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Fuzzy Random Fields and
Unsupervised Image Segmentation

Hélene Caillol, Alain Hillion, Associate Member, IEEE, and Wojciech Pieczynski

Abstract—This paper deals with the statistical unsupervised im-
age segmentation using fuzzy random fields. We introduce a new
fuzzy model containing two components: a “hard” component,
which describes “pure” pixels and a “fuzzy” component, which
describes “mixed” pixels. First, we introduce a procedure to sim-
ulate this fuzzy field based on a Gibbs sampler step followed by a
second step involving white or correlated Gaussian noises. Then
we study the different steps of unsupervised image segmentation.
Four different blind segmentation methods are performed: the
conditional expectation, two variants of the maximum likelihood,
and the least squares approach. As our methods are unsuper-
vised, the parameters required are estimated by the stochastic
estimation maximization (SEM) algorithm, which is a stochastic
variant of the expectation maximization (EM ) algorithm, adapted
to our model. These “fuzzy segmentation” methods are compared
with a classical “hard segmentation” one, without taking the
fuzzy class into account. Our study shows that our “fuzzy”
SEM algorithm provides reliables estimators, especially regarding
the good robustness properties of the segmentation methods.
Furthermore, we point out that this “fuzzy segmentation” always
improves upon the “hard segmentation” results.

Index Terms— Fuzzy random fields, unsupervised segmenta-
tion, fuzzy segmentation, SEM algorithm, Bayesian segmentation.

I. INTRODUCTION

EMOTE sensing image classification may be put into

different terms. The usual statistical models assume that
the segmented image is a random field ¢ = {¢y,-- -, &, } taking
its values in a finite set of classes 2 numbered from 1 to gq.
Each class represents the true nature of the ground, for instance
the class 1 is “vegetation,” the class 2 “water”, and so on. The
data set z = {z1,---,z,} is interpreted as a realization of
some real random field X = {Xy,---, X, } which is a noisy
version of the original image £ = {£1,---,&,}. In statistical
terms, segmentation is finding the initial realization of £ from
the consideration of the data set + = {1, --,z,}. More
precisely, let us consider the case of the blind (classification
without any context) Bayesian segmentation. Noting by S the
set of the pixels, S = {1,---,n}, each & will be estimated by
the element of 2 which minimizes the so-called loss function:

L= Zd(i, k)Px,=s, (i)
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where d is a class dissimilarity function and Px,—,, the
distribution of &, given X, = z,.

Another way to consider this problem is the fuzzy approach.
From this point of view, each pixel s is attached with a g¢-
dimensional vector u(s) = [u;s]. Roughly speaking, u;s which
is the grade of membership of the sth pixel to the ith class, is
the proportion of area s belonging to class ¢. Two constraints
need to be introduced:

q n
VseSZuis=l and Vz’lgiquuis>0.

=1 s=1

Like statistical segmentation, fuzzy segmentation can be ex-
pressed as the minimization of a given objective function.
For instance the objective function used to perform the fuzzy
c-means algorithm is [1]

q n
Q = ZZUZL d(z-h mi)

i=1s=1

m>1

where m; is the center value of the class 4, d a dissimilarity
function and m a weighting exponent. In [14] Pedrycz wrote a
survey on the use of fuzzy representation in pattern recognition
with an sizeable bibliography.

Classical statistical modeling forces each pixel to be asso-
ciated with exactly one class. This assumption may be not
realistic, particulary in the case of satellite data, whereas the
fuzzy approach allows the possibility of mixed pixels. On
the other hand, statistical methods present the advantage of
being well adapted to strong and particularly highly correlated
noises. One can find in [9] an application of the fuzzy c-
means algorithm which indicates confusion of classes in the
case of correlated noise. Some approaches mixing fuzzy and
statistical modeling have also been developed. For instance,
Wang proposed in [19] a generalization of the statistical
parameters to a fuzzy representation which allows a fuzzy
version of classical statistical classification rules such as
maximum likelihood. The consistency of the stochastic model
is ensured by the knowledge of the probability distribution
of Ug = {Us1,---,Usq} which is often assumed to be of
continuous type and even to obey suitable transformations
of Gaussian distribution; see the model given by Kent and
Mardia in [10]. This assumption has some drawback, because
it implies that every pixel is a mixture of thematic classes,
although some pixels are definetely “pure” water or “pure”
vegetation. Accordingly we propose a statistical model which
includes fuzzy membership and “hard” thematic classes. For
the sake of simplicity, we confine the study to the case ¢ = 2
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and put &, = &2 = 1—E;1. We relax the continuity assumption
and admit that the distribution of £s, which appears as the
proportion of area s belonging to class “vegetation,” may
include Dirac measures at 0 and 1.

