at time point n + 1 verifies the following conditions:
(i) sn+1 > τ and (ii) |sn+1 − sn| < 1, where 1 is a preset
threshold that depends on the number of discrete fuzzy levels.
For example, if there exist L fuzzy levels, and if we wish
that the model detects any consecutive switches such that
the associated gap exceeds two levels, 1 should be set to
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FIGURE 7. Traffic event detection and flow estimation using 20 fuzzy levels on site A1/9542A for the time period from 16/12/2019 06:14 until
17/12/2019 06:29.

2
L
. Sporadic events are in nature more complex to model

and foresee. Nonetheless, they can be estimated based on fair
hypotheses that correspond to real-world situations:

• Case 1: The traffic is heavy (which implies that the last
estimated switch sn > τ ). The next switch sn+1 is lower
yet still greater than τ . Such case corresponds to an event
related to one or multiple lanes that have been closed
which resulted from a car collision or a broken down
vehicle.

• Case 2: The traffic is in a road capacity flow state
which typically corresponds to switches lower than τ
and higher than

τ

2
. The estimated switch sn+1 is such

that 1n+1
n >

2
L + 2

. This may indicate an unexpected

road condition such as inclement weather, reduced visi-
bility or a sudden road closure.

Figure 5 illustrates some examples of the traffic anomalies
in which we distinguish between the two cases of traffic
incidents by the shape of the plot of switches.

VI. ONE-STEP AHEAD TRAFFIC STATE PREDICTION
To leverage the proposed CGOMFSM, we proposed a
tractable scheme for the prediction of traffic data (speed and
flow) at time index n + 1 from the historic speed data only.
In the stochastic framework considered here, it consists in
estimating E

[
Zn+1| vn1

]
, which corresponds to the expected

values of the traffic flow Vn+1 and average speed Fn+1 at
time index n + 1 from past observations vn1. Formally, this
is equivalent to computing the following

E
[
Zn+1| vn1

]
=

∫
zn+1 p

(
zn+1

∣∣vn1 ) dzn+1
=

∫
zn+1

∫∫ 1

0
p
(
zn+1, sn+1n

∣∣vn1 ) dν (sn+1n

)
dzn+1

=

∫∫ 1

0

∫
zn+1 p

(
zn+1

∣∣∣sn+1n , vn1
)

dzn+1p
(
sn+1n

∣∣vn1 ) dν
(
sn+1n

)
=

∫∫ 1

0
E
[
Zn+1| sn+1n , vn1

]
p
(
sn+1n

∣∣vn1 ) dν
(
sn+1n

)
,
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FIGURE 8. Traffic event detection and flow estimation using 20 fuzzy levels on site A1/9547A for the time period from 28/12/2019
21:29 until 29/12/2019 21:44.

denoting by dν
(
sn+1n

)
the product measure dν(sn) ⊗

dν(sn+1).
• The term E

[
Zn+1| sn+1n , vn1

]
can be calculated using (1)

by

E
[
Zn+1| sn+1n , vn1

]
= An+1(sn+1n )E

[
Zn| sn+1n , vn1

]
+ Nn+1(sn+1n ), (24)

with

E
[
Zn| sn+1n , vn1

]
=

[
E
[
Fn| sn, vn1

]
vn

]
,

• The second term can be rewritten p
(
sn+1n

∣∣vn1 ) =
p (sn+1 |sn ) p

(
sn
∣∣vn1 ), where p (sn ∣∣vn1 ) are the filtered

posterior probabilities of jumps, whose recursive calcu-
lation is detailed in (7) and (8).

Hence it is possible to predict both traffic flowE
[
Fn+1| vn1

]
and average speed E

[
Vn+1| vn1

]
in a recursive way by taking

margins of (24).

VII. EXPERIMENTAL RESULTS
The objective of this experimental study is twofold. First,
we evaluate the efficacy of the proposed traffic flow esti-

mation model using real ground truth traffic data. England
highways datasets have been used for this purpose. Second,
we evaluate the effectiveness of the model under different
penetration rates. A simulation-based study of the city of
Salalah in the Sultanate of Oman has been used for this
purpose.

A. EXPERIMENTS WITH REAL DATASETS
In this part of the experimental study, we focus on the valida-
tion of the proposed model using ground truth datasets. The
goal is to measure the extent to which the fuzzy approxima-
tion of non-linear systems pertains to highways traffic data.
For this purpose, we selected the England highways datasets
publicly available through the Motorway Incident Detection
and Automatic Signalling (MIDAS) system.1 Each MIDAS
site reports, on a regular basis of 15 minutes, the traffic
volume that corresponds to different categories of vehicles
depending on their lengths, as well as the average speed. For
the sake of simplicity, we assume the following:

1http://webtris.highwaysengland.co.uk/
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TABLE 1. One-step (15 minutes) ahead flow prediction results using CGOMFSM against baseline models. For each site, the MAPE and RMSE are reported
in the first (%) and second row respectively.

