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a b s t r a c t 

Filtering and smoothing in switching state-space models are important in numerous applications. The 

classic family of conditionally Gaussian linear state space models (CGLSSMs) is a natural extension of 

the Gaussian linear system by introducing its dependence on switches. In spite of their simplicity, recur- 

sive filtering and smoothing are no longer feasible in CGLSSMs and approximate methods must be used. 

Conditionally Markov switching hidden linear models (CMSHLMs) are alternative models which allow re- 

cursive optimal exact filtering and smoothing. We introduce an original family of CMSHLMs defined with 

copulas and we address the problem of their identification. The proposed identification method chooses 

a model in a family of admissible parametric models and estimates the parameters. It is applied to a 

learning sample containing observations and states, while the switches are unknown. The interest of the 

proposed ”semi-unsupervised” filtering and smoothing is validated via experiments on simulated data. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

We introduce a general switching model based on copulas and

e propose an algorithm for its semi-supervised identification. The

dentification is performed from a learning sample set including

tates and observations, the switches being unknown. It consists

f solving two problems: 

(i) find the appropriate model in a set of possible parametric mod-

els; 

ii) estimate the parameters. 

Then the recursive exact filtering and smoothing can work

ased on the identified models, and we show the interest of the

hole procedure via simulation studies. 

A switching model contains three random sequences: X 

N 
1 

=
( X 1 , . . . , X N ) , R 

N 
1 = ( R 1 , . . . , R N ) and Y 

N 
1 = ( Y 1 , . . . , Y N ) . For n =

 , · · · , N, X n takes its values in R 

s , R n takes its value in � =
 

1 , . . . , K } , and Y n takes its values in R 

q . For n = 1 , · · · , N, let

 n = ( X n , R n , Y n ) and let us consider T N 1 = ( T 1 , . . . , T N ) . For some

ccasions, T N 
1 

will be also denoted as T N 
1 

= 

(
X 

N 
1 
, R 

N 
1 
, Y 

N 
1 

)
. The fi-

al restoration problem dealt with is to estimate both the hidden

X 

N 
1 
, R 

N 
1 

)
= 

(
x N 

1 
, r N 

1 

)
from observed Y 

N 
1 

= y N 
1 

. 
∗ Corresponding author. 

E-mail address: wojciech.pieczynski@telecom-sudparis.eu (W. Pieczynski). 
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To be concise, we will note different probability distributions

ith the same letter p . So the distribution of X 

N 
1 

will be de-

oted with p 
(
x N 1 

)
, the distribution of R n conditional on Y n = y n 

ill be denoted with p ( r n | y n .) and so on. For discrete variables,

ike R 1 , p ( r 1 ) is a probability, for continuous ones, like Y n , p ( y n ) is

 probability density function (pdf), and for mixed case, like T 1 =
( X 1 , R 1 , Y 1 ) , we have p ( x 1 , r 1 , y 1 ) = p ( r 1 ) p ( x 1 , y 1 | r 1 ) , with p ( r 1 )

robability and p ( x 1 , y 1 | r 1 .) pdf. 

Let us consider “Conditionally Markov switching hidden linear

odel” (CMSHLM [1] ) defined as: 

 

N 
1 = ( T 1 , · · · , T N ) is Markov ; (1) 

p ( r n +1 | x n , r n , y n ) = p ( r n +1 | r n ) ; (2) 

p ( r n +1 , y n +1 | x n , r n , y n ) = p ( r n +1 , y n +1 | r n , y n ) ; (3) 

 n +1 = A n +1 

(
R 

n +1 
n , Y 

n +1 
n 

)
X n + B n +1 

(
R 

n +1 
n , Y 

n +1 
n 

)
+ C n +1 

(
R 

n +1 
n , Y 

n +1 
n 

)
W n +1 , (4) 

here A n +1 , B n +1 , C n +1 are some vector functions whose dimen-

ions of the range is respectively s × s, s and s , and W 2 , ���, W N is

 sequence of centred variables with unit variance and such that

 n +1 is independent from ( T 1 , ���, T n ) for each n = 1 , · · · , N − 1 .

https://doi.org/10.1016/j.sigpro.2020.107511
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2020.107511&domain=pdf
mailto:wojciech.pieczynski@telecom-sudparis.eu
https://doi.org/10.1016/j.sigpro.2020.107511
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Let us note that (2) implies the Markovianity of R 

N 
1 
, while (3) im-

plies the Markovianity of 
(
R 

N 
1 , Y 

N 
1 

)
. 