The paper is organized as follows. In Section II, we describe
a way of simulating realizations of field £ = (&)ses, by
two-step adaptation of the classical Gibbs sampler ([6]) which
takes account of the spatial interactions between pixels. In
Section III, where the distribution of X conditioned on £ is
assumed to be Gaussian, we define four estimations of &,
from the observation of the intensity X, of pixel s. Namely,
a modified version of the maximum posterior probability
estimation, called relative maximum likelihood, the maximum
likelihood, the conditional expectation, and the minimum mean
square estimator are defined.

Insofar as our segmentation methods are completely unsu-
pervised, Section IV is devoted to estimating the unknown
parameters necessary for the implementation of the previous
methods. Naturally, this estimation is based only on the data
z = {z1,-,Tn}. Taking advantage of some of our previous
works in the context of unsupervised segmentation, [11]},
[13], we introduce a fuzzy version of the so-called stochastic
estimation maximization (SEM) mixture estimation algorithm
[4], [13]. All the applications, results and comments, for
several noise types, are included in Section V: they include
estimates by SEM algorithm, errors, and robustness curves
and segmentation of an image. The last section contains the
conclusions.

II. THE FUZZY MODEL AND ITS SIMULATION

Recall that each £, is the proportion of the class 2 on the
pixel s and takes the value 0 if s is “pure” class 1, the value 1 if
s is “pure” class 2 and any value in ]0, 1[ if the both classes are
simultaneously present on s. We have to define a probability
distribution which takes these situations into account and find
a method to simulate realizations of £. The Gibbs sampler is
currently performed in image processing to sample Markovian
random fields. It is natural to envisage a “fuzzy” version of
this algorithm. Let us expose briefly the Gibbs sampler:

We consider a Markovian and stationary random field Z =
{Z,,---,Zn} taking its values in § (the set of classes) and
suppose that Z is Markovian with respect to a spatial type
of neighborhood, for instance the four nearest neighbors. The
neighborhood of a pixel s will be noted V, and its spatial
shape is assumed to be independent of s. The assumption of
any null probability configurations allows the distribution of
Z to be expressed as

Pyl = Ke™V©) ™)

where U is called the energy function and K is a normalization
constant.

A clique C is a subset of S (set of sites) defined by one
of these propositions:

1) C is a single pixel,

2) two different elements of C' are neighbors.

For instance, if we consider the four nearest neighbors, there
are three types of cliques: a single pixel, two vertical neighbors
and two horizontal neighbors.

According to the Hammerley—Clifford theorem, the energy
function U can be expressed by

Uz)=3 .y ilzc)

i CET;

where i represents the type of the clique, T; the set of the
cliques of type i in S, and ¢; the energy potential function
defined on this type of clique.

We need only define the potential functions on each type of
clique to be able to compute the energy of each configuration
2 of Z. Since the constant K in (*) is usually uncomputable
due to the high cardinal of the set of configurations aem),
knowing U is not sufficient to evaluate the distribution of
Z. However, conditional distributions of Z, given Zy, are
generally easy to compute, which allows an iterative proce-
dure, the so-called Gibbs sampler, based on these conditional
distributions. Starting from an initial configuration 20, at each
step k, we compute the conditional distribution of each zZk-1
based on the realization z{“,_l and draw a new realization of
Zk, 2, according to this distribution. We obtain stochastic
series of realizations 20, z%,- -, 2% which converge to the
realization of Z defined by (*).

Now we adapt this classical sampler to our fuzzy model by
considering at first the “fuzzy” class to be a real class and
simulating its realizations as a second step. Letting

7r0=P[§s=0] W1=P[£s:1]

and wp=1 —(71’0+ﬂ'1)

and denoting by F the open interval ]0,1[ we define an
auxiliary random field Y = (Ys)ses by

Y,=0&¢&=0
Yi=16&=1
Y‘::Fﬁéselowl[ .

Supposing that Y is a Markov random field, we can perform
the Gibbs sampler to sample its realizations. This is the first
step of our procedure. Since we have a three-class Markov
random field, it will be easy, for each pixel belonging to the
class F, to draw a value in ]0,1{ according to a continuous
distribution. Finally compiling step 1) and step 2) we obtain
a fuzzy image containing “pure” pixels of class 1 and 2 and
fuzzy pixels taking their values in ]0,1[.

