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a b s t r a c t 

We propose a novel estimation procedure for linear time-varying pairwise Markov models (PMM), that 

is robust to system parameter uncertainties occurring in real-world applications. In order to cope with 

mismodeling errors and ignorance of noise/initial state statistics, we solve a finite-horizon state estima- 

tion problem. The resulting unbiased finite impulse response filter for PMMs (PMM-UFIR) is first derived 

in batch form and then converted to a recursive Kalman-like form for the sake of complexity reduction. 

Closed forms for the error covariance matrix of the state estimate are also provided for analytical perfor- 

mance assessment. 

Numerical results illustrate the effectiveness of the proposed estimation method over Gaussian processes, 

by showing that the PMM-UFIR is nearly as accurate as (resp. more robust than) optimal filtering under 

perfect (resp. uncertain) system parameters after tuning the horizon size. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Many problems in signal processing can be described as

iscrete-time stochastic systems that generate observable outputs

1] . A problem of fundamental interest in estimation theory is the

hoice of a suitable signal model. The model should be flexible

nough to deal with various application contexts, while remain-

ng simple enough to lead to tractable estimators in some opti-

ality sense. Linear Gaussian hidden Markov models (HMM) have

ad a great success in modeling signals as Markovian states, where

ach observation is a noisy function of the current state. This is

ainly due to the seminal paper [2] deriving the optimal filter

or HMMs in the minimum mean square error (MMSE) sense, the

alman filter (HMM-KF). The HMM-KF is a standard approach in

any engineering fields such as tracking, navigation [3] , control

4] , econometrics [5] communication theory [6] , speech processing

7] , graph signal processing [8] and machine learning [9] , to name

 few. Many important disciplines (such as engineering, physics,

hemistry, biology, economics and data processing, etc) involve a

oisy observation function, whose arguments include the previ-

us observation and/or the previous state (see [10–12] and [13] ,

espectively for examples in time series analysis, biochemistry, in-

rtial navigation and system identification). The standard way to
andle such situations within the HMM framework is via state- 
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ugmentation, i.e. by appending the previous observation to the

tate [5] . This is necessary in this context, since HMMs break the

ymmetry between the state and observation processes, letting the

tate account for the entire system dynamics, while the observa-

ion is merely a noisy function of the state. A more concise frame-

ork avoiding state augmentation is provided by the pairwise

arkov model (PMM) framework, introduced in [14] . Interestingly,

n optimal filter (in the MMSE sense) exists for linear Gaussian

MMs, which we shall refer to as the PMM Kalman filter (PMM-KF)

15–17] . We will see that an alternative derivation of the PMM-

F can be obtained by converting a Gaussian PMM to a state-

ugmented HMM (SA HMM). Note that the PMM-KF has found

pplications in signal and image restoration [18–20] , multi-object

racking [21–23] and financial data analysis [24] . 

Regarding the HMM, the Kalman filter has also known pitfalls

n real-world contexts, due to its infinite impulse response (IIR)

lter structure [25] . In particular, conditioning the estimate on the

istant past is responsible for potential numerical instability with

espect to (wrt) roundoff errors [26] , lack of robustness wrt impre-

isely known dynamics [25] and dependence on initial state statis-

ics, for which little more than a guess is usually available. A well-

nown solution to this problem is to build estimators with finite

mpulse response (FIR) structure [25] , thus limiting the memory to

 finite-horizon corresponding to the N most recent observations.

ptimal (MMSE) FIR (HMM-OFIR) estimators ignoring the initial

tate but with prior knowledge of the noise statistics, were de-

eloped in [27] and [28] , from a Bayesian and a receding-horizon

erspective, respectively. For the case when noise statistics are also

https://doi.org/10.1016/j.sigpro.2020.107568
http://www.ScienceDirect.com
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unavailable, a FIR estimator satisfying the unbiasedness condition

(HMM-UFIR) has been derived in batch form in [29–31] . However,

these FIR estimators have their own limitations, especially in terms

of computational burden. Therefore, fast Kalman-like recursive ver-

sions of the OFIR and UFIR have been derived in [32] and [33,34] ,

respectively. Furthemore, it is desirable to tune the horizon size in

order to maximize the filter performance [35] . 

In this paper, we focus on state estimation in linear Gaussian

PMMs for applications, where issues such as mismodeling and

unknown (or uncertain) noise/initial state statistics matter [36] .

Therefore, we propose an estimator with FIR structure and whose

gain matrix ignores the noise statistics. We derive the presented

estimator as a UFIR filter adapted to the context of PMMs, which

we shall refer to as the PMM-UFIR. However, the derivation of the

PMM-UFIR is not as straightforward as its HMM counterpart. This

comes from the fact that by construction, in a PMM, both the state

and observation process are noise-driven and observation-driven

[15] . Consequently, a linear Gaussian PMM lacks the direct in-

put/output form that was exploited to derive the HMM-UFIR [33] .

Reformulating the dependence of a state wrt to observations back-

ward in time and taking observation feedback into account, the

new PMM-UFIR processing the N most recent observations is ob-

tained in batch form. In addition, we show that this FIR filter can

also be transformed to a Kalman-like iterative form, for the sake of

fast computation. 

The main contributions of this work are: 

• A state estimator for linear Gaussian PMMs agnostic to the

noise and initial state statistics, in batch FIR form (batch PMM-

UFIR); 
• A fast implementation of the FIR estimator, processing each ob-

servation at a time in Kalman-like form (Kalman-like PMM-

UFIR); 
• An analysis of the estimation error, useful for theoretical per-

formance evaluation 

• Extensive numerical simulations showing that the PMM-UFIR

outperforms its SA HMM counterpart over a wide range of ap-

plications. 

Throughout the paper, bold letters indicate vectors and matri-

ces while 0 m × n (resp. I m 

) is the m × n all-zero (resp. the m × m

identity) matrix and diag ( a ) is the (block) diagonal matrix, whose

diagonal entries are stored in a and whose off-diagonal entries are

zero. The superscript T denotes the transpose of a matrix. N (m , C )

denotes a Gaussian distribution with mean m and covariance ma-

trix C . ID( m, C ) stands for independently distributed with mean m

and covariance matrix C . 

Let y n be the n th observation, a set of observations from time 0

up to time n is denoted by y 0: n . 

This paper is organized as follows. First, in Section 2 we formu-

late the state estimation problem under the linear Gaussian pair-

wise Markov model (PMM). In Section 3 we develop our unbi-

ased FIR solution first in batch form, then in iterative Kalman-like

form. Section 4 , provides an analysis of the estimation error. Fi-

nally, in Section 5 , the performances of the proposed algorithm are

assessed for realistic applications. 

2. Problem formulation 

We first introduce pairwise Markov models (PMMs) as a class of

models with interesting features such as treating states and obser-

vations in a unified manner, that generalize hidden Markov models

(HMMs). Considering the linear Gaussian case, we briefly recall the

optimal infinite-horizon state estimator, referred to as the PMM-KF.