We propose the following contributions: 

(i) CMSHLM in which p 
(
r N 

1 
, y N 

1 

)
is copulas based one [2] is origi-

nal; 

ii) p 
(
r N 

1 
, y N 

1 

)
is identified from Y 

N 
1 

= y N 
1 

through an original

variant of the “generalized iterative conditional estimation”

(GICE [3,4] ); 

ii) identification and parameter estimation of A n +1 and B n +1 with

a new “GICE with generalized least-squares” (GICE-GLS); 

v) general copulas based CMSHLM identification provided with

points (ii)-(iii) leads to semi-supervised (in learning sample(
X 

N 
1 
, Y 

N 
1 

)
= 

(
x N 

1 
, y N 

1 

)
are known while R 

N 
1 

= r N 
1 

are not) recursive

exact filtering and smoothing. 

Let us remark that CMSHLM with 

(
X 

N 
1 
, Y 

N 
1 

)
Gaussian condi-

tionally on R 

N 
1 

leads to “Conditionally Gaussian observed Markov

switching models” (CGOMSMs [5–10] ) which thus allow exact fil-

tering and smoothing and can be seen as an alternative to the

widely used “Conditionally Gaussian linear state space models”

(CGLSSMs [11,12] , among others). 

More generally, filtering in non-Gaussian non-linear systems is

widely applied in different problems and particle filters – which

are asymptotically optimal – are very efficient when the number

of particles is sufficient [11–17] , among others. Approximating such

stationary non-Gaussian non-linear systems (NGNLSs) with general

CMSHLM proposed in the paper – as carried out using CGOMSMs

in [9] – opens rich perspectives of dealing with stationary NGNLSs

when particles based methods fail because of the excessively large

number of particles needed. 

Furthermore, smoothing in switching systems is a hard prob-

lem and using particles is often faced with the degeneracy prob-

lem. Researchers are very active in the field, [16,18–21] among oth-

ers. Such problems do not occur in CMSHLMs and smoothing is

even quite straightforward. Let us remark that although similar to

smoothing methods in CGOMSMs described in [9] , those presented

in this paper are new. 

The remaining of the paper is organized as follows. In

section 2 we present the new copulas based CMSHLM (CB-

CMSHLM), and specify filtering and smoothing. Section 3 is de-

voted to the proposed CB-CMSHLM identification method termed

GICE-GLS. Some experiments are provided in Section 4 and the last

Section 5 concludes the work and sets out the perspectives. 

2. Filtering and smoothing in copulas based CMSHLMs 

2.1. Copulas based CMSHLM 

Let (Y 1 , · · · , Y d ) be a random vector valued in R 

d ,

F (y 1 , · · · , y d ) = P [ Y 1 ≤ y 1 , · · · , Y d ≤ y d ] its cumulative density

function (CDF), and F 1 , ���, F d CDFs of Y 1 , ���, Y d respectively.

Furthermore, a copula C is a CDF defined on [0, 1] d such that

marginal CDFs C 1 ( y 
1 ), ���, C d ( y 

d ) are identities on [0, 1]. According

to Sklar’s theorem [23] , for given F there exists a unique copula C

such that: 

F 
(
y 1 , · · · , y d 

)
= C 

(
F 1 
(
y 1 
)
, · · · , F d 

(
y d 
))

. (5)

Assuming differentiable F and C , setting 

c 
(
y 1 , · · · , y d 

)
= 

∂ d 

∂ y 1 · · · ∂ y d C 
(
y 1 , · · · , y d 

)
, (6)

and taking derivative of (5) , we obtain the probability density func-

tion (PDF) of (Y 1 , · · · , Y d ) : 

f 
(
y 1 , · · · , y d 

)
= c 

[
F 1 
(
y 1 
)
, · · · , F d 

(
y d 
)] d ∏ 

i =1 

f i 
(
y i 
)
, (7)
ith f i , ���, f d PDFs of Y 1 , ���, Y d respectively. Let us return to