Step 1) The first step of our procedure is simulating Y.
We consider the neighborhood of the four nearest neighbors
and define the potential function only on the cliques pairs,
which entails that the two types of clique pairs have the same
potential function and that the potential function of the single
clique is a constant. As the class F has not the same behavior
as the two “hard” classes, we need to define three different
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Fig. 1. Examples of the conditional density of £; given &y .

expressions for the potential function:

—bif (Ys, Y:) =(0,0) or (1, 1)

b if (Yy, ¥;) = (0,1) or (1, 0)

dif (Y,, Y;) = (0, F) or (1, F)
or (F,0)or (F, 1)

eif (Ys, V) = (F, F)

B(s, t) =

where

b defines the size of the regions of the two
pure classes.

d manages the attraction between the fuzzy
class and the other classes.

e controls the area of the fuzzy class.

Different numerical choices for these three parameters generate
a large diversity of simulated images. The image is the more
homogeneous that factor b is more significant. To modify the
localization of the fuzzy pixels towards the “hard” pixel, factor
d is modified, and if you want to diminish the proportion of
fuzzy pixel, e is reduced.

Step 2) The previous step produced a realization of a three-
class (0 and 1 and F') random field Y. The second step
concerns pixels of Y which are in class F', the objective being
to attribute at each “fuzzy” pixel a value in ]O,1[. In order
to take spatial interactions into account, we have to consider
the conditional distribution of £, given the values &, for ¢
belonging to V;, the four nearest neighbors of s.

We shall suppose that the density of this distribution, g,
depends upon two parameters a and v, i.e.,

g(m) = g(xv a, U)

where a is a shape parameter and v is the local sum of &
over the likelihood
v=Te

teV,

The family of densities is chosen so that they have a strong
mode in 0 or 1, according to the proximity of v to O or 4.

In our simulation study g is of the affine shape: g(z) =
a(v — 2)z +  where 3 is a normalizing constant. Let us
specify that a is chosen for all pixels, v is computed for every
pixel and then 3 is taken in such a way that g is a probability
density. Thus, roughly speaking, g is of the type (a) in Fig. 1,
for v = 0 and of type (b) for v = 4, respectively.

As in the Gibbs sampler, we proceed by visiting the fuzzy
pixels. During the first visit, pixels belonging to Vi can be
of three different kinds: hard (0 or 1), of class F' or fuzzy,
i.e., in ]0, 1[ (if the pixel considered has already been sampled
according to the distribution given by g). During the first visit,
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we compute v by allocating to pixels F' the value 0.5. From
the second visit, pixels F' disappear and, for each s of class
F in step 1, all pixels in V; are numbers in [0,1], and thus
v can be evaluated directly. The sequence of fuzzy images
obtained becomes visually stabilized after about 200 visits. The
variation of parameters b, d, e, a allows many possibilities for
the fuzzy images one of which is noised and segmented below.

Now we have at our disposal a fuzzy image. Since we
perform an unsupervised segmentation, we shall suppose not
having any information, like training data, about this “true”
image. We shall perform our segmentation knowing the only
realization of a noisy version of &, say a realization of the
field X.

The real images are obtained from the fuzzy realization
above by adding different Gaussian noises. As the conditional
distribution of X, given &, is assumed to be Gaussian and
the parameters of the noise on a fuzzy pixel are assumed to
depend linearly on the parameters of the both “hard” classes,
we just need the mean and variance mgo and o of the class 1
and the mean and variance m; and o of the class 2 to define
this distribution:

Pg, = N[m(e), o*(e)]
where
m(e) = (1 — €)mo + emy and o*(e) = (1 — €)og + €as.

In the following, we will denote by f(e, ) the correspond-
ing Gaussian density, which is

1 _ (z=m(e)?
fle, ) = ——==€ 2779 .
2702(e)

The noise parameters are fixed in advance and determine the
type and the power of the noise. Indeed there are three possible
combinations and the four parameters mo, g, m1 and o7
determine three types of noise:

* type 1 means discriminating noise mg # m; and o5 =

o2

i-

* type 2 variances discriminating noise mo = m; and
o2 < o2

» type 3 means and variances discriminating noise mo #
my and 02 # o2.

Denoting by A = m; —mg and p = Z{;, the power of a
noise depends on these two parameters.