Then, for the sake of finding an estimator in FIR form, we write the

PMM over an horizon of N most recent time instants. 
.1. Pairwise markov model (PMM) 

Let x n ∈ R 

K and y n ∈ R 

M denote the state and observation vec-

ors at instant n , respectively. We consider a class of discrete time-

arying pairwise Markov models (PMMs), where the pairwise pro-

ess { x n , y n } n ≥ 0 is Markovian [14] . For the linear Gaussian case,

 PMM can be described as the following discrete-time linear

tochastic system 

x n 

y n 

]
= 

[
A 

(1) 
n A 

(2) 
n 

A 

(3) 
n A 

(4) 
n 

][
x n −1 

y n −1 

]
+ 

[
B 

(1) 
n B 

(2) 
n 

B 

(3) 
n B 

(4) 
n 

][
w n 

v n 

]
, (1)

here the initial state x 0 ∼ N ( ̂ x 0 , P 0 ) is independent from the

ero-mean white Gaussian noise process z n = [ w 

T 
n , v 

T 
n ] 

T , ∀ n ≥ 0.

he noise covariance is defined by Q n = E{ w n w 

T 
n } , R n = E{ v n v T n }

nd M n = E{ w n v 
T 
n } . Using an infinite horizon approach, the predic-

ive and posterior distributions 

p(x n , y n | y 0: n −1 ) = N 

([
ˆ x 

−
n 

ˆ y −n 

]
, 

[
P 

−
n �−

n 

�−
n 

T L −n 

])
p(x n | y 0: n ) = N 

(
ˆ x n , P n 

)
. 

re obtained through the Kalman-like recursions given by

lgorithm 2.1 , that we will refer to as the PMM-KF in the sequel.

lthough a demonstration is provided in [19] and [20] for particu-

ar pairwise Markov chains and trees, respectively, for the sake of

ompleteness we provide a derivation for the considered general

ase in Appendix A. 

lgorithm 2.1 PMM-KF algorithm. 

equire: y n , ˆ x 0 , P 0 , Q n , R n , M n 

for n = 1 , 2, … do 

ˆ x −n = A 

(1) 
n ˆ x n −1 + A 

(2) 
n y n −1 

ˆ y −n = A 

(3) 
n ˆ x n −1 + A 

(4) 
n y n −1 

P 

−
n = A 

(1) 
n P n −1 A 

(1) 
n 

T + B 

(1) 
n Q n B 

(1) 
n 

T + 

B 

(1) 
n M n B 

(2) 
n 

T + B 

(2) 
n M 

T 
n B 

(1) 
n 

T + B 

(2) 
n R n B 

(2) 
n 

T 

�−
n = A 

(1) 
n P n −1 A 

(3) 
n 

T + B 

(1) 
n Q n B 

(3) 
n 

T + 

B 

(1) 
n M n B 

(4) 
n 

T + B 

(2) 
n M 

T 
n B 

(3) 
n 

T + B 

(2) 
n R n B 

(4) 
n 

T 

L −n = A 

(3) 
n P n −1 A 

(3) 
n 

T + B 

(3) 
n Q n B 

(3) 
n 

T + 

B 

(3) 
n M n B 

(4) 
n 

T + B 

(4) 
n M 

T 
n B 

(3) 
n 

T + B 

(4) 
n R n B 

(4) 
n 

T 

K n = �−
n (L −n ) −1 

ˆ x n = 

ˆ x −n + K n (y n − ˆ y −n ) 
P n = P 

−
n − K n �

−
n 

T 

return 

ˆ x n , P n 

end for 

emark 2.1. Note that a classical HMM of the form 

 n = F n x n −1 + B n w n 

y n = H n x n + D n v n (2)

s a particular PMM obtained by selecting 

A 

(1) 
n A 

(2) 
n 

A 

(3) 
n A 

(4) 
n 

]
= 

[
F n 0 K×M 

H n F n 0 M×M 

]
, 

[
B 

(1) 
n B 

(2) 
n 

B 

(3) 
n B 

(4) 
n 

]
= 

[
B n 0 

H n B n D n 

]
. 

n this case, the PMM-KF boils down to the classical Kalman fil-

er (HMM-KF) for correlated process and measurement noise [37,

. 187] . 

emark 2.2. Conversely, a PMM can be converted to the following

tate-augmented HMM (SA HMM) form 

 

 

 

 

 

 

 

[
x n 

y n 

]
= 

[
A 

(1) 
n A 

(2) 
n 

A 

(3) 
n A 

(4) 
n 

][
x n −1 

y n −1 

]
+ 

[
B 

(1) 
n B 

(2) 
n 

B 

(3) 
n B 

(4) 
n 

][
w n 

v n 

]

y n = [ 0 M×K | I M 

] 

[
x n 

y n 

] (3)
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Interestingly, it is straightforward to show that applying the

tandard HMM-KF [2] to the SA HMM (3) , results in an estimation

ethod (SA HMM-KF) that is formally equivalent to Algorithm 2.1 .

lthough this idea is widely used in the literature [5] , the SA HMM

s somewhat counterintuitive (since the very name of HMM em-

odies the idea that the hidden states are not observed), therefore

e argue that the original PMM is a more concise framework from

hich the optimal filter in the MMSE sense can be derived directly.

.2. Extended pairwise markov model (e-PMM) 

For the sake of finding an estimator in FIR form, a simple ap-

roach familiar in system identification [38] , is to construct an ex-

ended model over the horizon [ m = n − N + 1 , n ] of N most recent

ime instants. Let us assume that the matrix A 

(1) 
n is invertible [39] .

tarting from x n , we can compute the backward-in-time solution

f the state in (1) for i = m + 1 , . . . , n as 

 i −1 = Ā 

(1) 
i : n 

x n −
n ∑ 

k = i 
Ā 

(1) 
i : k 

(A 

(2) 
k 

y k −1 + B 

(1) 
k 

w k + B 

(2) 
k 

v k ) , (4)

here the backward-in-time state transition matrix is defined as 

¯
 

(1) 
i : n 

= 

n ∏ 

k = i 
(A 

(1) 
k 

) −1 . (5) 

onsequently, we obtain the solution for the observation in (1) for

 = m + 1 , . . . , n as 

 i = A 

(4) 
i 

y i −1 + B 

(3) 
i 

w i + B 

(4) 
i 

v i 

+ A 

(3) 
i 

[ 

Ā 

(1) 
i : n 

x n −
n ∑ 

k = i 
Ā 

(1) 
i : k 

(A 

(2) 
k 

y k −1 + B 

(1) 
k 

w k + B 

(2) 
k 

v k ) 

] 

. (6) 

et us introduce the extended state X k,l ∈ R 

(k −l+1) K (resp. observa-

ion Y k,l ∈ R 

(k −l+1) M ) vector over the horizon [ l, k ] 

 k,l = [ x 

T 
k , x 

T 
k −1 , . . . , x 

T 
l ] 

T 

Y k,l = [ y T k , y 
T 
k −1 , . . . , y 

T 
l ] 

T . (7) 

imilarly, defining the extended noise vectors 

 k,l = [ w 

T 
k , w 

T 
k −1 , . . . , w 

T 
l ] 

T 

V k,l = [ v T k , v 
T 
k −1 , . . . , v 

T 
l ] 

T , (8) 

he e-PMM is obtained by writing (4) and (6) in equivalent matrix

orm 

 

X n −1 ,m 

= Ā 

(1) 
n,m +1 

x n − A 

(2) 
n,m +1 

Y n −1 ,m 

+ G 

(1) 
n,m +1 

W n,m +1 + G 

(2) 
n,m +1 

V n,m +1 

(J n,m +1 + J ′ n,m +1 ) Y n,m 

= H n,m +1 x n + D 

(3) 
n,m +1 

W n,m +1 + D 

(4) 
n,m +1 

V n,m +1 , 

(9) 

here 

¯
 

(1) 
n,m +1 

= [ ̄A 

(1) 
n : n 

T , Ā 

(1) 
n −1: n 

T , . . . , Ā 

(1) 
m +1: n 

T ] T (10)

 

(2) 
n,m +1 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

Ā 

(1) 
n : n A 

(2) 
n 0 . . . 0 

Ā 

(1) 
n −1: n 

A 

(2) 
n Ā 

(1) 
n −1: n −1 

A 

(2) 
n −1 

. . . 0 

. . . 
. . . 

. . . 
. . . 

