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Filtering in Gaussian Linear Systems With
Fuzzy Switches

Zied Bouyahia , Stéphane Derrode , and Wojciech Pieczynski

Abstract—This paper presents recent results on conditionally
Gaussian observed Markov switching models by incorporating
fuzzy switches in the model, instead of hard ones. This kind of
generalization is of interest for applications involving continuous
switching regimes, such as tracking an object using cameras in
intermittent sunlight and shadow conditions. The filter developed
hereby is recursive, optimal, and exact, up to an approximation of
integrals according to some fuzzy measures. Experiences on simu-
lated and on real data—dealing with outdoor air temperature and
power consumption of a building—confirm the accuracy and effec-
tiveness of the proposed filter compared with the hard filter with
“crisp” switches.

Index Terms—Fast filtering, fuzzy switching linear model, triplet
Markov models.

NOMENCLATURE

CMSHLM Conditionally Markov switching hidden
linear model.

CGMSM Conditionally Gaussian Markov switch-
ing model.

CGOMSM Conditionally Gaussian observed
Markov switching model, a CGMSM
where (5) holds.

CGOFMSM Conditionally Gaussian observed fuzzy
Markov switching model, a CGOMSM
with fuzzy switches.

XN
1 Stochastic process of size N .

Xn, xn Random variable at time index n, and a
realization.

XN
1 , Y N

1 , RN
1 State, observation, and switch (also

called jump) processes, respectively.
Zn, T n Denotes (Xn, Yn)

ᵀ and (Xn, Rn, Yn)
ᵀ,

respectively.
K Number of switches.
m, q Dimension of the states and observa-

tions.
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E [Xn|Y n
1 = yn

1 ] Filter at time index n [also denoted
xn(y

n
1 )].

Mn(rn) Denotes E
[(

Xn, Yn

)ᵀ∣∣ rn
]
.

ν = δ0 + δ1 + μ]0,1[ Fuzzy measure on [0, 1] used, where δ
is the Dirac mass, and μ the Lebesgue
measure.

ν ⊗ ν Denotes the product of measures.

I. INTRODUCTION

L ET us consider the problem of statistical optimal fil-
tering in the presence of switches. Three stochastic se-

quences are involved: states XN
1 = (X1, . . . , XN ), switches

RN
1 = (R1, . . . , RN ), and observations Y N

1 = (Y1, . . . , YN ).
For each n = 1, . . . , N , the random variables Xn and Yn take
their values in Rm and Rq , respectively, whereas Rn takes its
values in the finite discrete set Ω = {0, 1, . . . ,K − 1}. For the
sake of simplification, we will assume in the remainder of this
paper that 1) m = q = 1, i.e., XN

1 and Y N
1 are scalar-valued

processes, and 2) that K = 2. We consider these hypotheses
only to simplify the presentation of the filtering method; the
algorithms proposed in the following can be extended to the
cases of vectorial processes and for a number of switches greater
than 2.

The problem is to sequentially estimate each Xn+1 from
Y n+1

1 . Fast recursive optimal filters compute the esti-
mated x̂n+1(y

n+1
1 ) = E[Xn+1|Y n+1

1 = yn+1
1 ] from x̂n(y

n
1 )

and yn+1. The “conditionally Gaussian linear state-space mod-
els” (CGLSSM), considered as a natural way to extend Gaussian
systems to Gaussian switching ones, do not allow for a filtering
scheme that can be performed in a reasonable running time [1]–
[5]. Classically, CGLSSMs rely on the following assumptions.

1) RN
1 is Markov.

2) XN
1 is Markov conditionally on RN

1 .
3) (Yn), 1 ≤ n ≤ N , are Gaussian, independent condition-

ally on (RN
1 ,XN

1 ) and verify

p
(
yn

∣
∣rN1 ,xN

1

)
= p (yn |rn, xn ) . (1)

In CGLSSMs, RN
1 and (RN

1 ,XN
1 ) are both Markov, and

p(yn|rN1 ,xN
1 ) is very simple. These assumptions do not allow

for exact computation of recursive filters, as (RN
1 ,Y N

1 ) is not
Markov and p (rn |yn

1 ) cannot be computed sequentially and
exactly. This problem has been addressed in recent “condition-
ally Markov switching hidden linear models” (CMSHLMs [6]),
in which both RN

1 and (RN
1 ,Y N

1 ) are Markov, and
p
(
yn

∣
∣rN1 ,xN

1

)
is pretty general. Here, we consider particular
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Fig. 1. Dependence graph of CGOMSM.

Gaussian CMSHLMs called “conditionally Gaussian observed
Markov switching models” (CGOMSMs [7]–[9]), which verify

1) RN
1 , (RN

1 ,Y N
1 ) and (XN

1 ,RN
1 ,Y N

1 ) are Markov;
2) (XN

1 ,Y N
1 ) is Gaussian conditionally on RN

1 .
Fig. 1 illustrates the dependencies between the stochastic pro-

cesses defining the studied CGOMSM. Such an approach is dif-
ferent from classic ones since the hidden chain (RN

1 ,XN
1 ) is

no longer assumed Markov, as it has been usually done. Thus,
recursive exact filtering is feasible in CGOMSM s and the inter-
esting point is that these models can be quite close to the classic
CGLSSMs [7], [10].

The values Rn+1
n = rn+1

n govern the parameters of the
distribution

p
(
xn+1, yn+1

∣
∣xn, r

n+1
n , yn

)

and thus there exist four possible transitions according torn+1
n ∈

Ω2 = {0, 1}2. The main limitation of the classical switching
model, which relies on hard switches is that it does not take into
account the transient transition between switches. In real-world
applications (c.f., Section III), the crisp transition can cause
the model to discard significant information that corresponds
to the time period during which the system switches from one
regime to another. Therefore, the hard switches modeling im-
pacts the accuracy of the filtering scheme. If we consider the
example of tracking a moving object using sensors in intermit-
tent sunlight and shadow conditions (both corresponding to hard
switches 0 and 1), there exist intermediary situations as sunlight
condition may fade into shadow in a continuous manner. Con-
sidering only the hard switches imposes the filtering method
to consider only one of the states 0 and 1 during the transi-
tion and consequently this shall compromise the accuracy of
the filtering as the system state during the transitory phase is a
mixture of the two hard switches. Thus, a more complete model
would be to associate a set of parameters to each rn+1

n ∈ [0, 1]2.
This is the very aim of the paper: we extend the Markov chain
RN

1 used in CGOMSM s to a “fuzzy” one. Such models called
“fuzzy models” have been proposed in [11] in a simple con-
text, without Markovianity, to deal with fuzzy image segmenta-
tion. Then, they have been extensively used in hidden Markov
chains [12]–[14] and hidden Markov fields [14]–[16]. Here, the
hidden fuzzy Markov chain (FMC) will be considered to model
the pair (switches and observations) in the context of filtering in
presence of jumps, which is possible as the pair (RN