MSHLM defined by (1) –(4) . In addition, we will consider the fol-

owing commonly used assumptions: 

p 
(
y n +1 

∣∣r n +1 
n 

)
= p ( y n +1 | r n +1 ) ; (8)

p 
(
y n 
∣∣r n +1 

n 

)
= p ( y n | r n ) ; (9)

pplying (7) to p 
(
y n , y n +1 

∣∣r n +1 
n 

)
and using (8), (9) , there exists a

opula C n +1 

(
r n +1 

n 

)
such that: 

p 
(
y n , y n +1 

∣∣r n +1 
n 

)
= p ( y n | r n ) p ( y n +1 | r n +1 ) 

c n +1 

(
r n +1 

n 

)
( F n ( y n | r n ) , F n +1 ( y n +1 | r n +1 ) ) (10)

nd thus 

p 
(
y n +1 

∣∣r n +1 
n , y n 

)
= p ( y n +1 | r n +1 ) c n +1 

(
r n +1 

n 

)
( F n ( y n | r n ) , F n +1 ( y n +1 | r n +1 ) ) (11)

arkovianity of R 

N 
1 

and 

(
R 

N 
1 
, Y 

N 
1 

)
joined to (11) indicate that the

istribution of 
(
R 

N 
1 
, Y 

N 
1 

)
is given by Markov distribution of R 

N 
1 
, mar-

ins p ( y 1 | r 1 .), ���, p ( y N | r N .), and copulas c 2 
(
r 2 

1 

)
, · · · , c N 

(
r N 

N−1 

)
. Let

s notice that CB-CMSHLM so obtained is not necessarily station-

ry: margins and copulas can depend on n . 

.2. Filtering in copulas based CMSHLM 

Recalling that, for each n = 1 , . . . , N, X n takes its values in R 

s ,

nd Y n takes its values in R 

q , we have 

 n = 

[ 

X 

1 
n 

. . . 

X 

s 
n 

] 

, Y n = 

[ 

Y 1 n 

. . . 

Y q n 

] 

, 

ith X 1 n , ..., X s n , Y 1 n , ..., Y 
q 
n real. We will classically note X 

T 
n =

X 1 n , . . . , X 
s 
n 

)
, Y 

T 
n = 

(
Y 1 n , . . . , Y 

q 
n 

)
. Similarly to conditional distribu-

ions, conditional expectation of a random vector A knowing a

ealization B = b of a random vector B will be denoted with

 [ A | b ] . The filtering problem consists of recursively computing

p 
(
r n +1 

∣∣y n +1 
1 

)
, E 

[
X n +1 

∣∣r n +1 , y 
n +1 
1 

]
, and E 

[
X n +1 , X T

 

n +1 

∣∣r n +1 , y 
n +1 
1 

]
rom p 

(
r n 
∣∣y n 

1 

)
, E 

[
X n 

∣∣r n , y n 1 

]
, E 

[
X n X T

 

n 

∣∣r n , y n 1 

]
, p ( r n +1 , y n +1 | r n , y n ) ,

nd y n +1 . We have 

p 
(
r n +1 

∣∣y n +1 
1 

)
= 

∑ 

r n 
p ( r n +1 , y n +1 | r n , y n ) p 

(
r n 
∣∣y n 1 

)
∑ 

r n +1 

∑ 

r n 
p ( r n +1 , y n +1 | r n , y n ) p 

(
r n 
∣∣y n 

1 

) ; (12)

 

[
X n +1 

∣∣r n +1 , y 
n +1 
1 

]
= 

∑ 

r n 

[
A n +1 

(
r n +1 

n , y n +1 
n 

)
E [ X n | r n , y n 1 ] 

+ B n +1 

(
r n +1 

n , y n +1 
n 

)]
p 
(
r n 
∣∣r n +1 , y 

n +1 
1 

)
(13)

 

[
X n +1 X T

 

n +1 

∣∣r n +1 , y 
n +1 
1 

]
= 

∑ 

r n 

F n +1 

(
r n +1 

n , y n +1 
n 

)
p 
(
r n 
∣∣r n +1 , y 

n +1 
1 

)
, 

(14)

ith 

 n +1 

(
r n +1 

n , y n +1 
n 

)
= A n +1 

(
r n +1 

n , y n +1 
n 

)
E [ X n X T

 

n | r n , y n 1 ] A T

 

n +1 

(
r n +1 

n , y n +1 
n 

)
+ B n +1 

(
r n +1 

n , y n +1 
n 

)
B T

 

n +1 

(
r n +1 

n , y n +1 
n 

)
+ C n +1 

(
r n +1 

n , y n +1 
n 

)
C T  

n +1 

(
r n +1 

n , y n +1 
n 

)
+ A n +1 

(
r n +1 

n , y n +1 
n 

)
E [ X n | r n , y n 1 ] B T

 