Ā 

(1) 
m +2: n 

A 

(2) 
n Ā 

(1) 
m +2: n −1 

A 

(2) 
n −1 

. . . 0 

Ā 

(1) 
m +1: n 

A 

(2) 
n Ā 

(1) 
m +1: n −1 

A 

(2) 
n −1 

. . . Ā 

(1) 
m +1: m +1 

A 

(2) 
m +1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

(11) 
 

(1) 
n,m +1 

= −

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

Ā 

(1) 
n : n B 

(1) 
n 0 . . . 0 

Ā 

(1) 
n −1: n 

B 

(1) 
n Ā 

(1) 
n −1: n −1 

B 

(1) 
n −1 

. . . 0 

. . . 
. . . 

. . . 
. . . 

Ā 

(1) 
m +2: n 

B 

(1) 
n Ā 

(1) 
m +2: n −1 

B 

(1) 
n −1 

. . . 0 

Ā 

(1) 
m +1: n 

B 

(1) 
n Ā 

(1) 
m +1: n −1 

B 

(1) 
n −1 

. . . Ā 

(1) 
m +1: m +1 

B 

(1) 
m +1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

(12) 

 

(2) 
n,m +1 

= −

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

Ā 

(1) 
n : n B 

(2) 
n 0 . . . 0 

Ā 

(1) 
n −1: n 

B 

(2) 
n Ā 

(1) 
n −1: n −1 

B 

(2) 
n −1 

. . . 0 

. . . 
. . . 

. . . 
. . . 

Ā 

(1) 
m +2: n 

B 

(2) 
n Ā 

(1) 
m +2: n −1 

B 

(2) 
n −1 

. . . 0 

Ā 

(1) 
m +1: n 

B 

(2) 
n Ā 

(1) 
m +1: n −1 

B 

(2) 
n −1 

. . . Ā 

(1) 
m +1: m +1 

B 

(2) 
m +1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

(13) 

 n,m +1 is the upper bidiagonal block matrix expressed as 

 n,m +1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

I M 

−A 

(4) 
n 0 . . . 0 

0 I M 

−A 

(4) 
n −1 

. . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 

0 . . . I M 

−A 

(4) 
m +2 

0 

0 . . . 0 I M 

−A 

(4) 
m +1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (14) 

sing the notation A 

(3) 
n,m +1 

= diag (A 

(3) 
n , A 

(3) 
n −1 

, . . . , A 

(3) 
m +1 

) the remain-

ng matrices are defined by 

J ′ n,m +1 = [ 0 (N−1) M×M 

| A 

(3) 
n,m +1 

A 

(2) 
n,m +1 

] 

 n,m +1 = A 

(3) 
n,m +1 

Ā 

(1) 
n,m +1 

D 

(3) 
n,m +1 

= A 

(3) 
n,m +1 

G 

(1) 
n,m +1 

+ diag (B 

(3) 
n , B 

(3) 
n −1 

, . . . , B 

(3) 
m +1 

) 

D 

(4) 
n,m +1 

= A 

(3) 
n,m +1 

G 

(2) 
n,m +1 

+ diag (B 

(4) 
n , B 

(4) 
n −1 

, . . . , B 

(4) 
m +1 

) . (15) 

. PMM Unbiased FIR estimator 

A FIR estimator has the form of a discrete-time convolution of

he N most recent observations. In the absence of prior information

n the initial state and noise statistics, an FIR estimator, satisfying

he constraint that the expected value of the estimator equals that

f the state (UFIR), is of interest. For a linear Gaussian HMM, the

erivation of the HMM-UFIR relies on the fact that the extended

odel is in classical input/output form [34] , i.e. Y n,m 

is a linear

ombination of the desired state x n and a linear anticausal trans-

ormation of noise terms. However, for a linear Gaussian PMM,

he corresponding extended model obtained in (9) does not sat-

sfy this property anymore. Thus, there is a need to find a new

FIR filter valid for PMMs (PMM-UFIR) in batch form. Then, we

ill show that the batch form also admits an iterative Kalman-like

orm. Importantly, the proposed PMM-UFIR applied to the PMM in

1) needs only the matrix A 

(1) 
n to be invertible. However, the UFIR

n [34] applied to the equivalent SA HMM model in (3) (referred

o as the SA HMM-UFIR) requires the whole PMM transition ma-

rix to be invertible. Thus, from a theoretical point of view, the

MM-UFIR works under weaker hypotheses than its SA HMM-UFIR

ounterpart. 

.1. Batch UFIR estimator 

Let the batch UFIR estimator take the form of a linear combina-

ion of the transformed observations appearing in the second line

f the e-PMM (9) 

ˆ 
 n = H̄ n,m +1 (J n,m +1 + J ′ n,m +1 ) Y n,m 

, (16)
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where H̄ n,m +1 is a K × (N − 1) M-dimensional gain matrix of the fil-

ter. A UFIR filter [34] satisfies the constraint 

E{ ̂ x n } = E{ x n } , ∀ E{ x n } , (17)

which means that the expected value of the estimator is guaran-

teed to be that of the state. Using the fact that the noise terms are

zero-mean in the second line of the e-PMM (9), (17) becomes 

H̄ n,m +1 H n,m +1 = I K . (18)

Moreover, the effect of noise and uncertainties on the estimator

can be reduced by minimizing the Frobenius norm of the filter gain

matrix H̄ n,m +1 . 

When rank (H n,m +1 ) = K (which is analog to the observability

condition for HMMs), minimizing the Frobenius norm of H̄ n,m +1 

of under the constraint (18) admits a unique solution [40, pp. 85–

86] 

H̄ n,m +1 = (H 

T 
n,m +1 H n,m +1 ) 

−1 H 

T 
n,m +1 . (19)

We also introduce the generalized noise power gain (GNPG) as

G n = (H 

T 
n,m +1 H n,m +1 ) 

−1 = H̄ n,m +1 H̄ 

T 
n,m +1 , (20)

which is a quantity related to the noise reduction factor of the

filter [33,34] . Importantly, note that unlike the Kalman filter, the

PMM-UFIR performs state estimation without prior knowledge on

the noise covariances and/or the initial condition. Only the horizon

size N is needed. 

Remark 3.1. Considering the particular PMM in Remark 2.1 corre-

sponding to the classical HMM (2) , we obtain 

(J n,m +1 + J ′ n,m +1 ) Y n,m 

= Y n,m +1 

H n,m +1 = [(H n ) 
T , (H n −1 ̄F n : n ) 

T , . . . , (H m +1 ̄F m +2: n ) 
T ] T . 

It follows that (16) reduces to the classical batch HMM-UFIR esti-

mate over the horizon [ m + 1 , n ] , unlike the horizon [ m, n ] in [34] .

Note that this slight difference in the horizon size comes from the

fact that the extended PMM does not reduce to the extended HMM

when the PMM reduces to a classical HMM. In other words, the

principle of the derivation of the PMM-UFIR is different from its

HMM-UFIR counterpart. 

3.2. Kalman-like UFIR estimator 

The PMM-UFIR in Section 3.1 has the drawbacks of any batch

processor, i.e. a high computational complexity per time instant,

especially when the horizon size N is large. For the sake of fast

computation, we now seek a recursive form for (16) , that processes

each new observation one at a time, similarly to the Kalman filter.

As a starting point, we compute the batch estimator over

the horizon [ m, s ], by selecting s = m + K to make sure that

rank (H s,m +1 ) = K is satisfied. 