1 ,Y N
1 ) is

Markov in CGOMSM s.
To the best of our knowledge, although there exist several re-

search works dealing with fuzzy Markov models, the literature

for fuzzy Markov jump model filtering is surprisingly scant de-
spite its practical potential. Recently, the discrete-time Takagi–
Sugano (T–S) approach to fuzzy filter design for Markovian
jump model has been gaining a significant interest over the last
few years—see for example [17] and[18] and the references
therein—especially in the fuzzy control and fault detection re-
search community. Unlike the T-S model, our approach assumes
that, conditionally to jumps, the model is pairwise linear, which
enriches the classical linear models. The proposed fuzzy filter
allows for exact calculations for the filter, up to numerical ap-
proximation of some integrals, as precised in the text. In the
remaining, we start with a brief description of the CGOMSM in
Section II, and pursue with the description of the original fuzzy
jump model in Section III. Sections IV and V depict how the cor-
responding “fuzzy” filter runs. Section VI reports experimental
results that show how the fuzzy filter can improve filtering from
the CGOMSM, whereas Section VII reports comparative filter-
ing result on real data.

II. CONDITIONALLY GAUSSIAN OBSERVED MARKOV HARD

SWITCHING MODEL

Let us set Zn = (Xn, Yn)
ᵀ, T n = (Xn, Rn, Yn)

ᵀ, and
assume the following.

1) TN
1 is Markov.

2) p(rn+1|tn) = p (rn+1 |rn ), which implies the Marko-
vianity of RN

1 .
3) ZN

1 = (Z1, . . . ,ZN ) is Gaussian conditionally on RN
1 .

Such a model, introduced in [8], is called “conditionally Gaus-
sian Markov switching model” (CGMSM), and is defined by
p(t1), transitions p(rn+1|rn), and

Zn+1 = An+1(r
n+1
n )Zn +Bn+1(r

n+1
n )W n+1

+Nn+1(r
n+1
n ) (2)

for n = 1, . . . , N − 1, and where
1) W n = (Un, Vn)

ᵀ with U1, V1, . . . , UN , VN Gaussian
zero-mean independent vectors with identity covariance
matrices;

2) Matrices An+1(r
n+1
n ) and Bn+1(r

n+1
n )

An+1(r
n+1
n ) =

[
a1n+1(r

n+1
n ) a2n+1(r

n+1
n )

a3n+1(r
n+1
n ) a4n+1(r

n+1
n )

]

Bn+1(r
n+1
n ) =

[
b1n+1(r

n+1
n ) b2n+1(r

n+1
n )

b3n+1(r
n+1
n ) b4n+1(r

n+1
n )

]

3) Means Nn+1(r
n+1
n ) = (NX

n+1(r
n+1
n ), NY

n+1(r
n+1
n ))ᵀ

are given by

Nn+1(r
n+1
n )=Mn+1(rn+1)−An+1(r

n+1
n )Mn(rn)

with

Mn(rn) = E

[(
Xn

Yn

)∣∣
∣
∣ rn

]
=

[
MX

n (rn)

MY
n (rn)

]
. (3)

Recursive filtering is not workable in the general CGMSM.
Besides, let us notice that the classic CGLSSM [2] is a particular
CGMSM obtained by setting, for each rn+1

n ∈ Ω2

a2n+1

(
rn+1
n

)
= a4n+1

(
rn+1
n

)
= b2n+1

(
rn+1
n

)
= 0. (4)
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However, another particular CGMSM, called “CGOMSM” ob-
tained from CGMSM by setting, for each rn+1

n ∈ Ω2 [7]–[10]

a3n+1

(
rn+1
n

)
= 0 (5)

allows for recursive optimal filtering even with switches [8].
Indeed, CGOMSM belongs to the category of “CMSHLMs” in
which recursive optimal filtering is workable [6].

The aim of this paper is to extend the CGOMSM de-
fined by (1)–(3) and (5) to a “fuzzy” CGOMSM (denoted by
CGOFMSM) and to show how the related recursive optimal
“fuzzy” filter runs.

III. CONDITIONALLY GAUSSIAN OBSERVED FUZZY MARKOV

SWITCHING MODEL (CGOFMSM)

Let us begin by illustrating with three examples the interest
of the new proposed model in real situations.

In the first example, let sequence XN
1 model the positions at

time index 1, . . . , N of a flying object, and let sequence Y N
1

model the measurements provided by some optical sensors sit-
uated on the ground. During the tracking process, the sunlight
can be partially or totally hidden due to the presence of clouds,
which gives two models for the distribution of Y N

1 . This can
be modeled by a “hard” model with RN

1 such that each Rn

takes its value in Ω = {0, 1}, with 0 corresponds to total sun-
light exposure and 1 to shadow condition. In some situations,
during cloudy weather conditions that hide the sun partially,
the transition from sunlight to shadow is “continuous,” and the
duration of “intermediary” light can be of paramount impor-
tance to the tracking process. This motivates the introduction of
“fuzzy” model with each Rn belonging to Ω = [0, 1] rather than
to Ω = {0, 1}.

However, the distribution of Rn on Ω = [0, 1] has to verify
some properties. Willing to have non-null probability to have
sunshine—and likewise for shadow—implies that there should
be two Dirac masses on 0 and 1. Then, one can complete the dis-
tribution of Rn on Ω = [0, 1] by setting continuous probability
on ]0, 1[. Finally, the distribution of Rn is defined by its density
p : [0, 1] → R with respect to ν = δ0 + δ1 + μ]0,1[, where δ0,
δ1 are Dirac’s distributions on 0, 1, and μ]0,1[ is the Lebesgue’s
measure on ]0, 1[.

Let us consider a second example dealing with pedestrian
tracking for surveillance purposes, which consists in tracking
the movements of pedestrians using aggregated data acquired
from deployed sensors in the monitored area [19]. Due to the
dynamic aspect of pedestrian motion in the presence of several
contextual information such as crowd, the use of a two-motion
model (corresponding to crowded/uncrowned configurations) is
necessary. However, the concept of “crowd” can be seen as a
fuzzy phenomenon. Hence, relying on an abrupt change of pa-
rameters within the two-jump scheme does not take into account
the intermediate states of pedestrian motion and impacts the ac-
curacy of the tracking process. Another example of the same
problem relates to car traffic speed and density in a road seg-
ment [20].