n +1 

(
r n +1 

n , y n +1 
n 

)
+ B n +1 

(
r n +1 

n , y n +1 
n 

)
E T

 [ X n | r n , y n 1 ] A T

 

n +1 

(
r n +1 

n , y n +1 
n 

)
, (15)
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f  

s

p 
(
r n 
∣∣r n +1 , y 

n +1 
1 

)
= 

p ( r n +1 , y n +1 | r n , y n ) p 
(
r n 
∣∣y n 1 

)
∑ 

r n 
p ( r n +1 , y n +1 | r 1 , y n ) p 

(
r n 
∣∣y n 

1 

) . (16) 

et us briefly justify (12) –(16) . (12) and (16) come from the Marko-

ianity of 
(
R 

N 
1 
, Y 

N 
1 

)
, which implies 

p 
(
r n +1 

n , y n +1 
1 

)
= p ( r n +1 , y n +1 | r n , y n ) p ( r n , y n 1 ) (17) 

o justify (13) , we write E [ X n +1 | r n +1 , y 
n +1 
1 

] =
 

r n 
E [ X n +1 | r n , r n +1 , y 

n +1 
1 

] p(r n | r n +1 , y 
n +1 
1 

) = 

∑ 

r n 
[ A n +1 (r n +1 

n , y n +1 
1 

)

 [ X n | r n , r n +1 , y 
n +1 
1 

] + B n +1 (r n +1 
n , y n +1 

n )] p(r n | r n +1 , y 
n +1 
n ) , and then

pply E [ X n | r n , r n +1 , y 
n +1 
1 

] = E [ X n | r n , y n 1 
. ] – which comes from Eq.

 , according to which X n and ( R n +1 , Y n +1 ) are independent con-

itionally on ( R n , Y n ). (14) –(15) are obtained in a similar way by

eplacing X n +1 by X n +1 X T

 

n +1 
. 

emark 1. As p 
(
r n +1 

∣∣y n +1 
1 

)
and E 

[
X n +1 

∣∣r n +1 , y 
n +1 
1 

]
are com-

uted from p 
(
r n 
∣∣y n 

1 

)
, E 

[
X n 

∣∣r n , y n 1 

]
, and y n +1 without using

 n +1 

(
R 

n +1 
n , Y 

n +1 
n 

)
, (4) can be actually extended to 

 n +1 = A n +1 

(
R 

n +1 
n , Y 

n +1 
n 

)
X n + B n +1 

(
R 

n +1 
n , Y 

n +1 
n 

)
+ W n +1 , (18)

ith the only hypotheses that E [ W n +1 ] = 0 and W n +1 is indepen-

ent from ( T 1 , ���, T n ) for each n = 1 , · · · , N − 1 . However, the vari-

nce of the filter depends on Var [ W n +1 ] would thus be unknown. 

.3. Smoothing in copulas based CMSHLM 

Optimal smoothing consists of computation of E 

[
X n 

∣∣r n , y N 1 

]
for

ach n = 1 , · · · , N. Under CMSHLM they are not complicated to get

rom already calculated E 

[
X n 

∣∣r n , y n 1 

]
in filtering given in the previ-

us paragraph. We have: 

 

[
X n 

∣∣y N 1 

]
= 

∑ 

r n 

p 
(
r n 
∣∣y N 1 

)
E 

[
X n 

∣∣r n , y N 1 

]
= 

∑ 

r n 

p 
(
r n 
∣∣y N 1 

)
E [ X n | r n , y n 1 ] , (19) 

he second equality being due to the fact that X n and Y 

N 
n +1 

are

ndependent conditionally on ( R n , Y n ). 
(
R 

N 
1 
, Y 

N 
1 

)
being Markov,

p 
(
r n 
∣∣y N 1 

)
is classically obtained by recursive calculation of “for-

ard” and “backward” probabilities αn ( r n ) = p 
(
r n , y 

n 
1 

)
, βn ( r n ) =

p 
(
y N n +1 | r n 

)
with: 

1 ( r 1 ) = p ( r 1 , y 1 ) ; αn +1 ( r n +1 ) = 

∑ 

r n 

p ( r n +1 , y n +1 | r n , y n ) αn ( r n ) , 

(20) 