We now show that for any n > s , ˆ x n can be written as a linear

combination of ˆ x n −1 and the new observation y n . The prediction

stage computes the predicted state and observation estimates as 

ˆ x 

−
n = A 

(1) 
n ˆ x n −1 + A 

(2) 
n y n −1 

ˆ y −n = A 

(3) 
n ˆ x n −1 + A 

(4) 
n y n −1 . (21)

Let us introduce the notation 

˜ H n = A 

(3) 
n (A 

(1) 
n ) −1 . (22)

The update stage first updates the GNPG as 

G n = [ ̃  H 

T 
n ̃

 H n + (A 

(1) 
n G n −1 A 

(1) 
n 

T ) −1 ] −1 (23)

then computes a bias correction gain (different from the Kalman

gain) as 

K n = G n ̃  H 

T 
n , (24)
nd finally refines the state estimate as 

ˆ 
 n = 

ˆ x 

−
n + K n (y n − ˆ y −n ) . (25)

he demonstration is postponed to Appendix B. 

The iterative Kalman-like procedure for computing the PMM-

FIR estimate is summarized in Algorithm 3.2 . 

lgorithm 3.2 Kalman-like PMM-UFIR algorithm. 

equire: y n , N

for n = N, N + 1 , … do 

m = n − N + 1 , s = m + K

G s = (H 

T 
s,m +1 

H s,m +1 ) 
−1 

ˆ x s = H̄ s,m +1 (J s,m +1 + J ′ 
s,m +1 

) Y s,m 

for l = s + 1 : n do 

ˆ x −
l 

= A 

(1) 
l 

ˆ x l−1 + A 

(2) 
l 

y l−1 

ˆ y −
l 

= A 

(3) 
l 

ˆ x l−1 + A 

(4) 
l 

y l−1 

G l = [ ̃  H 

T 
l 

˜ H l + (A 

(1) 
l 

G l−1 A 

(1) 
l 

T ) −1 ] −1 

K l = G l ̃
 H 

T 
l 

ˆ x l = 

ˆ x −
l 

+ K l (y l − ˆ y −
l 
) 

end for 

return 

ˆ x n 
end for 

emark 3.2. Considering again the particular PMM in

emark 2.1 corresponding to the classical HMM (2) , we obtain 

ˆ 
 

−
n = F n ̂  x n −1 

ˆ 
 

−
n = H n F n ̂  x n −1 

 n = [ H 

T 
n H n + (F n G n −1 F 

T 
n ) 

−1 ] −1 

 n = G n H 

T 
n 

ˆ 
 n = 

ˆ x 

−
n + K n (y n − ˆ y −n ) . 

t follows that (25) reduces to the classical Kalman-like HMM-UFIR

pdate rule [33,34] . 

. Performance analysis 

We analyse the performance of the proposed PMM-UFIR in

erms of mean square error (MSE), based on the error covari-

nce matrix. We will show that the error covariance matrix can

e computed directly from the expression of the batch PMM-UFIR

see Section 4.1 ), but also in a computationally efficient iterative

ay using the Kalman-like form (see Section 4.2 ). Note that un-

ike the PMM-KF, the PMM-UFIR in iterative Kalman-like form does

ot need the error covariance matrix for the sake of state estima-

ion. However, the resulting MSE will be instrumental in specifying

he optimal horizon size (see Section 4.3 ) and we give indications

f how this optimization can done in practice. Finally, we discuss

omplexity issues (see Section 4.4 ). 

.1. Direct computation of the error covariance matrix 

Let us define the estimation error as εn = x n − ˆ x n , then the cor-

esponding error covariance matrix is 

 n = E{ εn ε
T 
n } . (26)

rom the second equation in (9) , the PMM-UFIR estimate (16) be-

omes 

ˆ 
 n = x n + H̄ n,m +1 (D 

(3) 
n,m +1 

W n,m +1 + D 

(4) 
n,m +1 

V n,m +1 ) . (27)
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Consequently, we have 

 n = H̄ n,m +1 

×
[ 

D 

(3) 
n,m +1 

diag (Q n , Q n −1 , . . . , Q m +1 ) D 

(3) 
n,m +1 

T 

+ D 

(4) 
n,m +1 

diag (R n , R n −1 , . . . , R m +1 ) D 

(4) 
n,m +1 

T 

+ D 

(3) 
n,m +1 

diag (M n , M n −1 , . . . , M m +1 ) D 

(4) 
n,m +1 

T 

+ D 

(4) 
n,m +1 

diag (M n , M n −1 , . . . , M m +1 ) 
T D 

(3) 
n,m +1 

T 

] 
× H̄ 

T 
n,m +1 . 

(28) 

he demonstration proceeds from (27) and the fact that the noise

 n = [ w 

T 
n , v 

T 
n ] 

T is white and zero-mean in the PMM defined in

ection 2.1 . 

.2. Iterative computation of the error covariance matrix 

For the sake of fast computation, we now seek a recursive form

or (28) . Starting from (1) , we have the expression of x n as 

 n = A 

(1) 
n x n −1 + A 

(2) 
n y n −1 + B 

(1) 
n w n + B 

(2) 
n v n . (29)

hen, combining (1) with (21) and (25) , we have the expression of

ts PMM-UFIR estimate as 

ˆ 
 n = A 

(1) 
n ˆ x n −1 + A 

(2) 
n y n −1 + K n (A 

(3) 
n x n −1 + A 

(4) 
n y n −1 + B 

(3) 
n w n 

+ B 

(4) 
n v n − A 

(3) 
n ˆ x n −1 − A 

(4) 
n y n −1 ) . (30) 

ubstracting (30) from (29) , the estimation error becomes 

n = (A 

(1) 
n − K n A 

(3) 
n ) εn −1 

+(B 

(1) 
n − K n B 

(3) 
n ) w n + (B 

(2) 
n − K n B 

(4) 
n ) v n . (31) 

Now, using the fact that the noise z n = [ w 

T 
n , v 

T 
n ] 

T is white and

ero-mean in the PMM defined in Section 2.1 , we obtain the de-

ired recursion 

 n = (A 

(1) 
n − K n A 

(3) 
n ) P n −1 (A 

(1) 
n − K n A 

(3) 
n ) T 

+(B 

(1) 
n − K n B 

(3) 
n ) Q n (B 

(1) 
n − K n B 

(3) 
n ) T 

+(B 

(2) 
n − K n B 

(4) 
n ) R n (B 

(2) 
n − K n B 

(4) 
n ) T 

+(B 

(1) 
n − K n B 

(3) 
n ) M n (B 

(2) 
n − K n B 

(4) 
n ) T 

+(B 

(2) 
n − K n B 

(4) 
n ) M 

T 
n (B 

(1) 
n − K n B 

(3) 
n ) T . (32) 

.3. Optimal horizon selection 

The PMM-UFIR has a degree of freedom that has not been ex-

loited yet, namely the choice of the horizon size N [34] - [35] . Let

s define the state estimation MSE for the PMM-UFIR over the

orizon [ m, n ] as trace ( P n ). Obviously, this quantity depends on the

orizon size since N = n − m + 1 (see Section 2.2 ). Therefore, a rea-

onable choice for tuning N to its optimum value N opt consists in

electing 

 opt = arg min 

N 
trace (P n ) . (33)

n applications, we typically notice that N < N opt is the regime

here the noise dominates the MSE (noise reduction is not op-

imal), while N > N opt corresponds to the regime where the esti-

ate bias dominates [35] . This is a direct consequence of the fact

hat the estimator ignores the noise contributions over the horizon

 m + 1 , n ] (see Section 3.1 ). 

Note that in practical applications, obtaining the optimal hori-

on size according to (33) , would require: 

• either an approximation of the of the noise/initial state covari-

ance matrices 
• or the availability of a test (training) sequence for the states,

in order to compute the empirical estimator of the error co-

variance matrix as a function of the horizon size N [34] . In

this case, the training sequence should be sufficiently large and
smoothing of the objective function may also be desirable. (  
Alternatively, blind estimation of the optimal horizon size, rely-

ng on the measurements only, has been introduced in [35] . 