A last example showing the potential interest of a fuzzy model
appears when we want to study the phenomenon associated to
outdoor air temperature. Typically, during one day, temperature

reaches minimal values during the night and maximal during
the afternoon. Between these two ranges, temperatures increase
and decrease and can be represented by the fuzzy nature of the
jumps considered in our model. An example of such a situation
is detailed in Section VII.

From this perspective, the use of fuzzy transitions to model the
transient change of parameters is more relevant than the salient
switching model. The definition of the new “CGOFMSM” we
propose is similar to (1)–(3) and (5), except that we limit our
study to two hard classes and each Rn takes its values in Ω =
[0, 1].

Definition 1: Let XN
1 , Y N

1 , and RN
1 be three stochastic

sequences of random variables taking their values in R, R,
and [0, 1], respectively. The triplet TN

1 = (T 1, . . . ,TN ), with
T n = (Xn, Rn, Yn)

ᵀ, will be said “CGOFMSM” if
1) TN

1 verifies (1)–(3) and (5);
2) The distribution of each Rn is defined by a density

(possibly depending on n) p : [0, 1] → R with respect to
ν = δ0 + δ1 + μ]0,1[, where δ0, δ1 are Dirac’s distribu-
tions on 0, 1, and μ]0,1[ is the Lebesgue’s measure on
]0, 1[.

Let us recall some basic rules for integrating a function with
respect to ν = δ0 + δ1 + μ]0,1[. Such integration has two com-
ponents: sum of its values on 0, 1, and “classic” integration over
]0, 1[. More precisely, for any function φ : [0, 1] → R, we have

∫ 1

0

φ(r)dν(r) =

∫ 1

0

φ(r)(δ0 + δ1 + μ]0,1[)

= φ(0) + φ(1) +

∫ 1

0

φ(r)dr. (6)

In particular, the expectation of φ(Rn) is written

E [φ(rn)] =

∫ 1

0

φ(r)p (r) dν(r) = φ(0)p (0)

+ φ(1)p (1) +

∫ 1

0

φ(r)p (r) dr. (7)

The distribution of an FMC RN
1 is defined by the density

p (r1) and the conditional densities p (rn+1 |rn ). All of them
are thus defined on Ω = [0, 1] and are densities w.r.t. ν =
δ0 + δ1 + μ]0,1[. According to the general integration w.r.t. ν
rule in (6), we have

∫ 1

0

p (r1) dν(r1) = p (0) + p (1) +

∫ 1

0

p (r1) dr1 = 1 (8)

and

p (rn+1) =

∫ 1

0

p (rn) p (rn+1 |rn ) dν(rn)

= p (0) p (rn+1 |0) + p (1) p (rn+1 |1)

+

∫ 1

0

p (rn) p (rn+1 |rn ) drn. (9)

Finally, optimal filtering in “fuzzy” CGOFMSM is not very
different from that in “hard” CGOMSM, the difference being
that, in CGOMSM, integrating with respect to rn consists in
summing, while in CGOFMSM, it consists of integrating with
respect to ν.
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IV. OPTIMAL FUZZY SWITCHING RECURSIVE FILTER (OFSRF)

We wish to compute p(rn+1|yn+1
1 ), E[Xn+1|rn+1,y

n+1
1 ],

and E[X2
n+1|rn+1,y

n+1
1 ] from p(rn|yn

1 ), E[Xn|rn,yn
1 ],

E[X2
n|rn,yn

1 ], and yn+1. According to (2) and (5), (RN
1 ,Y N

1 ) is
a hidden Markov chain, which makes possible the computation
of p

(
rn+1

∣
∣yn+1

1

)
as explained below.

First, let us note that the probabilities

p
(
rn+1
n , yn+1 |yn

1

)

= p
(
yn+1

∣
∣rn+1

n , yn
)
p (rn |yn

1 ) p (rn+1 |rn ) (10)

can be calculated since
1) p(rn+1|rn) are given;
2) p(rn|yn

1 ) can be calculated from(13);
3) p(yn+1|rn+1

n , yn) are conditional densities of the
multivariate Gaussians defined by (2). Taking into ac-
count (5), by using [21, Sec. 8.1.3, p. 40], we obtain
means and variances of a4n+1(r

n+1
n )(yn −MY

n (rn)) +
MY

n+1(rn+1) and (b3n+1(r
n+1
n ))2 + (b4n+1(r

n+1
n ))2,

respectively.
Second, the following probabilities:

p (yn+1 |yn
1 )=

∫∫ 1

0

p
(
rn+1
n , yn+1 |yn

1

)
(dν(rn)⊗ dν(rn+1))

(11)
can also be computed accordingly

p
(
rn+1
n

∣
∣yn+1

1

)
=

p
(
rn+1
n , yn+1 |yn

1

)

p (yn+1 |yn
1 )

. (12)

Finally, using (10), (12) gives the so-called forward probabilities

p
(
rn+1

∣
∣yn+1

1

)
=

∫ 1

0

p
(
rn+1
n

∣
∣yn+1

1

)
dν(rn)

×

∫ 1

0

p
(
rn+1
n , yn+1 |yn

1

)
dν(rn)

p (yn+1 |yn
1 )

. (13)

In addition, for the later use, note that

p
(
rn

∣
∣rn+1,y

n+1
1

)
=

p
(
rn+1
n

∣
∣yn+1

1

)

p
(
rn+1

∣
∣yn+1

1

) . (14)

The “OFSRF” we proposed consists of five steps outlined as
follows. To start the iterations, we first use the distribution of
T 1. It is then possible to run the OFSRF iterations, assuming
that all quantities have been computed for sample n

1) Compute p
(
rn+1

∣
∣yn+1

1

)
with (12) and (13).

2) Compute E[Zn+1|rn+1
n ,yn

1 ] and Var[Zn+1|rn+1
n ,yn

1 ].
From (2), we have

E
[
Zn+1| rn+1

n ,yn
1

]

= An+1(r
n+1
n )E

[
Zn| rn+1

n ,yn
1

]
+Nn+1(r

n+1
n ).