N ( r N ) = 1 ; βn ( r n ) = 

∑ 

r n +1 

p ( r n +1 , y n +1 | r n , y n ) βn +1 ( r n +1 ) , (21)

e have p 
(
r n , y 

N 
1 

)
= αn ( r n ) βn ( r n ) , and thus 

p 
(
r n 
∣∣y N 1 

)
= 

αn ( r n ) βn ( r n ) ∑ 

r n 
αn ( r n ) βn ( r n ) 

. (22) 

 

[
X n 

∣∣y N 
1 

]
in smoothing does not require C n +1 

(
R 

n +1 
n , Y 

n +1 
n 

)
as in fil-

ering, while E 

[
X n , X T

 

n 

∣∣y N 
1 

]
can be calculated in a similar way and

ives: 

 

[
X n , X T

 

n 

∣∣y N 1 

]
= 

∑ 

r n 

p 
(
r n 
∣∣y N 1 

)
E [ X n , X T

 

n | r n , y n 1 ] , (23)

ith E 

[
X n , X T

 

n 

∣∣r n , y N 1 

]
from (14), (15) . 
. CB-CMSHLM identification 

We tackle the identification problem of a CB-CMSHLM

rom a learning sample set of observations Y 

N 
1 

= y N 
1 

data

nd space data X 

N 
1 = x N 1 , while R 

N 
1 = r N 1 remains unknown. In

B-CMSHLM T N 
1 

= 

(
X 

N 
1 
, Y 

N 
1 
, R 

N 
1 

)
, the considered couple 

(
R 

N 
1 
, Y 

N 
1 

)
s stationary, so that its distribution can be defined by

p ( r 1 , r 2 , y 1 , y 2 ) = p ( r 1 , r 2 ) p ( y 1 , y 2 | r 1 , r 2 ) , equal to the distributions

p ( r n , r n +1 , y n , y n +1 ) , n = 2 , · · · , N − 1 . Furthermore, A n +1 and B n +1 

n (4) are time independent from n = 2 , · · · , N − 1 . To summarize,

he model identification problem which we are facing is threefold:

i) Estimate the distribution p ( r 1 , r 2 ); 

ii) Find forms of copulas and margins, as well as related parame-

ters, of the distributions p ( y 1 , y 2 | r 1 , r 2 .); 

ii) Find forms and parameters of A 

(
r 2 

1 
, y 2 

1 

)
, and B 

(
r 2 

1 
, y 2 

1 

)
defining

p ( x 1 , x 2 | r 1 , r 2 , y 1 , y 2 .). 

For each ( r 1 , r 2 ) ∈ �2 , forms of copulas c ( r 1 , r 2 ), forms of mar-

ins p ( y 1 | r 1 .), and forms of A 

(
r 2 

1 
, y 2 

1 

)
, B 
(
r 2 

1 
, y 2 

1 

)
, will be searched for

n given sets of possible forms. 

.1. Generalized Iterative Conditional Estimation (GICE) 

To solve (i) and (ii) we use an original variant of Generalized It-

rative Conditional Estimation (GICE). GICE is a family of methods

xtending ICE to cases where the parameterized forms of distri-

utions are unknown, but belong to a given family of candidate

orms. Introduced in the frame of hidden discrete Markov (with

orrelated noise) models in [4] GICE can be applied here to identify

he distribution of 
(
R 

N 
1 
, Y 

N 
1 

)
from Y 

N 
1 

only: X 

N 
1 

can be temporarily

et aside here. The new GICE variant we propose is as follows. 

Let Y 

N 
1 

= y N 
1 

be a sample, and for simplifying the nota-

ions, let us denote f jk ( y 1 , y 2 ) = p ( y 1 , y 2 | r 1 = j, r 2 = k ) , f j ( y 1 ) =
p ( y 1 | r 1 = j ) , f k ( y 2 ) = p ( y 2 | r 1 = k ) , and c jk 

(
F j ( y 1 ) , F k ( y 2 ) 

)
=

 ( r 1 = j, r 2 = k ) ( F ( y 1 | r 1 = j ) , F ( y 2 | r 2 = k ) ) . So that: 

f jk ( y 1 , y 2 ) = f j ( y 1 ) f k ( y 2 ) c jk 
(
F j ( y 1 ) , F k ( y 2 ) 

)
(24)

urthermore, the switch probabilities are written as p jk =
p ( r 1 = j, r 2 = k ) . 