.4. Complexity evaluation 

We now focus on the worst-case time complexity, which is

n important performance criterion. For all aforementioned algo-

ithms, we evaluate the asymptotic computational complexity to

enerate a single estimate at a given time instant n : 

• the PMM-KF (see Algorithm 2.1 ) is O(M 

3 + 3 K 

2 M + 2 KM 

2 +
2 K 

3 ) 
• the batch PMM-UFIR (see Section 3.1 ) O(N 

2 KM 

2 ) 
• for the Kalman-like PMM-UFIR (see Algorithm 3.2 ) is

O(N(2 K 

2 M + 3 K 

3 )) . 

As expected, the Kalman-like PMM-UFIR solves the computa-

ional inefficiency problem of the batch PMM-UFIR. Note that the

omplexity of the Kalman-like PMM-UFIR still grows linearly with

he horizon size N , unlike the PMM-KF. Consequently, the price to

e paid in order to get a robust estimate that is agnostic to initial

tate/noise covariances is an increase in computation time. This re-

ult for PMMs is not surprising, since it is in line with a similar

omplexity comparison for HMMs in [41] . 

. Numerical results 

In this section, we first evaluate the performance of the pro-

osed PMM-UFIR algorithm on synthetic data by avoiding state-

ugmentation in solving the following problems: 

• the drift estimation problem in time series analysis/forecasting

[5] 
• the correlated measurement noise problem in tracking [37] 
• estimation in a stochastic volatility model for financial time se-

ries. 

In all simulations, the optimal horizon size, N opt , is obtained of-

ine through (33) using a grid search. 

.1. Random walk with drift 

Many problems in time series analysis can be described by a

imple random walk with drift model (see [5,42–45] , respectively

or examples in econometrics, odometry, global temperature anal-

sis, oil production forecasting and biology). 

Let x n be the stochastic drift at instant n , modeled by a station-

ry autoregressive process of order-1 (AR(1)) 

 n = ρx n −1 + 

√ 

1 − ρ2 w n , (34)

here 0 < ρ < 1 sets the time correlation of the drift and u n ∼
 (0 , Q ) is the white Gaussian driving noise. The observed level of

he time series of interest is modeled by a random walk with drift

f the form 

 n = x n −1 + y n −1 + v n , (35)

here v n ∼ N (0 , R ) is white Gaussian noise. 

The linear Gaussian PMM (1) corresponding to this problem has

he following parameters 

A 

(1) 
n A 

(2) 
n 

A 

(3) 
n A 

(4) 
n 

]
= 

[
ρ 0 

1 1 

]
, 

[
B 

(1) 
n B 

(2) 
n 

B 

(3) 
n B 

(4) 
n 

]
= 

[√ 

1 − ρ2 0 

0 1 

]
. (36) 

ssuming that w n and v n are independent, we also have Q n =
, R n = R and M n = 0 , ∀ n ≥ 0. Note that both the state and

he observation are one-dimensional (i.e. K = M = 1 ), so that as

calar version of the PMM-KF ( Algorithm 2.1 ) and the PMM-UFIR

 Algorithm 3.2 ) are in order for drift estimation. Setting Q = 1 and
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Table 1 

N opt for the SA HMM-UFIR/PMM-UFIR applied to drift estimation with Q = 1 and R = 1 . 

ρ 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 

N opt 4 4 4 4 4 4 4 4 5 5 

ρ 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 

N opt 5 5 5 6 6 6 7 8 10 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. RMSE in drift estimation as a function of ρ , with Q = 1 and R = 1 . 

Fig. 2. RMSE in drift estimation as a function of R , with Q = 1 and ρ = 0 . 99 . 

Table 2 

N opt for the SA HMM-UFIR/PMM-UFIR applied to drift estimation with 

Q = 1 and ρ = 0 . 99 . 

R 1 2 3 4 5 6 7 8 9 10 

N opt 13 18 22 25 28 31 33 36 38 40 

 

o  

m  

t  

c  

F  

m  

t  

w  

a  

H

R = 1 and the range of the parameter ρ ∈ [0.8, 0.99], the optimal

horizon size for the PMM-UFIR is calculated using (33) and shown

in Table 1 . As expected, the smaller the value of ρ , the lower the

time-correlation of the drift and therefore the fewer the number

of observations to build a meaningful PMM-UFIR estimate. 

An SA HMM corresponding to the same problem, can be ob-

tained by appending y n to an augmented-state at time n , ζn =
[ x n , y n ] 

T , as proposed in [5] . The state-space representation (2) is

obtained by selecting 

F n = 

[
ρ 0 

1 1 

]
, B n = 

[√ 

1 − ρ2 0 

0 1 

]
, H n = [0 , 1] , D n = 0 . (37)

and w n ∼ N 

(
[0 , 0] T , diag (Q, R ) 

)
. The SA HMM-UFIR optimal hori-

zon size was found to be identical to the one found for the PMM-

UFIR. 

Let us describe our simulation setup. The exact values of the

true noise variances Q and R are used to simulate the trajecto-

ries of (34) - (35) . However, in practical applications, the exact noise

variances are difficult to determine exactly. Therefore, we assume

that the SA HMM-KF and the PMM-KF algorithms have perfect

knowledge of the initial condition, but employ p 2 Q and q 2 R instead

of Q and R , with p > 0 and q > 0 in order to take noise covariance

errors into account. The SA HMM-UFIR and the PMM-UFIR use the

optimal horizon size in Table 1 . 

We also run the SA HMM-KF/PMM-KF after expectation-

maximization (EM) system parameter identification [43] . Note that

for the PMM, EM estimates eight coefficients. EM is initialized with

the correct values of the unknown model parameters, so as to

avoid being trapped in a local maximum of the log-likelihood. At

each iteration, EM uses fixed-interval smoothing over the first 100

consecutive observations. A stopping criterion is met whenever the

log-likelihood changes by less then 0.1 percent [43] . We refer to

the Kalman algorithms using the system parameters obtained after

EM convergence as the SA HMM-KF-EM and the PMM-KF-EM. Due

to the very slow convergence of EM (tens of iterations), EM system

identification is much longer than the subsequent SA HMM-KF-EM

and the PMM-KF-EM over several thousands of observations. This

method is also not robust, since any changes in the system pa-

rameters would require to run the computationally demanding EM

again. Consequently, we merely consider the SA HMM-KF-EM and

PMM-KF-EM as a reference method (i.e. the best Kalman filter un-

der unknown system parameters), not as a real-time alternative to

SA HMM-UFIR/PMM-UFIR. 

Fig. 1 plots the root MSE (RMSE) for drift estimation using the

aforementioned algorithms as a function of ρ . We observe that

the PMM-KF reaches the same performances as the SA HMM-KF

with the same complexity. Similarly, the PMM-UFIR has almost

the same performances as its SA HMM counterpart at lower com-

plexity. Also, by setting the horizon size to its optimal value, we

observe that the RMSE of the PMM-UFIR is close the RMSE of

the PMM-KF with perfect knowledge of the noise variances (i.e.

p = q = 1 ). However, the PMM-UFIR is insensitive to noise variance

errors, while the SA HMM-KF and the PMM-KF are not, as exem-

plified by their deteriorated performances for p = 0 . 5 and q = 2 . 