(15)

Recalling that Rn+1 and Zn are independent condition-
ally on Rn (Condition 2 in the definition of CGMSM),

we have

E
[
Zn| rn+1

n ,yn
1

]
=

[
E [Xn| rn,yn

1 ]

yn

]
.

In addition, using (2) and from classical calculations
detailed in Appendix C, we have

Var
[
Zn+1

∣
∣rn+1

n ,yn
1

]

= Bn+1(r
n+1
n )Bᵀ

n+1(r
n+1
n )

+An+1(r
n+1
n )Var

[
Zn

∣
∣rn+1

n ,yn
1

]
Aᵀ

n+1(r
n+1
n )

= Bn+1(r
n+1
n )Bᵀ

n+1(r
n+1
n )

+An+1(r
n+1
n )Var [Zn |rn,yn

1 ]A
ᵀ
n+1(r

n+1
n ).

(16)

For the later convenience, let us note

Var
[
Zn+1

∣
∣rn+1

n ,yn
1

]
=

[
αn+1(r

n+1
n ) βn+1(r

n+1
n )

ξn+1(r
n+1
n ) δn+1(r

n+1
n )

]
.

3) From the multivariate normal distribution specified
by (15) and (16), compute the parameters E[Xn+1|rn+1

n ,
yn+1
1 ] and E[X2

n+1|rn+1
n ,yn+1

1 ] of its marginal Xn+1|
yn+1, r

n+1
n (see [21, Sec. 8.1.3, p. 40]) according to

E
[
Xn+1| rn+1

n ,yn+1
1

]

= E
[
Xn+1| rn+1

n ,yn
1

]
+

βn+1(r
n+1
n )

δn+1(r
n+1
n )

× (
yn+1 − E

[
Yn+1| rn+1

n ,yn
1

])
(17)

with E[Xn+1|rn+1
n ,yn

1 ] and E[Yn+1|rn+1
n ,yn

1 ] given by
(15), and

E
[
X2

n+1

∣
∣ rn+1

n ,yn+1
1

]

= E2
[
Xn+1| rn+1

n ,yn+1
1

]
+ αn+1(r

n+1
n )

− βn+1(r
n+1
n )

δn+1(r
n+1
n )

ξn+1(r
n+1
n ). (18)

4) Compute E[Xn+1|rn+1,y
n+1
1 ] and E[X2

n+1|rn+1,

yn+1
1 ] using (14) with

E
[
Xn+1| rn+1,y

n+1
1

]
=

∫ 1

0

E
[
Xn+1| rn+1

n ,yn+1
1

]
p

× (
rn

∣
∣rn+1,y

n+1
1

)
dν(rn)

(19)

E
[
X2

n+1

∣
∣ rn+1,y

n+1
1

]
=

∫ 1

0

E
[
X2

n+1

∣
∣ rn+1

n ,yn+1
1

]
p

× (
rn

∣
∣rn+1,y

n+1
1

)
dν(rn).

(20)

(5) Finally, compute the filtering equations

E
[
Xn+1|yn+1

1

]

=

∫ 1

0

E
[
Xn+1| rn+1,y

n+1
1

]
p
(
rn+1

∣
∣yn+1

1

)
dν(rn+1)

(21)
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and

E
[
X2

n+1

∣
∣yn+1

1

]

=

∫ 1

0

E
[
X2

n+1

∣
∣ rn+1,y

n+1
1

]
p
(
rn+1

∣
∣yn+1

1

)
dν(rn+1).

(22)

Remark 1: Integration with respect toν above cannot be writ-
ten in a closed-form formula. It is, then, approximated by numer-
ical integration. Let F denote the number of discrete steps used
to compute integrals on ]0, 1[. The impact ofF on the restoration
results will be discussed in the experimental section.

V. MODEL PARAMETRIZATION

In order to assess the interest of the filtering algo-
rithm on CGOFMSM simulated data, we will consider sta-
tionary CGOFMSM models, with distribution defined by
p
(
x2
1, r

2
1,y

2
1

)
= p

(
r21

)
p
(
x2
1,y

2
1

∣
∣r21

)
. Thus, we have to de-

fine p
(
r21

)
(see Section V-A) and p

(
x2
1,y

2
1

∣
∣r21

)
(see Section

V-B). Thanks to the particular structure of ν, this can be done in
such a way that when the fuzziness disappears, it is to say when
p (rn) = 0 on ]0, 1[ for n = 1, . . . , N , a CGOFMSM becomes
a classical CGOMSM.

A. Distribution of (R1, R2)

Let us notice that in the “hard” case with two possible
switches, the distribution P(R1,R2) is simply a probability over
{0, 1}2. In the fuzzy case we deal with, it is a distribution on
[0, 1]2, which provides a wide range of possibilities for choosing
its shape. We next describe two possible shapes of interest for
P(R1,R2) (called FMC1 and FMC2 models, where FMC stands
for “Fuzzy Markov Chain”), that will be experimented in the
next section.

1) First Case (FMC1 Model): The density p
(
r21

)
of P(R2

1)

w.r.t. ν ⊗ ν—where ν = δ0 + δ1 + μ]0,1[—is of the form

p(0, 0) = p(1, 1) = α

p(1, 0) = p(0, 1) = β

p(r1, r2) = η + (δ − η) |r1 − r2|
for (r1, r2) ∈ [0, 1]2 \ {0, 1}2

with
∫∫ 1

0 p(r1, r2) dν(r1) dν(r2) = 1. A possible shape for this
density is illustrated in Fig. 2.

Remark 2: We obtain a “fuzzy constant” model by setting
δ = η and, in particular, we get a “purely hard” CGOMSM
model by setting δ = η = 0.

The density p (r1) of P(R1) is computed as follows:

p(r1) =

⎧
⎪⎪⎨

⎪⎪⎩

α+ β + δ+η
2 if r1 = 0

α+ β + δ+η
2 if r1 = 1

3
2 (δ + η) + (δ − η)(r21 − r1) if r1 ∈]0, 1[

. (23)

Knowing that
∫ 1

0 p(r1) dν(r1) = 1, we get

β =
1− 5

2 (δ + η) + 1
6 (δ − η)

2
− α. (24)

Fig. 2. Density p (r1, r2) for (a) the FMC1 model [parameters: α = 0.10,
η = 0.21, δ= 0.076 (β = 0.03, pH = 0.55)] and (b) the FMC2 model [param-
eters: α = 0.15, γ = 0.60, δ = 0.20 (β = 0.0, pH = 0.54).].

Hence, this model is only parametrized by {α, δ, η} (the calcu-
lations are detailed in Appendix A).