For each j ∈ �, the form f j is unknown, but we assume that

t belongs to a known set of possible forms H = { H 1 , · · · , H L } . Each

orm H l , l = 1 , · · · , L, is a parametric set of probability distributions

 l = 

{
f θ (l) 

}
θ (l) ∈ �(l) 

. Similarly, for each j, k ∈ �, the form of c jk is

nknown, but it is assumed to belong to a known set of possible

orms G = { G 1 , · · · , G M 

} , each of which being a parametric set of

opulas G m 

= 

{
c α(m ) 

}
α(m ) ∈ A(m ) 

. 

Thus to identify margins means to find (from Y 

N 
1 = y N 1 ) for each

 ∈ �, the right form H 

j 

l 
in H and to estimate parameters θ j ( l ). To

dentify copulas, the problem is to find, for each j, k ∈ �, the right

orm G 

jk 
m 

in G , and to estimate parameters αjk ( m ). 

To achieve these goals by GICE, we further assume: 

1. For each j, k ∈ �, l = 1 , · · · , L, and m = 1 , · · · , M there exist es-

timators ˆ θ j (l) , ˆ α jk (m ) ; 

2. There is a rule D 

1 which decides for each set of distributions

f θ ( l ) ∈ H 1 , ���, f θ ( L ) ∈ H L the best one which fits the given sample

y 1 = 

(
y 1 

1 
, · · · , y 1 

Q 1 

)
, with Q 1 denoting the sample size; 

3. There exists a rule D 

2 which decides for each set of copulas

c α(1) ∈ G 1 , ���, c α( M ) ∈ G M 

the best one which fits the given

samples y 2 = 

(
y 2 1 , · · · , y 2 Q 2 

)
, with Q 2 denoting the sample size. 

Then, GICE iteratively runs the following steps to figure out

orms of margins, forms of copulas, and related parameters (with

uperscript i denoting the iteration number). 
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1. Initialize GICE with 

(
p 0 

jk 
, f 0 

j 
, c 0 

jk 

)
, for j, k ∈ �; 

2. Find 

(
p i +1 

jk 
, f i +1 

j 
, c i +1 

jk 

)
from 

(
p i 

jk 
, f i 

j 
, c i 

jk 

)
and y N 

1 
b y the sub-

steps below: 

(a) for n = 1 , · · · , N − 1 , compute p i 
(
r n = j, r n +1 = k | y N 

1 

)
from(

p i 
jk 

, f i 
j 
, c i 

jk 

)
and y N 1 with 

p i 
(
r n = j, r n +1 = k | y N 1 

)
= 

αn ( j) p ( r n +1 = k, y n +1 | r n = j, y n ) βn +1 ( k ) ∑ 

j ∗,k ∗∈ �
αn ( j) p ( r n +1 = k ∗, y n +1 | r n = j ∗, y n ) βn +1 ( k ) 

, 

where αn ( j ) and βn +1 (k ) are obtained by ap-

plying (20) , (21) . Then update p jk with p i +1 
jk 

=
1 

N−1 

∑ N−1 
n =1 p 

i 
(
r n = j, r n +1 = k | y N 1 

)
; 

(b) sample 
(
r N 

1 

)i +1 = 

(
r i +1 

1 
, · · · , r i +1 

N 

)
according to p 

(
r N 

1 

∣∣y N 
1 

)
based on current parameters 

(
p i 

jk 
, f i 

j 
, c i 

jk 

)
(r ecall that

p 
(
r N 1 

∣∣y N 1 

)
is Markov with p 

(
r 1 = j 

∣∣y N 1 

)
= 

α1 ( j) β1 ( j) ∑ 

k ∈ �α1 (k ) β1 (k ) 
, and

p 
(
r n +1 = j 

∣∣r n = k, y N 
1 

)
= 

p ( r n +1 = j, y n +1 | r n = k, y n ) βn +1 ( j) 

βn (k ) 
for n =

1 , · · · , N − 1 ); 

(c) for each j, k ∈ � consider 
(
y N 

1 

)i +1 

j 
the sub-sequence of y N 

1 

formed with y n such that r i +1 
n = j, and 

(
y N 1 

)i +1 

jk 
the sub-

sequence of couples ( y n , y n +1 ) in y N 
1 

such that r i +1 
n = j

and r i +1 
n +1 

= k . For l = 1 , · · · , L and m = 1 , · · · , M, calculate

θ i +1 
j 

(l) = 

ˆ θ j (l) 
[ (

y N 1 

)i +1 

j 

] 
and αi +1 

jk 
(m ) = ˆ α jk (m ) 

[ (
y N 1 

)i +1 

jk 

] 
; 

(d) for each j ∈ �, choose from 

{ 
f 
θ i +1 

j 
(1) 

, · · · , f 
θ i +1 

j 
(L ) 

} 
an ele-

ment f i +1 
j 

by applying tule D 

1 to the sample y 1 = 

(
y N 

1 

)i +1 

j 
.