TABLE 2. Traffic flow estimation from recorded average speed using
CGOMFSM. For each site, the MAPE and RMSE are reported in the first (%)
and second row respectively.

• The traffic is homogeneous, i.e. we consider only one
category of vehicles corresponding to 0-520 cm.

• The traffic is stationary, i.e. we discard traffic states that
correspond to conspicuous outliers.

To evaluate the accuracy of the flow estimation, we consid-
ered the two error measures MAPE and RMSE defined as
follows:

MAPE =
1
T

T∑
i=1

∣∣∣∣ x̂i − xixi

∣∣∣∣
RMSE =

√√√√ 1
T

T∑
i=1

(
x̂i − xi

)2
,

where xi represents the observed flow (xi = fi) or the recorded
speed (xi = vi), x̂i represents the estimated flow (x̂i =
f̂i) or the predicted speed (x̂i = v̂i) at time point i, and T is the
observation interval.

Figure 6 shows two monitoring points situated at A1 high-
way corresponding to the sites A1/9547A and A1/9542A.
Data were collected over a time interval spanning from
01/01/2019 00:14 to: 31/12/2019 23:44, corresponding to

27418 entries of which 26000 where used for the parameter
estimation and the remainder (1418 entries) were used to test
the estimation and the prediction algorithms. Figures 7(a)
and 8(a) show the corresponding fundamental traffic flow
speed diagrams where the different fuzzy switches centroids
have been plotted to depict the distinct regimes. The results
of the proposed incident detection scheme suggest that it is
possible to infer a quantifiable traffic description using the
observed speed data only. Figures 7(b) and 8(b) show the
switches estimation and the traffic incident detection results
from the recorded speed data. The shaded areas represent
the interval of time during which the traffic incident might
have been observed. Figures 7(c), 7(d) and 8(c), 7(d) show
the results of traffic flow estimation from recorded speed and
the 15 minutes ahead prediction of the average speed using a
CGOMFSM with 20 fuzzy levels.

We studied the impact of the number of fuzzy levels on the
estimation accuracy. We varied the number of fuzzy levels L
between 0 ( hard model) and 50 for different values of the
parameter m. The results of these experiments were averaged
and compared to LSTM, ARIMA with order (1, 0, 1) and
seasonal order (1, 1, 0, 96) and random walk (RW) for traffic
speed prediction. The results of this experiments are reported
in Table 1. Similarly, we considered different values of fuzzy
levels paired with values of the parameter m and we assessed
the accuracy of traffic flow estimation. Table 2 reports the
results of this experiment.

Unsurprisingly, the estimation is more accurate for larger
fuzzy levels. However, the MAPE and the RMSE rates tend
to stabilise for a number of fuzzy levels (L > 20). Since
a higher number of fuzzy levels incurs higher computation
costs, we can consider that 20 fuzzy levels is a fair tradeoff
between estimation accuracy and computational costs.

The parameter m was varied between 0.1 and 10 with a
step of 0.1 for m < 1 and a step of 1 for m > 1. We have
noticed that the parameter m does not significantly impact
the overall accuracy of flow estimation. The obtained results
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TABLE 3. Impact of penetration rate on the traffic estimation accuracy.

TABLE 4. Impact of the penetration rate on the event detection accuracy (Detection lag: time elapsed between the event occurrence and its eventual
detection, false alarm: percentage of wrongly detected events out of the total of reported events and detection ratio: the percentage of correctly detected
events).

have not shown a direct correlation between the estimation
and prediction accuracy and the parameter m. However the
following conclusions were drawn:

• For a large number of fuzzy levels (L > 20), m > 1
provided the best estimation accuracy results.

• For a large number of fuzzy levels (L > 20), m = 1
provided the best prediction accuracy results.

• Using the hard model (L = 0), the best estimation and
prediction results were obtained using m < 1.

• The worst prediction results were obtained with m > 1
regardless of the number of fuzzy levels.

• In figure 7, the estimation and the prediction errors are
relatively higher than those observed in figure 8. This
phenomenon can be explained by the sensitivity of the
model to high variances especially when the number of
fuzzy levels is significantly high.

B. SIMULATION-BASED EXPERIMENTS OF THE IMPACT
OF THE PENETRATION RATE
Traffic in the sultanate of Oman has been a significant con-
cern due to the significant increase in the number of personal
vehicles caused by the relatively limited public transportation
service and to the surge of the number of trucks and utility
vehicles due to the rapid growth of logistic-related activities
across the country. The city of Salalah, themain city inDhofar
governorate, has been witnessing a substantial increase in
the number of vehicles over the last years, ascribable to the
diversification of the economical activities and the improve-
ment of the level of living. Furthermore, during the tourist
season ofMonsoon, the city of Salalahwitnesses a high influx
of visitors from the other governorates and the bordering
countries. These visitors travel using their private cars and
significantly increase the traffic during the season. Figure 9
shows the road network of Salalah and highlights the stretch
of the studied highway.