The limit proportion of hard data (pH ) with respect to fuzzy
ones (pF ) in a sampled sequence is

pH = p(0) + p(1) = 2(α+ β) + (δ + η)

pF = 1− pH =
3

2
(δ + η)− 1

6
(δ − η). (25)

The density p(r2|r1) of distribution PR2|R1
, w.r.t. ν, is the

ratio between the joint density and the marginal density. We
have to distinguish between different cases, according to the
value of r1

p(r2|r1 = 0) =

⎧
⎪⎪⎨

⎪⎪⎩

α
D1

if r2 = 0

β
D1

if r2 = 1

η+(δ−η)r2
D1

if r2 ∈]0, 1[
(26)

p(r2|r1 = 1) =

⎧
⎪⎪⎨

⎪⎪⎩

β
D1

if r2 = 0

α
D1

if r2 = 1

δ+(η−δ)r2
D1

if r2 ∈]0, 1[
(27)

p(r2|r1 ∈]0, 1[) =

⎧
⎪⎪⎨

⎪⎪⎩

η+(δ−η)r1
D2

if r2 = 0
δ+(η−δ)r1

D2
if r2 = 1

η+(δ−η)|r1−r2|
D2

if r2 ∈]0, 1[
(28)
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with D1=α+ β + δ+η
2 and D2=

3
2 (δ+ η)+ (δ− η)(r21 − r1).

For the particular case where δ = η = 0, we have a classical
Markov chain with two states, and p(r2|r1) writes

p(r2|r1 = 0) =

{
α

α+β if r2 = 0

β
α+β if r2 = 1

(29)

p(r2|r1 = 1) =

{
β

α+β if r2 = 0

α
α+β if r2 = 1

. (30)

2) Second Case (FMC2 Model): The density p
(
r21

)
ofP(R2

1)

w.r.t. ν ⊗ ν is of the form

p(0, 0) = p(1, 1) = α

p(1, 0) = p(0, 1) = β

γ for r1, r2 ∈ [0, 1]2 \ {0, 1}2 and − δ ≤ r2 − r1 ≤ δ

0 elsewhere

with α, β ≥ 0, 0 ≤ δ < 1
2 , and under the constraint that

∫∫ 1

0 p(r1, r2) dν(r1) dν(r2) = 1. A possible shape for this den-
sity is illustrated in Fig. 2. By varying δ, this model allows ex-
pressing transient fuzzy changes.

Remark 3: If α+ β = 1
2 , then γ = 0, and the joint law is

only made of the four Dirac’s distributions at the four corners,
which gives a CGOMSM.

The density p (r1) of P(R1) is computed as follows:

p(r1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

α+ β + γδ if r1 = 0

γ(δ + r1 + 1) if r1 ∈]0, δ]
2γδ if r1 ∈]δ, 1− δ[

γ(2 + δ − r1) if r1 ∈ [1− δ, 1[

α+ β + γδ if r1 = 1

. (31)

Since
∫ 1

0 p(r1) dν(r1) = 1, we get

β =
1− γM

2
− α (32)

with M = δ(6− δ), and under the constraint that γ ≤ 1−2α
M .

Hence, this model is only parametrized by (α, γ, δ).
The limit proportion of hard data (pH ) to fuzzy ones (pF ) in

a sampled sequence is

pH = p(0) + p(1) = 2(α+ β + γδ)

pF = 1− pH = γδ(4− δ). (33)

The density p(r2|r1) of distribution PR2|R1
, w.r.t. ν, is the

ratio between the joint density and the marginal density. Simi-
larly to the first case, we have to distinguish between different
configurations, according to the value of r1

p(r2|r1 = 0) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α
α+β+γδ if r2 = 0

γ
α+β+γδ if r2 ∈]0, δ]

β
α+β+γδ if r2 = 1

0 elsewhere

(34)

p(r2|r1 ∈]0, δ]) =

⎧
⎪⎪⎨

⎪⎪⎩

1
δ+r1+1 if r2 = 0

1
δ+r1+1 if r2 ∈]0, r1 + δ]

0 elsewhere

(35)

p(r2|r1 ∈]δ, 1− δ[) =

{
1
2δ if r2 ∈]r1 − δ, r1 + δ[

0 elsewhere
(36)

p(r2|r1 ∈ [1− δ, 1[) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2+δ−r1

if r2 ∈ [r1 − δ, 1[

1
2+δ−r1

if r2 = 1

0 elsewhere

(37)

p(r2|r1 = 1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β
α+β+γδ if r2 = 0

γ
α+β+γδ if r2 ∈ [1− δ, 1[

α
α+β+γδ if r2 = 1

0 elsewhere

. (38)

Remark 4: In the two examples of fuzzy Markov models, we
assume that the distribution P(R1,R2) is defined by four masses
on the corners, i.e., at locations {0, 1} × {0, 1}, and a density
on the remaining [0, 1]2 \ {0, 1}2. It is to say that we assume
the distributions on the sides of the square [0, 1]× [0, 1], i.e., the
distributions P(0,R), P(1,R), P(R,0), and P(R,1) for R in [0,1], to
be identical to the inner density of the square. This is a particular
case, used here to simplify the parametrization, since we can set
them independently.

B. Distributions of (X2
1,Y

2
1) Conditional on R2

1

To finalize the description of stationary (XN
1 ,RN

1 ,Y N
1 ),

we need to define the four-dimensional Gaussian distributions
p
(
x2
1,y

2
1

∣
∣r21

)
= p

(
z2
1

∣
∣r21

)
for r1, r2 ∈ [0, 1]. The means and

covariance matrices of the four “hard Gaussians” corresponding
to r1 = i, r2 = j, with i, j ∈ {0, 1}, are given by

μi,j = E

[
z1

z2

∣
∣
∣
∣ r1 = i, r2 = j

]

=

⎡

⎢
⎢
⎢
⎣

E

[
x1

y1

∣
∣
∣
∣ r1 = i

]

E

[
x2

y2

∣
∣
∣
∣
∣
r2 = j

]

⎤

⎥
⎥
⎥
⎦
=

[
M i

M j

]
(39)

and

Γi,j =

⎡

⎢
⎢
⎢
⎣

(σX
i )2 bi aij dij

bi (σY
i )2 eij cij

aij eij (σX
j )2 bj

dij cij bj (σY
j )2

⎤

⎥
⎥
⎥
⎦

(40)

with dij = bicij in order to verify (5), i.e., for the model to be a
CGOMSM.