In order to study the effect of the signal-to-noise ratio, we now

set Q = 1 , ρ = 0 . 99 and the range of the parameter R ∈ [1, 10]. The

optimal horizon size for the PMM-UFIR is recalculated and shown

in Table 2 , and is again the same as for the SA HMM-UFIR. 
As expected, the larger the value of R , the higher the number

f observations needed for noise averaging in the PMM-UFIR esti-

ate. Fig. 2 plots the root MSE (RMSE) for drift estimation using

he aforementioned algorithms as a function of R . Comparing all

onsidered algorithms again, conclusions similar to the setting in

ig. 1 can be drawn. As expected, increasing the variance of the

easurement noise R induces a moderate increase in the subop-

imality of the PMM-UFIR wrt the SA HMM-KF/PMM-KF estimate

ith perfect knowledge of the noise variances ( p = 1 , q = 1 ). Note

lso, that the proposed PMM-UFIR outperforms the standard SA

MM-UFIR over the entire range of R . 
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Fig. 3. RMSE in tracking as a function of � , with T = 0 . 05 s , Q = 1 ( m / s 2 ) 2 and 
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.2. Tracking with colored measurement noise 

Let us modify the discrete-time linear stochastic system (2) ,

o that the white measurement noise is replaced by a Markovian

easurement noise ηn [37,46] 

x n = F n x n −1 + B n w n 

n = �n ηn −1 + v n , 

y n = H n x n + ηn , (38) 

here the initial state x 0 ∼ N ( ̂ x 0 , P 0 ) is independent from the

ero-mean white Gaussian noise process z n = [ w 

T 
n , v 

T 
n ] 

T , ∀ n ≥ 0.

he noise covariance is defined by Q n = E{ w n w 

T 
n } , R n = E{ v n v T n }

nd M n = 0 . The standard way to convert (38) back to a linear

aussian HMM without state-augmentation, consists in applying

oise whitening by introducing the time-differenced measurement

46] 

 

′ 
n = y n − �n y n −1 

= (H n F n − �n H n −1 ) x n −1 + H n B n w n + v n , (39) 

here the auxiliary measurement y ′ n now depends on x n −1 . Note

hat in order to take into account this lag by one time step in the

ime-differenced measurements, the HMM-KF needs to be general-

zed [46, Sec. IV and Appendix] , [37, p. 191–192] , [3, p. 329] and

 similar generalization for the HMM-UFIR would also be needed.

herefore, in order to circumvent this problem, we introduce a

eneral solution based on a PMM. Considering (39) , it follows that

38) is equivalent to the linear Gaussian PMM (1) with the follow-

ng parameters 
 

A 

(1) 
n A 

(2) 
n 

A 

(3) 
n A 

(4) 
n 

] 

= 

[
F n 0 

H n F n − �n H n −1 �n 

]
, 

 

B 

(1) 
n B 

(2) 
n 

B 

(3) 
n B 

(4) 
n 

] 

= 

[
B n 0 

H n B n I 

]
, 

(40) 

nd the PMM white driving noise distribution is given by 

w n 

v n 

]
∼ N 

([
0 

0 

]
, 

[
Q n 0 

0 R n 

])
. 

nterestingly, it follows that both the PMM-KF in Algorithm 2.1 and

he PMM-UFIR in Algorithm 3.2 are directly applicable on the raw

easurements (i.e. without time-differencing), for the sake of state

stimation. 

Finding efficient estimation methods in the presence of colored

easurement noise has been a long-standing problem in tracking

3] and navigation [47] . As an example, we consider the following 

iscrete-time kinematic model for target tracking, where the state

ector at instant n contains the position, velocity and acceleration,

 n = [ p n , v n , a n ] T . Let us adopt a classical Wiener process accelera-

ion model [3, p. 274] , so that the first line in (38) is parameterized

y 

 n = 

[ 

1 T T 2 

2 

0 1 T 
0 0 1 

] 

, B n = 

[ 

T 2 

2 

T 
1 

] 

, w n ∼ N (0 , Q ) , (41)

here T is the sampling period and the physical meaning of w n is

hat of a scalar white acceleration increment. Assume that only po-

ition measurements are available [3, p. 277] under AR(1) colored

oise at instant n , then the two last lines in (38) are parameterized

y 

n = �, R n = R, H n = [1 , 0 , 0] , (42)

here 0 < � < 1 and R > 0 are the measurement noise coloration

arameter and the measurement driving noise variance, respec-

ively. 
Let us describe our simulation setup for T = 0 . 05 s . The exact

alues of the true noise variances are selected as Q = 1 ( m / s 2 ) 2 

nd R = 20 2 m 

2 and used to simulate the trajectories of (38) us-

ng the parameters (41) and (42) . Again, we assume that the gen-

ralized HMM-KF [46, Sec. IV and Appendix] , [37, p. 191–192] , [3,

. 329] and the PMM-KF algorithms have perfect knowledge of the

nitial condition, but employ p 2 Q and q 2 R instead of Q and R , with

 > 0 and q > 0 in order to take noise covariance errors into ac-

ount. The PMM-UFIR uses the optimal horizon size (33) , reported

n Table 3 as a function of the measurement noise coloration pa-

ameter � . As expected, the higher the measurement noise cor-

elation, the larger the horizon size needed to get a meaningful

MM-UFIR estimate. We also consider the SA HMM-UFIR with op-

imized horizon size for reference. 

We adopt as a performance measure the RMSE of the dimen-

ionless state vector ˜ x n = [ p n , T v n , T 2 a n ] T /σm 

introduced in [48] ,

here σ 2 
m 

= R/ (1 − �2 ) is the measurement noise variance. 

Fig. 3 plots the RMSE for the dimensionless state vector in

he tracking problem as a function of � , using the PMM-KF and

he PMM-UFIR on raw measurements or the generalized HMM-KF

n time-differenced measurements. We observe that the PMM-KF

eaches the same performances as the generalized HMM-KF, which

s due to the fact that they both aim to minimize the MMSE crite-

ion. Also, since the PMM-KF and the generalized HMM-KF are ex-

mpt of state-augmentation, both filters have the same dimension-

lity wrt the state and observation vectors, and thus have similar

omputational complexity. We note that by setting the horizon size

o its optimal value, the RMSE of the PMM-UFIR is close the RMSE

f the PMM-KF with perfect knowledge of the noise variances (i.e.

p = q = 1 ). Again, the PMM-UFIR is insensitive to noise variance

rrors, while the generalized HMM-KF and the PMM-KF are not,

s exemplified by their deteriorated performances for p = 0 . 5 and

 = 2 . Interestingly, the proposed PMM-UFIR outperforms the SA

MM-UFIR with optimized horizon, over the entire range of � .

he SA HMM-UFIR even becomes numerically unstable for small

alues of � , because the state transition matrix for in the SA HMM

given by the first line of (40) ) becomes ill-conditioned. 

In order to study the effect of the process noise variance, we

ow set � = 0 . 5 , R = 20 2 m 

2 and the range of the parameter

 ∈ [1, 10] ( m / s 2 ) 2 . The optimal horizon size for the PMM-UFIR

s recalculated and shown in Table 4 . The respective performance

f all considered algorithms are shown in Fig. 4 . Increasing the

ariance of the process noise Q induces a very slight increase in

he suboptimality of the PMM-UFIR wrt the generalized HMM-
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Table 3 

N opt for the PMM-UFIR applied to tracking with T = 0 . 05 s , Q = 1 ( m / s 2 ) 2 and R = 20 2 

m 

2 . 

� 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

N opt 98 99 101 103 105 108 110 113 116 120 

� 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 

N opt 124 128 134 140 148 157 170 187 215 273 

Table 4 

N opt for the PMM-UFIR applied to tracking with T = 0 . 05 s , � = 0 . 5 and R = 

20 2 m 

2 . 

Q 1 2 3 4 5 6 7 8 9 10 

N opt 124 110 102 98 94 91 89 87 85 83 

Fig. 4. RMSE in tracking as a function of Q in ( m / s 2 ) 2 , with T = 0 . 05 s , � = 0 . 5 and 

R = 20 2 m 

2 . 
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KF/PMM-KF estimate with perfect knowledge of the noise vari-

ances ( p = 1 , q = 1 ). Again the proposed PMM-UFIR outperforms

the standard SA HMM-UFIR over the entire range of Q . 