The correlation is also a criterion of noise comparison. We
consider white and correlated noises. White Gaussian noises
are easy to obtain by simulating independent realizations of a
Gaussian random variable. Correlated noises are simulated by
taking weighted mobile averages computed in each pixel from
the values in the neighborhood of a white noise. We propose
two different types of neighborhood: 8 or 24 neighbors. Note
that there is no relation between these neighborhoods and the
neighborhoods of the Markovian assumption. In the following,
we will add an “A” to the name of a noise if it uses 8 neighbors
and a “B” if it uses 24 neighbors. For instance, noise 1A will
denote a noise of type 1 (means discriminating) correlated
using 8 neighbors.
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III. Fuzzy UNSUPERVISED BLIND
STATISTICAL SEGMENTATION

As stated in the introduction, we have to estimate the
realization of £ = {&,---,£,} from the observation z =
{z1,**+,Zn}. We adopt the unsupervised blind segmentation.
The blind segmentation consists of estimating the unobserv-
able realization of each &, from the observation X, = z,.
According to our model, we can compute the conditional
distribution of &; given X, = x,, the so-called posterior
distribution, which can be expressed from the distribution
P, of &, the so-called prior distribution, and the condi-
tional distribution P% of X, given {; = e. Unsupervised
segmentation means that the parameters required to perform
the segmentation methods are unknown but instead estimated
from the observation. We shall apply in the next section a
fuzzy adaptation of the SEM algorithm previously mentioned
in the introduction.

The aim of this section is to describe how the four fuzzy
segmentation methods considered behave. Let us recall that a
Bayesian estimator is obtained by minimization, with respect
to the class k, of a given loss function:

q
L= Zd(i, k)PXs=z:s (z)

i=1

Each choice of d defines an specific estimator. The classical
Bayesian “hard” blind segmentation applies the dissimilarity
function defined by

d(i, k) =0ifi =k
di, k) =1if i # k.

In this case, the minimization of the loss function L consists
of choosing, for each pixel s € S, the class which maximizes
the posterior distribution of the distribution of . In the
fuzzy model considered, this distribution contains a “hard”
component which is a measure on {0,1} and a “fuzzy” one
which is a measure on ]0, 1] given by a density with respect
to the Lebesgue measure. This continuous component of &,
allows a large class of segmentation methods. Four different
segmentation methods are proposed in this section.

To be more precise, let us suppose that the distribution of
&, is defined by h, a function on [0,1]. We have

mo=h(0)=P[¢,=0] m =h(1)= P =1]

and the restriction of h to ]0, 1[ describes the fuzzy component
of the distribution of £;. Let us note that A can be seen as a
density of the distribution of & with respect to the measure
v = by + 61 + p, where 8g, §; are Dirac’s measures and p the
Lebesgue measure. We will suppose that the restriction of A
to ]0,1[ is constant:

h(e) =1—mp—m =7p Ve€]0,1]

Thus h and f defined in the previous section give the dis-
tribution of (¢,, X,), whose density with respect to v ® 1 is
defined on [0,1] x R by:

h(e)f (e, ).

So the distribution of X, is given by the density defined on
R by

1
w(z) = h(0)f(0, z) + R(1)f(1, x) +/0 h(e) f (e, z) de.

Finally, the distribution of £, conditional to X, = x, is given
by the following density (with respect to v = & + 61 + 1)
on [0,1]:

h(e)f (e, z)

):___

w(zT)

h(e, z

This a posteriori distribution contains then a hard component
given by

71'0,1 = h(O7 .’L')
.. = h(1, x)

and a fuzzy one given by the density h(e, ) on ]0,1[ (z is
fixed).

Now the different distributions are defined, and it remains
to introduce the different methods.

1) Maximization of the Posterior Likelihood h(e, z). This
method was presented at the beginning of this section in the
case of the “hard” blind segmentation. In fact, for z fixed
h(e, z) is the likelihood of the posterior distribution of £, with
respect to the measure v = 8o+ §; 4 1. We shall maximize the
continuous posterior likelihood h(e, ), like in the hard case
the posterior distribution. We examine two different ways of
maximizing this likelihood:

a) The first method proceeds in two steps. As in the
simulation of the fuzzy image, we consider first that the fuzzy
class is a “real” class F, then pixel classified F', will be treated
in a second step.

Step 1)

We apply a three-class segmentation by taking the maximum
argument in {0,1, F} of 7oz, 71,2, TFz Where mpz =
1- (WO,z + Wl,m)~

Step 2)

The pixels classified as fuzzy, say the pixels where F' was
the maximum argument in the previous step, are reclassified
by taking the value € in ]0, 1[ which maximizes the posterior
density defined by the restriction of h(e, ) on ]0, 1[. We call
this method the “relative” maximum likelihood.

b) The second way maximizes directly the posterior likeli-
hood: we take for the estimation of £, the maximum argument
in [0,1] of h(e, ). This method is the real “maximum like-
lihood”.