The mean of a “fuzzy Gaussians” with r1 ∈]0, 1[ is defined
by linear interpolation of M i and M j

M r1 = (1− r1)M0 + r1M1 (41)
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and its covariance matrix with r1, r2 ∈]0, 1[ is defined by bilinear
interpolation of the “hard covariance matrices” Γi,j

Γr2
1
= (1− r1)(1− r2)Γ0,0 + r1r2Γ1,1

+ r1(1− r2)Γ1,0 + r2(1− r1)Γ0,1. (42)

Then, according to (2), we have

Zn+1 = A(rn+1
n )Zn +B(rn+1

n )W n+1 +N(rn+1
n ) (43)

with N(rn+1
n ) = M rn+1

−A(rn+1
n )M rn , and

A(rn+1
n ) =

[
arn+1

n
ern+1

n

drn+1
n

crn+1
n

][
(σX

rn
)2 brn

brn (σY
rn
)2

]−1

B(rn+1
n ) =

[
(σX

rn+1
)2 brn+1

brn+1
(σY

rn+1
)2

]−1

(44)

−A(rn+1
n )

[
arn+1

n
drn+1

n

ern+1
n

crn+1
n

]
. (45)

Additionally, for the later use, note that, according to (43), we
have

p
(
zn+1

∣
∣zn, r

n+1
n

)
=N (

A(rn+1
n )(zn −M rn)

+M rn+1
,B(rn+1

n )Bᵀ(rn+1
n )

)
. (46)

Remark 5: Fuzzy means (41) and variances (42) can be seen
as linear interpolations of hard ones. Other kind of interpola-
tions can be used, once they are compatible with the “hard”
CGOMSM.

VI. EXPERIMENTAL STUDIES

Experiments below report results of restoration on simu-
lated data—using the two joint laws presented in the previ-
ous section—in order to measure the quality of the OFSRF
restoration algorithm, and the influence of the number of dis-
cretization steps F in approximation of integrals. Comparison
is also performed with the “hard” CGOMSM to measure the
error in using this model when there exist transient changes in
data.

A. Simulations of a CGOFMSM Sample

To simulate a CGOFMSM (XN
1 , RN

1 , Y N
1 ) sample, we first

simulate an FMC rN1 , and then simulate the observations and
states (yN

1 ,xN
1 ).

To draw a sample from the FMC, we first simulate r1 using
p (r1), and then, for each n = 1, . . . , N − 1, rn+1 is obtained
from p (rn+1 |rn ), which is equal to p (r2 |r1 ). For each rn+1 to
be simulated, we first decide if the jump will be a “hard” one or a
“fuzzy” one. To do so, a draw is performed beforehand according
to the proportion of hard and fuzzy jumps. Let us explain in detail
the simulation process based on the FMC2 model, the procedure
is the same for the FMC1 model.

1) Simulation of r1. First, make a draw according to the pro-
portion in (33) to determine if the sample will be a “hard”
one or a “fuzzy” one.

Fig. 3. Two excerpt of trajectories simulated from the two fuzzy models with
the parameters of Fig. 2 for the FMC1 model (a) and for the FMC2 model (b).

a) If it is hard, then, using (31), make a draw according
to the probability vector [ 12 ,

1
2 ], to determine if the

sample is “0” or “1.”
b) If it is fuzzy, then make a draw according to the

density specified by the three equations in (31) cor-
responding to r1 ∈]0, 1[. The target density is not
trivial because of the slopes in its shape, but most of
specialized random number generation libraries of-
fer a solution for sampling such density (e.g., library
“scipy” in Python language).

2) Simulation of rn+1, knowing rn. Let us assume rn = 0,
the other possible values of rn can be processed similarly.

a) According to (34), first make a draw according to the
probability vector [αS ,

β
S ,

γ
S ], with S = α+ β + γδ,

to determine if rn+1 will be “0,” “1” or “fuzzy.”
b) If it is fuzzy, then make a uniform draw on ]0, δ[ to

get rn+1.
Fig. 3 shows two excerpts of simulated trajectories corre-

sponding to the FMC1 and FMC2 models (green plain line).
Then, knowing (rn, rn+1) and (xn, yn), each pair

(yn+1, xn+1) is sampled from Gaussian distributions (46)
whose parameters are obtained by (41) and (42). For experi-
ments conducted hereafter, we set the “hard” mean vectors and
covariance matrices to be

M0 =

[
0
3

]
,M1 =

[
0
0

]

Authorized licensed use limited to: Telecom SudParis ( Frmly Telecom et management SudParis INT). Downloaded on August 05,2020 at 05:58:04 UTC from IEEE Xplore.  Restrictions apply. 



BOUYAHIA et al.: FILTERING IN GAUSSIAN LINEAR SYSTEMS WITH FUZZY SWITCHES 1767

and

Γ0,0 =

⎡

⎢
⎢
⎢
⎣

0.5 0.3 0.1 0.06

0.3 1.0 0.35 0.4

0.1 0.35 0.5 0.3

0.06 0.4 0.3 1.0

⎤

⎥
⎥
⎥
⎦

Γ0,1 =

⎡

⎢
⎢
⎢
⎣

0.5 0.3 0.5 0.14

0.3 1.0 0.33 0.6

0.5 0.33 0.75 0.3

0.14 0.6 0.3 0.5

⎤

⎥
⎥
⎥
⎦

Γ1,0 =

⎡

⎢
⎢
⎢
⎣

0.75 0.3 0.1 0.24

0.3 0.5 0.35 0.4

0.1 0.35 0.5 0.3

0.24 0.4 0.3 1.0

⎤

⎥
⎥
⎥
⎦

Γ1,1 =

⎡

⎢
⎢
⎢
⎣

0.75 0.3 0.5 0.18

0.3 0.5 0.33 0.3

0.5 0.33 0.75 0.3

0.18 0.3 0.3 0.5

⎤

⎥
⎥
⎥
⎦
.

B. Restoration Results

The restoration of simulated data is performed according to
the OFSRF algorithm detailed in Section IV, from simulated
observations only. Fig. 4 shows an example of the restoration of
rN1 and xN

1 for the FMC2 law and when the number of discrete
fuzzy jumps are set toF = 5. The restoration ofrN1 was obtained
by applying maximum posteriori mode (MPM) principle.

1) If p (rn = 0 |yn
1 ) + p (rn = 1 |yn

1 ) > 0.5, then the
restoration will be “hard,” else it will be “fuzzy.”