5.3. Stochastic volatility 

Stochastic volatility models are widely used for analyzing finan-

cial time series. An example of such models is provided in [49] -

[50] as 

r n = σεn e 
h n / 2 

h n +1 = φh n + ηn , (43)

where r n is the observed mean adjusted return on an asset and the

hidden variable h n is such that V (r n | h n ) = σ 2 e h n , at time instant n .

The disturbances ( εn , ηn ) are independently distributed according

to [50] [
εn 

ηn 

]
∼ N 

([
0 

0 

]
, 

[
1 ρση

ρση σ 2 
η

])
. (44)

By squaring the observations in (43) and taking logarithms, 

log (r 2 n ) = ω + h n + ζn , 

where ω = log (σ 2 ) + E[ log (ε2 
n )] and ζn ∼ ID (0 , σ 2 

ζ
) . Using (44) ,

ω = log (σ 2 ) − log (2) − γ and σ 2 
ζ

= π2 / 2 , where γ is the Euler

constant. 

Let s n = sign (r n ) ∈ {−1 , +1 } denote the sign of the n th obser-

vation, we introduce the quantities μ∗ = E[ ηn | s n = 1] , and γ ∗ =
[ ηn ζn | s n = 1] . From (44) 

∗ = 

√ 

2 √ 

π
ρση

γ ∗ = 

√ 

2 √ 

π
ρση

(
γ

2 

+ 

3 

2 

log (2) 
)
. 

Considering the state x n = [ h n , μ∗] T , and the transformed ob-

ervations y n = log (r 2 n ) − ω, a HMM conditional on the signs of the

riginal observations was obtained in [49, Eq. (6)] as 

 n = F n (s n −1 ) x n −1 + B n w n 

y n = H n x n + D n v n , (45)

arameterized by 

 n (s n −1 ) = 

[
φ s n −1 

0 1 

]
, B n = 

[
1 

0 

]
, H n = [1 , 0] , D n = [1] . (46)

nd the non-Gaussian disturbance verifies 

w n +1 

v n 

]∣∣∣s n ∼ ID 

([
0 

0 

]
, 

[
σ 2 

η − (μ∗) 2 γ ∗s n 
γ ∗s n σ 2 

ζ

])
. (47)

he best minimum mean square error linear estimator is obtained

y applying the noise decorrelating Kalman filter in [3, p. 324–

25] , but needs accurate knowledge of the disturbance covariance.

he HMM-UFIR on the contrary, relies only on the hypothesis that

he non-Gaussian disturbance conditional on the original observa-

ion sign is zero-mean. 

Interestingly, (43) is also naturally modeled by a PMM condi-

ional on the signs of the original observations in [49, Eq. (7)] 

x n 

y n 

]
= 

[
A 

(1) 
n A 

(2) 
n 

A 

(3) 
n A 

(4) 
n 

]
(s n −1 ) 

[
x n −1 

y n −1 

]
+ 

[
B 

(1) 
n B 

(2) 
n 

B 

(3) 
n B 

(4) 
n 

][
˜ w n 

˜ v n 

]
, (48)

arameterized by 

A 

(1) 
n A 

(2) 
n 

A 

(3) 
n A 

(4) 
n 

]
(s n −1 ) = 

⎛ 

⎜ ⎝ 

φ − γ ∗s n −1 

σ 2 
ζ

s n −1 
γ ∗s n −1 

σ 2 
ζ

0 1 0 

φ − γ ∗s n −1 

σ 2 
ζ

s n −1 
γ ∗s n −1 

σ 2 
ζ

⎞ 

⎟ ⎠ 

, 

[
B 

(1) 
n B 

(2) 
n 

B 

(3) 
n B 

(4) 
n 

]
= 

( 

1 0 

0 0 

1 1 

) 

, (49)

nd the non-Gaussian disturbance verifies 

˜ w n 

˜ v n 

]∣∣∣s n −1 ∼ ID 

([
0 

0 

]
, 

[
σ 2 

η − (μ∗) 2 − ( γ
∗

σζ
) 2 0 

0 σ 2 
ζ

])
. (50)

he best minimum mean square error linear estimator is obtained

y applying the PMM-KF, which again needs accurate knowledge of

he disturbance covariance. The PMM-UFIR on the contrary, relies

nly on the hypothesis that the non-Gaussian disturbance condi-

ional on the original observation sign is zero-mean. Note that the

tandard SA HMM-UFIR [34] is not even applicable, since the com-

lete PMM system matrix in the first line of (49) is singular. 

Let us describe our simulation setup. We simulate trajectories of

43) , with σ = 1 , ρ = −0 . 9 . For any φ ∈ [0.8, 0.99], ση = 2 
√ 

1 − φ2

n order to normalize E[ h 2 n ] to 4. The optimal horizon for the

MM-UFIR applied to (45) and the PMM-UFIR applied to (48) are

iven in Tables 5 and 6 , respectively. 
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Table 5 

N opt for the HMM-UFIR applied to the stochastic volatility model with σ = 1 , ρ = −0 . 9 and 

ση = 2 
√ 

1 − φ2 . 

φ 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 

N opt 16 15 13 10 11 11 11 11 13 13 

ρ 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 

N opt 13 14 14 15 17 17 21 24 26 41 

Table 6 

N opt for the PMM-UFIR applied to the stochastic volatility model with σ = 1 , ρ = −0 . 9 and 

ση = 2 
√ 

1 − φ2 . 

φ 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 

N opt 54 52 49 45 43 42 40 36 30 29 

ρ 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 

N opt 25 22 20 21 21 23 25 31 37 56 

Fig. 5. RMSE in the stochastic volatility problem as a function of φ, with σ = 1 , 

ρ = −0 . 9 and ση = 2 
√ 

1 − φ2 . 
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Fig. 5 plots the RMSE for the hidden variable h n in the stochas-

ic volatility problem as a function of φ, for the decorrelating

MM-KF and the PMM-KF with perfect knowledge of the distur-

ance covariance. We observe that the PMM-KF reaches the same

erformances as the decorrelating HMM-KF, which is due to the

act that they both correspond to the best minimum mean square

rror linear estimator. In the absence of information about the dis-

urbance covariance, the HMM-UFIR and the PMM-UFIR are in-

eresting alternatives. The PMM-UFIR benefits from a higher op-

imal horizon and thus outperforms its HMM-UFIR couterpart over

he entire range of φ, by allowing better noise averaging. Note

lso, that the performance degradation of the PMM-UFIR wrt the

alman filters is not severe. 

. Conclusion 

This paper considered the estimation problem in linear Gaus-

ian pairwise Markov models (PMMs) for real-world applications

n engineering, natural sciences or econometrics, where the initial

tate and/or the noise statistics are either unknown or difficult to

stimate. The proposed solution has the form of a FIR estimator

PMM-UFIR). Since the implementation of the latter is typically too

omplex in batch form, we have derived a recursive form that is

oth computationally efficient and in intuitive Kalman-like form.

he performance in terms of MSE of the proposed algorithm was
nalyzed and we also recovered the standard UFIR for HMMs as a

pecial case (with a slight difference in the horizon size, though). 

Numerical results gave valuable insights about the properties of

he considered approach. In particular, the proposed UFIR is close

o the MMSE-optimal Kalman filter (PMM-KF) in terms of estima-

ion accuracy in a linear Gaussian PMM, provided that the hori-

on size is tuned to its optimal value. The considered examples

ave confirmed the improved robustness of the PMM-UFIR wrt

he PMM-KF. Moreover, comparing to the standard SA HMM-UFIR

pproach, our numerical results have demonstrated that the pro-

osed PMM-UFIR not only has better performances over a wide

ange of applications, but also that it can be applicable in situa-

ions were the standard method fails completely. 