2) The Conditional Expectation. The conditional expectation
is the best approximation in the mean square error sense: we
choose for d the mean square deviation. The realization of
¢, is estimated by E(£s/X, = z,). This expectation can be
computed as follows (we put Q = [0,1]):

E /X, =x5) = /QEdPXs=m,

1
=0mgz + 1Mo + / eh(e, ) de
0

1
=T+ / eh(e, ) de.
0
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3) The Least Squares Method. The least squares method is
the best linear approximation in the mean square sense. The
difference with the conditional expectation lies in the linearity
of the approximation, which makes its calculation much easier.
We have to find o and 8 in such a way that

{€-(@=BX), 1)1, =0 and (¢~ (a-gx), €, =0.

Hence

o = BEX) - BEOE(X)
E(X?) - E(X)?

and 8= E(£) — aE(X)

as an example, let us calculate E(£X). Recalling that B =
1 — (mo + 71) we have

E(€X):/[()1 Rexh(e)f(e, z)dv® p

)

= 07r0/ ez f(0, z) dedz + 17r1/exf(1, z) dedx
R R
+ 1!'}:'/ exf(e, z) dedz
R
1
=mimy + 7rp/ m(e) de
0
1
=7r1m1+7rp/ [(1—€)m0+m1]d6
0
1
=mm + §7rp(m0 +my).
In the same way:
1
E(§) =m + 57(1:*

1
E(X) =momg + mm; + §7rp(m0 +m1)

E(X?) = mop + T0ol 4+ 7 (%(a‘o -o) + 0001>).
Observing X, = z,, we take & = o+ Bz, as an estimation
of &. In this case the estimation takes its values in R and
we must “bring” them back in [0,1]. We can truncate the
values obtained for estimation or transform them linearly. The
simulations show that the linear transformation provides the
best results.

We conclude this section with some remarks about the
evaluation of the efficiency of our methods. The most current
way to define an error between the original fuzzy image, say &
and the segmented fuzzy image, denoted by &*, is to evaluate
the absolute average error by

Zseslfs - E:I
Card(S)

T =

This error can be seen as a “proportion” of the pixels not
well classified. We also consider the mean square error which
defines another error rate 7o

V Zesesis — S5 )7 w_

Card(S)

Ty =
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IV. THE Fuzzy SEM ALGORITHM

As we have seen in Section II, the distribution of (&, Xs)
is defined by the distribution of &,, given by a function A
defined on [0, 1], and the family of Gaussian distributions of
X, conditioned on ¢, = e, given by the family of densities
f(e, ). With h assumed constant on 10, 1], the distribution of
&s is given by mg = h(0) and m; = h(1). According to the
form of the conditional distributions we adopted in the former
section, the function f (defined on [0,1] x R) is completely
determined by myg, my, 03, o2.

Finally, the problem we deal with in this section is to
estimate the parameter 6 = (mg, 71, mg, m, 02, 6?) from
a sample of X,. Let 21, z2,-- -, z,, be the data. The proposed
fuzzy SEM can be seen as an adaptation of the SEM algorithm,
whose good behavior in the image segmentation context has
been shown in previous work [11], [13], [17], [18]. It is an
iterative method which runs as follows:

(i) Initialization.

Foreachi=1,..- n sample a value in {0, 1} according to
the uniform distribution 0.5, 0.5. This gives a partition Q% Y
of the set {1, 2,---,n}, with i € QY if 0 has been sampled and
i € QY if 1 has been sampled. Consider that the sub-sample
(z,;),—eQ?, is issued from the class 0 and estimate my, a2 by
empirical mean and variance (by the using only z; such that
i is in Q9). Do the same for estimating m;, o7 by the use of
QY. This gives the first value

6° = (g, 7, m§, m3, (§)2, (9)?)

of the parameter (with 7§ = 0.5, 79 = 0.5).

(ii) Calculation of 6**1 from 6% and ., x5, -, z,.

Foreach i = 1,---,n calculate h*(0, ;), h*(1, z;) which
are probabilities of 0 and 1 conditioned on X i = z; and based
on 8% (see the definition of % in Section III). Sample, for each
¢=1,--+,n,avaluein {0, 1, F'} according to the distribution:

h*(0, z:), h*(1, 2;), 1 = BR(0, z;) — RE(1, ;).