2) If the restoration is “hard,” set r̂n to be “0” if
p (rn = 0 |yn

1 ) > p (rn = 1 |yn
1 ), else set r̂n to be “1.”

3) If the restoration is “fuzzy,” set r̂n to the discrete fuzzy
jump, which maximizes p (rn |yn

1 ).
Note however that the restoration of rN1 is only performed

for illustration purpose and is not required for the restoration of
xN
1 . We can observe the numerical effect of F with the presence

of stair-steps in the restoration of jumps in Fig. 4(b). Fig. 4(a)
shows the restoration of xN

1 assuming that the jumps are known
(i.e., using the simulated FMC forrN1 ). Fig. 4(c) assumes that the
jumps are unknown (OFSRF algorithm). Additionally, Fig. 4(c)
allows to observe the restoration difference between the “clas-
sic” CGOMSM and the “fuzzy” CGOFMSM, the latter follows
the simulated states better than the first one for n ≤ 30. This
behavior must be compared with that of the fuzzy jumps in
Fig. 4(b), which shows a large difference in the restoration of
jumps when n ≤ 30.

To measure the quality of restorations with respect to F ,
we compute the mean MSE of 50 independent experiments of
N = 300 samples, for the FMC1 Markov law. Fig. 5 shows the
MSE evolution for increasing values of F for both xN

1 and rN1 .
The result of applying the CGOMSM filter on the data is re-
ported in the same graph (horizontal black dotted line, denoted
as “Hard filter—UJ”). The parameters used for the hard filters
are same as the ones used for the fuzzy filter, except that we
“harden” the Markov laws by integrating the fuzzy laws on all

Fig. 4. Comparison of restoration of jumps and states when F = 5, for simu-
lated data from the FMC2 law with the same parameters as in Fig. 2 (N = 80).
“KJ” stands for known jumps and “UJ” for unknown jumps. The difference
between the hard filter and the fuzzy one is clearly visible in (c), for n < 30.
(a) Restoration of states with KJ. The MSEs for CGOFMSM and CGOMSM are
0.35 and 0.75. (b) MPM restoration of fuzzy jumps. The MSEs for CGOFMSM
and CGOMSM are 0.03 and 0.11. (c) Restoration of states with UJ. The MSEs
for CGOFMSM and CGOMSM are 0.47 and 0.54.

four quadrants of [0, 1] to get P (R1, R2). In this figure, we can
observe that the excess error over the model with known jumps is
halved. Additionally, the state MSE reaches its minimum when
F > 3; this value depends on the fuzzy Markov model and on
its parameters. According to some other experiments not re-
ported here, F is always kept relatively small (typically F ≤ 5),
which is of interest since the larger F is, the more the comput-
ing time increases. Indeed, the complexity is linear w.r.t. to F ,
which is to say that the computational burden of CGOFMSM is
approximately the same as the one of CGOMSM with 2 + F
jumps.
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Fig. 5. Evolution of jump (up) and state (down) MSEs according to the value of
the discrete fuzzy stepsF (means of 50 experiments ofN = 300 samples) for the
FMC1 Markov law. Jumps MSEs were computed from an MPM classification.
Parameters: α = 0.07, η = 0.16, δ = 0.05 (β = 0.158, pH = 0.69).

TABLE I
EVOLUTION OF MSES w.r.t. TO THE PERCENTAGE OF HARD DATA IN THE

SAMPLES FOR THE FCM1 (F = 4) AND FMC2 (F = 10) MODELS

Jumps MSEs were computed from an MPM classification. Results are means of 20
independent experiments of N = 1000 data.

The last experiment, whose results are reported in Table I
for the FMC1 and FMC2 laws, shows the restoration MSE for
the CGOMSM and the CGOFMSM filters when the number of
fuzzy samples in the simulated data is decreasing (by adjusting
parameter’ values). We can observe that, for both fuzzy Markov
models, the hard filter reaches the performance of the fuzzy filter
only when the percent of hard jumps is near 100%. Elsewhere the
fuzzy filter provides lower MSE, and the difference can be very
large for hard sample rates lower than 50%. This result confirms
the interest of the fuzzy filter in comparison with the hard one
in the presence of transient changes in observation data.

VII. ILLUSTRATION ON REAL DATA

This section intends to illustrate the behavior of the proposed
algorithm when confronted to real data. The experimental data
are a time series representing the energy power (in kilowatt)
consumed by some building along with the outdoor temperature
(in Fahrenheit).1 We try to understand to what extend the fuzzy
model is able to infer the consumed energy from the outdoor
temperature for some building during the first week of June
2010, c.f., Fig. 6.

1This time series, collected by the American Department of En-
ergy, is open-data and can be downloaded for free. [Online]. Avail-
able: https://openei.org/datasets/dataset/consumption-outdoor-air-temperature-
11-commercial-buildings. The experiments focus on building #5.

Fig. 6. Outdoor temperature (blue) and energy power consumed (red) by some
building during the first week of June 2010 (source: American DOE).

Thus, outdoor temperature is considered as the observation
(Y N

1 ), and the consumed power energy as the state (XN
1 ), to

be estimated, with N = 672. The fuzzy filter requires to know
the jumps RN

1 to estimate the best-suited parameters for data.
Regardless the data, we have fixed that the lowest temperature
appears between 1 and 5 am (corresponding to hard jump “0”),
and that the highest appear between 1 and 5 pm (correspond-
ing to hard jump “1”). Between these ranges, temperatures in-
crease and decrease linearly and are represented by the fuzzy
nature of the jumps considered in this model. The shape of the
observations suggests that a fuzzy model is better suited than
a hard model (we choose to use the FMC1 model). From this
pseudo ground-truth for jumps, using classical empirical esti-
mators, it is possible to estimate all the required parameters of
the model: on the one hand, mean values and covariance matri-
ces of (XN

1 ,Y N
1 ) conditionally jumps for the two hard jumps,

and, on the other hand, the α, β, η, and δ parameters required to
define the law of RN

1 .
The results of fuzzy and hard filtering are reported in red in

Figs. 7 and 8, respectively. For the fuzzy filtering, we consid-
ered F = 5 because it gives good results while maintaining low
computation times. The MSE of estimated states with respect to
the true consumed power energy is 8701 for the hard model, and
6759 for the fuzzy model. Regarding the jumps, the MSE is 0.13
for the hard model, and 0.07 for the fuzzy one. The better results
obtained with the fuzzy model w.r.t. the hard one are illustrated
by both the estimated jumps and the estimated consumed power
energy.
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Fig. 7. Filtering result with estimated jumps (up) and estimated states (down)
for the fuzzy model with F = 5. The MSE for jumps is 0.07, while the MSE
for states is 6759.