We used SUMO (Simulation of Urban MObility) to simu-
late traffic in the studied highways.

The objective of this study is to answer the following
questions:

FIGURE 9. Stretch of the studied highway in Salalah, Sultanate of Oman
(a) and traffic flow and average speed measures from simulations of
traffic on Salalah highway (b).

• What is the optimal penetration rate that ensures a near-
exact estimation of traffic data? The penetration rate is
defined as the percentage of sensing devices reporting
their speed. To answer this question, we varied the pen-
etration rate ρ from 1% to 10% by a step of 1%. The
results of this experiment are reported in table 3.

• Since average speed is collected on a regular basis every
15 minutes, if an incident occurs during the time interval
[tn, tn+1], how long would it take to detect the incident?
If an event occurs during an interval In how many sub-
sequent intervals will elapse before the event has been
detected? The detection time lag results are reported
in Table 4. Furthermore, we report the missed event and
the false alarm ratios. To answer this question, we ran-
domly simulated 1000 traffic incidents by blocking one
lane at different locations of the highway at distinct
times of the day.

Remarks:

• The penetration rate was simulated by a random sam-
pling of vehicles crossing the segment of interest. For
example, to obtain a penetration rate of 10%, the sam-
pling scheme consists in reporting the data from one
vehicle out of 10.

• The number of fuzzy levels considered in these series of
experiments is set to 20. The rationale for this choice is
that this number of fuzzy levels yielded accuracy results
close to F = 50 within significantly less time.

• For this experiment, we set m = 0.5.
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FIGURE 10. Traffic fundamental diagrams with the estimated fuzzy classes (red dots in (b) and labelled black dots in (c)).

FIGURE 11. Simulated traffic flow estimation (a) and 15-minutes ahead prediction of traffic speed (b), estimated switches process (c).

VIII. CONCLUSION
In this paper, we proposed a cost-effective framework for
integrated estimation and prediction of traffic state. The
proposed framework relies on a triplet model explicitly
fuzzy representing the variation of traffic over time called
CGOMFSM. Such modeling allows to rapidly detect any

anomalies that result from an abrupt state change which
likely refers to a road incident. The experimental study was
conducted at two levels. First, we evaluated the efficacy of
the CGOMFSM in terms of traffic flow estimation from
aggregated average speed as well as its ability to predict the
traffic state over a short time window. Then, we conducted
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a simulation to assess the impact of the penetration rate
(referring to the ratio of vehicles reporting their speed) on
the estimation accuracy. The main results suggest that up to
a sufficient penetration rate (around 10%), the proposed con-
ditionally Gaussian observed Markov fuzzy switching model
yields satisfactory results in terms of parameter estimation,
speed prediction and traffic flow estimation. As the exper-
imental results are very promising, the next research stage
will focus on evaluating the performance of the proposed
approach in real-world environments in collaboration with
competent authorities.

APPENDIX
CALCULATION OF MARGINAL LAW OF Ps21
The density p (s1) corresponding to the distribution Ps1 is
obtained by integrating p (s1, s2) over the interval [0, 1] w.r.t.
the measure ν:

p (s1) =
∫ 1

0
p (s1, s2) dν(s2)

= p (s1, 0)+ p (s1, 1)+ η
∫ 1

0
(1− |s1 − s2|m)ds2︸ ︷︷ ︸

A(s1)

,

with

A(s1) =
∫ s1

0
1− (s1 − s2)mds2 +

∫ 1

s1
1− (s2 − s1)mds2

= 1−
sm+11 + (1− s1)m+1

m+ 1
. (25)

Hence:

p (s1 = 0) = p (0, 0)+ p (0, 1)+A(0)=α0+β+η
m

m+1
,

p (s1 = 1) = p (1, 0)+p (1, 1)+A(1)=β+α1+η
m

m+1
,

p (s1 ∈]0, 1[) = η
(
2−

(
sm1 + (1− s1)m

)
+ A(s1)

)
,

To infer a relationship between the parameters α0, β, α1 and
η, we use the normalization condition:∫ 1

0
p (s1) dν(s1)=p(s1 = 0)+p(s1 = 1)+

∫ 1

0
p (s1) ds1=1.

Therefore, after a few calculations not reported here, we get

α0 + α1 + 2β + η
m(5m+ 11)

(m+ 1)(m+ 2)
= 1,

so that

η =
(m+ 1)(m+ 2)
m(5m+ 11)

(1− α0 − α1 − 2β) , (26)

and the model is only parametrized by 4 parameters: m, α0,
α1 and β.
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