This gives a partition Qf, Q%, Q% of {1,2,---,n}. As
in the initialization use Qf, Q% in order to estimate
empirical means and variances. This gives the next values
m§t, mEFL (kT2 (k12 of thege parameters. The next
values of m{*!, 7¥+1 are given by the frequencies of 0 and

1 in the obtained sample:
1 1
et = ;card(ng) il = Ecard(Q’f).

This gives the next value
b+l _ okl k41l k4l k41 k+1\2 [ k4142
0+—(7r0+,7r1 smgT L my, (07)%, (071h)?)

of the parameter. Thus we obtain a stochastic sequence of
parameters whose principal advantage, in the hard case, with
respect to the deterministic one obtained by the classical EM
is to avoid the local maxima of the likelihood. Moreover, these
estimates converge in a large number of situations [3]
Remark: We have not used Q’fp in the second step of the
fuzzy SEM above because of the simplicity of the function



806

h(£) considered, but more complex situations can be treated.
If h(€) is of any kind, for each 7 in Q% we should have to
sample a value in [0, 1] according to the a posteriori density
Rk (t, ;) (z; is fixed and ¢ varies in 10, 1[, see Section III)
based on the current value 6% of the parameter. This would
give a “fuzzy” subsample allowing the reestimation of the
parameters defining the fuzzy component, i.e., the restriction
to ]0, 1{ of h(€), of the distribution of &,.

V. APPLICATIONS AND RESULTS

A. Simulated Image and Noises

We first apply the simulation algorithm presented in the
second section. Recall that we have to fix the three parameters
of the potential function, the number of iterations for the
Gibbs sampler, the shape parameter and finally the number of
iteration for sampling of the fuzzy class realizations. Finally,
we need six parameters. We propose the following values:

b=1 d=0,8 ¢=0,95 a=1

20 iterations of the Gibbs sampler

900 iterations for the simulation of the values
on the fuzzy class

The fuzzy image obtained is presented at the end of this
section, see “simulated image”. It will be our original reference
fuzzy image. Concerning the additive Gaussian noises, we saw
in the second section that we shall consider three types of
noises and two correlation degrees. Here we fix the values of
the parameters for the three types of noise:

eNoise 1: mog=1 m;=2 o}=1 o2=1
A=1 p=

eNoise 22 mog=1 my=1 og3=1 03=3
A=0 p=173

eNoise 3: mg=1 mi=15 of=1 o07=0,185

A=0,5 p=0,43

As we note above, we also consider three degrees of
correlation—uncorrelated, type A, and type B— for each type
of noise. Thus we obtain nine different noise types. Insofar
as our segmentation methods are blind, it would be needless
to apply them in the nine cases. We need only to apply these
segmentations in the case of uncorrelated noise to test the
effectiveness of the segmentations. On the other hand, as we
shall see in the applications, the fuzzy SEM algorithm is
sensitive to the correlation of the noise, which is why we
present the estimation results also in two cases of correlated
noise in addition to the uncorrelated case: noises 2A and 3B.
These three cases provide a complete idea of the behavior of
the estimation results. We present also the estimates provided
by the binary SEM algorithm, that is, without taking account
of the fuzzy class and considering the only two “hard” classes.
The properties of the SEM algorithm in the “hard” context are
studied in [13].

B. Estimation by the SEM Algorithm

We provide in Tables I-II, three results of the application
of “fuzzy” and classical “binary” SEM to our fuzzy image
corrupted by the noise. The fuzzy SEM is less sensitive
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TABLE 1
TRUE PARAMETER VALUES AND ESTIMATES,
NoOISE 1: UNCORRELATED, MEANS DISCRIMINATING

"Fuzzy SEM" | "Binary SEM"
my=1 0,99 0,84
m=2 1,8 1,97
o=1 1,06 0,93
ol=1 1,08 1,05
7,=0,33 0.3
7,=0,33 0,36

TABLE 11

TRUE PARAMETER VALUES AND ESTIMATES, NOISE 2A:
VARIANCES DISCRIMINATING, CORRELATED UsING 8 NEIGHBORS

"Fuzzy SEM" | "Binary SEM"
my=1 1,02 0,93
m=1 0,98 0,99
o,=1 0,94 1,36
ol=3 3,13 3,26
7,=0,33 0,36

7,=0,33 0,27

TABLE 111

TRUE PARAMETER VALUES AND ESTIMATES, NoOISE 3B: VARIANCES
DISCRIMINATING, CORRELATED USING 24 NEIGHBORS

“Fuzzy SEM" || "Binary SEM"
my=1 0,89 0,92
m=1,5 1,49 1,47
0;=1 1,03 0,93
07=0,185 0,183 0,95
7,=0,33 0,4
7,=0,33 0,3

to the “variances discriminating” nature of the noise and
its correlation, the two factors which seem to degrade the
effectiveness of the binary one. This could be due to the fact
that the binary SEM works on fuzzy data which are not suited
to its principle. In fact, the very good behavior of the binary
SEM is shown in [13] and this fuzzy version does not degrade
its properties. Furthermore, in the case of fuzzy data, the fuzzy
SEM is necessary to estimate the a priori probabilities. Let us
note that the binary SEM can encounter some difficulties in
estimating the variances.