Fig. 8. Filtering result with estimated jumps (up) and estimated states (down)
for the hard model. The MSE for jumps is 0.13, while the MSE for states is
8701.

VIII. CONCLUSION

We proposed a new jump Markov model made of a triplet
random process (observations, hidden states, and hidden fuzzy
switches), and designed the related optimal recursive fuzzy filter,
which is able to restore switches and states from observations.
We called this model “CGOFMSM.” This paper is based on two
key ideas.

1) A recursive and exact filter to deal with hard jumps, called
CGOMSM, is available, see [7]–[10]. This filter only as-
sumes the presence of a zero-term (5) in the transition
matrix of the very general CGMSM defined by (2).

2) The definition of a mixed measure including two Dirac
masses for hard classes “0” or “1” and a Lebesgue mea-
sure to deal with fuzziness. It should be noted that integral
calculations required some simple and low-time consum-
ing numerical approximation.

We showed through an experimental study that the proposed
model and its filter provide interesting results in terms of data
restoration accuracy. This behavior is confirmed when the model
is confronted to real data dealing with outdoor air temperature.
In that case, the fuzzy jumps allow a better modeling of the
increasing and decreasing air temperature cycle during one day.

In this paper, we assume scalar states and scalar observa-
tions for notation convenience; the extension to a vectorial filter
is somewhat straightforward, using matrix products. However,
the extension of the filter to three and more classes is not as
easy, with quite complex fuzzy Markov laws to deal with, but
could be inspired from the work [22]. The next step in the de-
velopment of an unsupervised parameter estimation method for
this CGOFMSM—similar to the one proposed for the “hard”
model [23]—is the derivation of a fuzzy smoother for offline
processing. Application of the fuzzy model to deal with the de-
sign of a control system for road traffic congestion prediction in
which traffic dynamics would be modeled by a switching regime
model is another perspective for further work.

APPENDIX

CALCULATION REGARDING THE FMC1 MODEL

Here are the details to specify the margin p (r1) and
the parameter β from the joint density p (r1, r2) defined in
Section V-A1.

A. Calculation for Margin Law p(r1)

The density p(r1) of distribution PR1
, w.r.t. ν, is obtained by

p(r1) =

∫ 1

0

p(r1, r2) dν(r2) = p(r1, 0) + p(r1, 1)

+

∫ 1

0

η + (δ − η) |r1 − r2| dr2
︸ ︷︷ ︸

A(r1)

with

A(r1) = η + (δ − η)

∫ 1

0

|r1 − r2| dr2
︸ ︷︷ ︸

B(r1)=B1(r1)+B2(r1)

and

B1(r1) =

∫ r1

0

(r1 − r2) dr2 = r21 −
1

2
r21 =

1

2
r21

B2(r1) =

∫ 1

r1

(r2 − r1) dr2

=
1

2
(1− r21)− r1(1− r1) =

1

2
(1 + r21)− r1.

Thus, we have B(r1) =
1
2 + r21 − r1, and A(r1) = η + (δ −

η)( 12 + r21 − r1).
So, for r1 = 0, p(r1) = α+ β +A(O) = α+ β + δ+η

2 , for
r1 = 1, p(r1) = α+ β +A(1) = α+ β + δ+η

2 , and for r1 ∈
]0, 1[

p(r1) = η + (δ − η)r1 + η + (δ − η)(1− r1) + η
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+ (δ − η)

(
1

2
+ r21 − r1

)

= 3η + (δ − η)
3

2
+ (δ − η)(r21 − r1)

=
3

2
(δ + η) + (δ − η)(r21 − r1).

Hence, we get (23).

B. Calculation of β

We have
∫ 1

0

p(r1) dν(r1) = p(0) + p(1) +

∫ 1

0

p(r1) dr1

= 2(α+ β) + (δ + η)

+

∫ 1

0

3

2
(δ + η) + (δ − η)(r21 − r1) dr1

︸ ︷︷ ︸
C=C1+C2

with

C1 =

∫ 1

0

3

2
(δ + η) dr1 =

3

2
(δ + η)

C2 = (δ − η)

∫ 1

0

(
r21 − r1

)
dr1 = −1

6
(δ − η).

Knowing that
∫ 1

0 p(r1) dν(r1) = 1, we get 2(α+ β) + (δ +
η) + 3

2 (δ + η)− 1
6 (δ − η) = 1, and find result in (24).

C. Calculation to Get (16)

From

Var
[
Zn+1

∣
∣rn+1

n ,yn
1

]
= E

[
Zn+1Z

ᵀ
n+1

∣
∣ rn+1

n ,yn
1

]

− E
[
Zn+1| rn+1

n ,yn
1

]
E
[
Zᵀ

n+1

∣
∣ rn+1

n ,yn
1

]

we have

E
[
Zn+1Z

ᵀ
n+1

∣
∣ rn+1

n ,yn
1

]

= An+1(r
n+1
n )E

[
ZnZ

ᵀ
n| rn+1

n ,yn
1

]
Aᵀ

n+1(r
n+1
n )

+An+1(r
n+1
n )E

[
Zn| rn+1

n ,yn
1

]
Nᵀ

n+1(r
n+1
n )

+Nn+1(r
n+1
n )E

[
Zᵀ

n| rn+1
n ,yn

1

]
Aᵀ

n+1(r
n+1
n )

+Bn+1(r
n+1
n )Bᵀ

n+1(r
n+1
n ) +Nn+1(r

n+1
n )Nᵀ

n+1(r
n+1
n )

(47)

and, using (15)

E
[
Zn+1| rn+1

n ,yn
1

]
E
[
Zᵀ

n+1

∣
∣ rn+1

n ,yn
1

]

= An+1(r
n+1
n )E

[
Zn| rn+1

n ,yn
1

]

× E
[
Zᵀ

n| rn+1
n ,yn

1

]
Aᵀ

n+1(r
n+1
n )

+An+1(r
n+1
n )E

[
Zn| rn+1

n ,yn
1

]
Nᵀ

n+1(r
n+1
n )

+Nn+1(r
n+1
n )E

[
Zᵀ

n| rn+1
n ,yn

1

]
Aᵀ

n+1(r
n+1
n )

+Nn+1(r
n+1
n )Nᵀ

n+1(r
n+1
n ). (48)

Substracting (47) and (48) gives (16).
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