Our results can be extended in several directions. For instance,

he extended PMM used to derive the PMM-UFIR can be general-

zed to other structures depending on the retained matrix invert-

bility hypothesis. This may lead to other versions of the PMM-

FIR, that may perform even closer to the ideal PMM-KF in some

pplications, while retaining the inbuilt robustness properties. As

nother extension, tuning adaptively the horizon size to the oper-

ting conditions by controling the quality of estimation based on

easurements only, would be worth investigating [51] . 
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ppendix A. Derivation of the PMM-KF 

The predictive distribution can be written as 

p(x n , y n | y 0: n −1 ) = 

∫ 
p(x n , y n , x n −1 | y 0: n −1 ) dx n −1 

= 

∫ 
p(x n , y n | x n −1 , y n −1 ) p(x n −1 | y 0: n −1 ) dx n −1 . 

(A.1) 

ow (1) implies, 

p(x n , y n | x n −1 , y n −1 ) 

= N 

⎛ 

⎝ 

[ 
A 

(1) 
n A 

(2) 
n 

A 

(3) 
n A 

(4) 
n 

] [
x n −1 

y n −1 

]
, 

[ 
B (1) 

n B (2) 
n 

B (3) 
n B (4) 

n 

] [
Q n M n 

M 

T 
n R n 

][ 
B (1) 

n B (2) 
n 

B (3) 
n B (4) 

n 

] T ⎞ 

⎠ .

ince at instant n − 1 , the posterior distribution has the form 

p(x n −1 | y 0: n −1 ) = N 

(
ˆ x n −1 , P n −1 

)
, 

A.1) is also a Gaussian distribution whose mean is given by 

ˆ x 

−
n 

ˆ y −n 

]
= 

[
A 

(1) 
n A 

(2) 
n 

A 

(3) 
n A 

(4) 
n 

][
E{ x n −1 | y 0: n −1 } 

y n −1 

]
= 

[
A 

(1) 
n A 

(2) 
n 

A 

(3) 
n A 

(4) 
n 

][
ˆ x n −1 

y n −1 

]
, 
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which is the desired result. Similarly, the covariance of the Gaus-

sian (A.1) is obtained as [
P 

−
n �−

n 

�−
n 

T L −n 

]
= E 

{ [
x n − ˆ x 

−
n 

y n − ˆ y −n 

][
x n − ˆ x 

−
n 

y n − ˆ y −n 

]T 

| y 0: n −1 

} 

. 

Again (1) implies [
x n − ˆ x 

−
n 

y n − ˆ y −n 

]
= 

[
A 

(1) 
n A 

(2) 
n 

A 

(3) 
n A 

(4) 
n 

][
x n −1 − ˆ x n −1 

0 

]
+ 

[
B 

(1) 
n B 

(2) 
n 

B 

(3) 
n B 

(4) 
n 

][
w n 

v n 

]
. 

Now the fact that z n = [ w 

T 
n , v 

T 
n ] is white, yields [

P 

−
n �−

n 

�−
n 

T L −n 

]
= 

[
A 

(1) 
n A 

(2) 
n 

A 

(3) 
n A 

(4) 
n 

][
P n −1 0 

0 0 

][
A 

(1) 
n A 

(2) 
n 

A 

(3) 
n A 

(4) 
n 

]T 

+ 

[
B 

(1) 
n B 

(2) 
n 

B 

(3) 
n B 

(4) 
n 

][
Q n M n 

M 

T 
n R n 

][
B 

(1) 
n B 

(2) 
n 

B 

(3) 
n B 

(4) 
n 

]T , 

which is the result in Algorithm 2.1 after expansion. 

Finally, obtaining the posterior distribution at instant n 

p(x n | y 0: n ) = N 

(
ˆ x n , P n 

)
, 

with the mean and covariance in Algorithm 2.1 , proceeds from a

straightforward application of the Gaussian conditioning formula

[3, p. 52–54] to (A.1) . 

Appendix B. Derivation of the PMM-UFIR in iterative 

Kalman-like form 

Let us rewrite H n,m +1 in (15) in block matrix form using (10) 

H n,m +1 = 

[ 

A 

(3) 
n 

H n −1 ,m +1 

] 

(A 

(1) 
n ) −1 , (B.1)

it follows that the inverse of the GNPG (20) can be written as 

G 

−1 
n = H 

T 
n,m +1 H n,m +1 

= (A 

(1) 
n ) −T [ A 

(3) 
n 

T A 

(3) 
n + G 

−1 
n −1 

](A 

(1) 
n ) −1 . 

(B.2)

Taking the inverse of the previous expression proves the recursion

(23) . 

Now, isolating the first line of J n,m +1 in (14) and J ′ 
n,m +1 

in (15) ,

we obtain 

(J n,m +1 + J ′ n,m +1 ) Y n,m 

= 

⎡ 

⎣ 

y n − A 

(4) 
n y n −1 + A 

(3) 
n (A 

(1) 
n ) −1 A 

(2) 
n y n −1 

(J n −1 ,m +1 + J ′ n −1 ,m +1 ) Y n −1 ,m 

+ H n −1 ,m +1 (A 

(1) 
n ) −1 A 

(2) 
n y n −1 

⎤ 

⎦ 

(B.3)

From the definition of the PMM-UFIR estimate in batch form

(16) and the GNPG (20) , we have 

G 

−1 
n ˆ x n = H 

T 
n,m +1 (J n,m +1 + J ′ n,m +1 ) Y n,m 

. (B.4)

Now, injecting (B.1) and (B.3) into (B.4) yields 

G 

−1 
n ˆ x n = (A 

(1) 
n ) −T A 

(3) 
n 

T (y n − A 

(4) 
n y n −1 + A 

(3) 
n (A 

(1) 
n ) −1 A 

(2) 
n y n −1 ) 

+(A 

(1) 
n ) −T H 

T 
n −1 ,m +1 (J n −1 ,m +1 + J ′ n −1 ,m +1 ) Y n −1 ,m 

+(A 

(1) 
n ) −T H 

T 
n −1 ,m +1 H n −1 ,m +1 (A 

(1) 
n ) −1 A 

(2) 
n y n −1 . 

(B.5)

Using the fact that by definition G 

−1 
n −1 ̂

 x n −1 = H 

T 
n −1 ,m +1 (J n −1 ,m +1 +

J ′ 
n −1 ,m +1 

) Y n −1 ,m 

, (B.5) can be rearranged as 

G 

−1 
n ˆ x n = (A 

(1) 
n ) −T A 

(3) 
n 

T (y n − A 

(3) 
n ˆ x n −1 − A 

(4) 
n y n −1 ) 

+(A 

(1) 
n ) −T [ A 

(3) 
n 

T A 

(3) 
n + G 

−1 
n −1 

] ̂ x n −1 

+(A 

(1) 
n ) −T [ A 

(3) 
n 

T A 

(3) 
n + G 

−1 
n −1 

](A 

(1) 
n ) −1 A 

(2) 
n y n −1 , 

(B.6)
hich in turn becomes 

 

−1 
n ˆ x n = (A 

(1) 
n ) −T A 

(3) 
n 

T (y n − A 

(3) 
n ˆ x n −1 − A 

(4) 
n y n −1 ) 

+ G 

−1 
n (A 

(1) 
n ˆ x n −1 + A 

(2) 
n y n −1 ) 

(B.7)

sing (B.2) . Finally, multiplying both sides of (B.7) by G n completes

he proof of (21) - (25) . 
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