C. Segmentation Results

The effectiveness of an unsupervised segmentation method
depends on three independent factors:
1) the efficiency of the parameter estimation method used,
2) the theoretical error of the segmentation method used,
3) the robustness of the segmentation method used with
respect to the parameters needed.
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T, 0,30 0,33 0,35 0,49
T, 0,51 0,53 0,40 0,51
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7, (o} varies)

®
Rel. Max. Likeli. Max. Likelihood Cond. Expectation | Least Squares
fuzzy binary
T, 0,33 0,38 0,33 0,36 0,49
7, 0,50 0,58 0,49 0,41 0,52

©

Fig. 2. Noise 1: Uncorrelated, mean discriminating. (a) Estimated classification errors. (b) Robustness curves. (c) Image segmentation.

The theoretical error of a given method is the expectation
of the loss function L defined in the introduction. It can
be interpreted as the optimal segmentation error that we
could expect by performing this method. Unfortunately, the
theoretical errors are not directly computable in the fuzzy
case, due to the expression of f(e, x). It is, however, possible
to obtain an approximation of these errors: we sample a
Gaussian mixture and we classify this mixture by using the
true parameters. These estimated errors are computed using
the two types of errors 7; and 7 presented at the end of the
second section.

If a given parameter is poorly estimated but the segmen-
tation method is robust with respect to this parameter, the
performance degradation of the corresponding unsupervised
method can be negligible. Since we have at our disposal
four different methods, we propose, at first, a study of their
robustness with respect to the parameters. The estimated errors
must also be taken into account. A method which presents
a high theoretical error, even if very robust, could not be
competitive with a less robust method which presents a lower
theoretical error. In this present case, the theoretical errors
show that the least squares are not competitive and thus we
are led to reject it in this context.

For each different noise we present the theoretical efficiency
of classification of the four methods, given by the estimated
errors, two significant robustness curves, and the results of
the segmentation of the noisy image, both with respect to 7
and 72. The robustness curves represent the variations of the
estimated error when one of those parameters deviates. The
representations used in all the graphs are as follows:

— Relative maximum likelihood

— — Maximum likelihood

— — — Conditional expectation

The transformation applied in the least squares segmentation
leads to a falsification of the theoretical results, which is why
we omit the robustness curves in this case.

Noise 1 results are shown in Fig. 2; noise 2 in Fig. 3; and
noise 3 in Fig. 4.

At first, we note that these methods are robust, particularly
the conditional expectation method. Recalling the estimation
values provide by the fuzzy SEM, we can observe that these
values correspond to segmentation errors which are close to
the simulated error. This means that this estimation algorithm
is well adapted. A more precise analysis of these results can
allow us to favor one of these methods, depending on the
nature and the correlation of the noise. For instance, in the case
of noise 1 (means discriminating noise), the relative maximum
likelihood provides the best estimated error 71, and the best
robustness. Whereas, the maximum likelihood is, on the other
hand, less sensitive to the variations of the deviation, especially
near zero. We may prefer the relative maximum likelihood
in favorable cases for the estimation, low correlation of the
noise, or, on the contrary, the maximum likelihood if the noise
is highly correlated. The conditional expectation seems to be
less sensitive to a “variances discriminating” noise and can
in some situations be more reliable than the two maximum
likelihoods, even if the error 77 is concerned.

D. Some Images

We discuss in this last section some images that illustrate
this study. They are shown in Figs. 5 and 6. We have
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Rel. Max. Likeli. Max. Likelihood

Cond. Expectation | Least Squares

T, 0,31 0,35

0,38 0,51

T, 0,51 0,52

0,41 0,54

@

T, (m varies)

®)

o 0,3 06 09 1,2 1,5 1.8

7, (m, varies)

Rel. Max. Likeli. Max. Likelihood
fuzzy binary

Cond. Expectation | Least Squares

7 0,36 0,51 0,36

0,39 0,43

7 0,54 0,69 0,53

0,43 0,45

©

Fig. 3. Noise 2: Uncorrelated, variances discriminating. (a) Estimated classification errors. (b) Robustness curves. (c) Image segmentation.

Rel. Max. Likeli. Max. Likelihood Cond. Expectation | Least Squares

T 0,33 0,36 0,35 0,51

T 0,53 0,56 0,40 0,53
@
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0,20 +—
0 0,2 04 06 08 1 1.2 1.4
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0,50
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Rel. Max. Likeli. Max. Likelihood Cond. Expectation | Least Squares
fuzzy binary
T 0,33 0,38 0.34 0,36 0,45
T, 0,51 0,53 0,50 0,41 0,48

©

Fig. 4. Noise 3: Uncorrelated, means and variances discriminating. (a) Estimated classification errors. (b) Robustness curves. (c) Image segmentation.

deliberately chosen strong noises in order to point out the
strengths as well as the weaknesses of the estimators and
the different segmentation methods. In return, the images
corresponding to these studied situations are not visually
satisfactory. Accordingly, we present here only the images

corresponding to noise 3. In order to get visual feel of the

effectiveness of our fuzzy unsupervised segmentation, we also

present images which correspond to a lower noise, called noise

4, defined by the following parameters: mo = 1, m1 = 3,
2=10¢=1

o =101 =1
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Fig. 5.

Simulated image.

VI. CONCLUSIONS

We have presented in this work a new model for the fuzzy
statistical segmentation in the introduction, in priors, of two
components of different nature: Dirac’s measure, ie., the
“hard” component, and a density, i.e., the “fuzzy” component.
We have proposed a procedure of simulation of such a fuzzy
random field which takes the spatial interactions into account.
Numerous simulations show that this model includes many
possibilities which can appear in reality. It remains valid for
more than two pure classes and seems to be an alternative
to other models using fuzzy membership, such as Kent and
Mardia’s model [10].

‘We have proposed four blind statistical methods and tested,
in different situations, their theoretical effectiveness and ro-
bustness, i.e., their behavior when the used parameter value
deviates from the real value. The aim of this study was
to understand the behavior, and mainly the stability, of the
four unsupervised statistical segmentation methods in which
parameters are estimated in previous step by our fuzzy SEM.
In order to obtain four unsupervised segmentation methods,
we have defined an estimator, based on the SEM algorithm,
of all parameters of the marginal “fuzzy” mixture, i.e., the
distribution of the noisy observation on each pixel. We have
tested its behavior in different situations where the same image
was corrupted by different noises. The simulation studies lead
us to put forward the following conclusions:

* The fuzzy SEM estimation always gives better results
than the SEM when the real data are fuzzy. These
results seem to us quite reasonable in the context studied,
considering that in fact the data are not independent and
rather strongly noised.

* The four fuzzy segmentation methods are robust and three
of them present a good theoretical error rate. Furthermore,
a more precise analysis of the behavior of these three
methods can help select which is best suited. This choice
depends on the nature and the correlation of the noise.

809

Noise 3 A

Noise 4

@

(a) Corrupted images. (b) Relative maximum likelihood. (¢) Maxi-
mum likelihood. (d) Conditional expectation.

Fig. 6.

 This robustness, combined with the good behavior of
the fuzzy SEM, allows us to define three new methods
of unsupervised fuzzy statistical segmentation which are
always better than the classical SEM-based Bayesian
segmentation method, without the fuzzy component in
priors.

A topic for prospect of future investigations is the design of
contextual fuzzy unsupervised segmentation methods. In fact,
it is well known that in the “hard” case the use of the spatial
context greatly improves the efficiency of the supervised,
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i.e. based on the true parameters, segmentation. In exchange,
the estimation of parameters becomes more difficult. As in
studied situations the behavior of the fuzzy SEM is good
and, what is more, the proposed segmentation methods are
robust, it would be interesting to investigate the possibilities of
the contextual methods. Such methods would undoubtedly be
very time consuming, especially when the number of classes
exceeds two. This leads to the following problem: How to
determine situations in which the use of fuzzy methods is
relevant? We intend to devote our further research to these
different questions.

Finally, we can conclude that when the real data are fuzzy,
the use of the fuzzy segmentation is always more effective than
the use of the hard one. The proposed segmentation methods
are robust and the behavior of the fuzzy SEM is good, which
suggests that the use of the contextual methods is relevant. An
important problem to be solved is to find an automatic way
i.e., from the data X = z, for deciding if the fuzzy component
of real data is rich enough to justify the use of fuzzy methods.
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