Similarly, for j, k ∈ � chose from 

{
c 
αi +1 

jk 
(1) 

, · · · , c 
αi +1 

jk 
(M) 

}
an element c i +1 

jk 
by applying rule D 

2 to the sample y 2 =(
y N 1 

)i +1 

jk 
; 

3. Stop according to some criterion. 

For the initialization in step 1, K-means is applied to group y N 
1 

and find the initial guess of switches 
(
r N 

1 

)0 
, then 

(
p 0 

jk 
, f 0 

j 
, c 0 

jk 

)
can

be initialized from 

(
r N 1 , y 

N 
1 

)0 
so as for the sub-steps (c) and (d)

(replacing the iteration index “i + 1 ” with “0”). As GICE is a gen-

eral estimation frame, different parameter estimators and decision

rules for assumptions 1-3 can be applied. In this work, Maximum

Likelihood (ML) estimators are chosen for both 

ˆ θ j (l) and ˆ α jk (m )

while in [4] ˆ α jk (m ) were obtained by mean of the empirical es-

timation of Kendall’s tau. Besides, we adopt the minimization of

Kolmogorov distance as decision rule D 

1 , while GICE in [4] is based

on Pearson’s system of distributions. Let us note that D 

1 consid-

ered here is valid for every set of distributions while the Pearson

system used in [4,24] is limited to a set containing fixed eight pos-

sible forms. 

The algorithm will stop when it is considered to be converged

according to some criterion. For example, it stops when no change

of form is observed for the estimation of both margins and copulas,

and the difference of the estimated parameters from D 

1 and D 

2 

between 2 iterations is within some predefined threshold. 

3.2. Least-square estimation for non-linear switching model 

The last problem (iii) left is to find forms and parameters

of A 

(
r n +1 

n , y n +1 
n 

)
, B 

(
y n +1 

n , y n +1 
n 

)
, and C 

(
r n +1 

n , y n +1 
n 

)
defining X n +1 
rom X n with (4) , and being independent from n = 1 , · · · , N. We

ave seen that C 
(
r n +1 

n , y n +1 
n 

)
intervenes neither in filtering nor

n smoothing, thus we concentrate on dealing with A 

(
r 2 1 , y 

2 
1 

)
and

 

(
r 2 1 , y 

2 
1 

)
. Let us temporarily assume that their forms are given

nd for each r 2 
1 

= ( j, k ) , they depend on parameters a jk and b jk 

espectively: A 

(
r 1 = j, r 2 = k, y 2 1 

)
= A a jk 

(
y 2 1 

)
, B 

(
r 1 = j, r 2 = k, y 2 1 

)
=

 b jk 

(
y 2 

1 

)
. When p 

(
r N 

1 

∣∣y N 
1 

)
is given, the parameter estimation of the

aussian p 
(
x n +1 

∣∣x n , y n +1 
n , r n +1 

n 

)
can be considered as the estima-

ion of a multi-regimes switching regression, and the Least-Square

LS) is an efficient method to deal with this. Extending the Or-

inary Least-Square (OLS) to the non-Gaussian case that we deal

ith, estimates ˆ a = 

(
ˆ a jk 
)

j,k ∈ � and 

ˆ b = 

(
ˆ b jk 

)
j,k ∈ �

are obtained by

inimizing with respect to ( a jk ) j,k ∈ �, ( b jk ) j,k ∈ � the quantity 

 

2 = 

1 

N − 1 

N−1 ∑ 

n =1 

{ 

x n +1 −
∑ 

( j,k ) 

p 
(
r n +1 

n = ( j, k ) 
∣∣y N 1 

)
[
A a jk 

(
y n +1 

n 

)
x n + B b jk 

(
y n +1 

n 

)]} 2 

, 

(25)

s previously done for copulas and margins, let us assume that

he form of A 

(
r 2 

1 
, y 2 

1 

)
is not known but belongs to a given set of

orms { K 1 , ���, K Q }, with each form K q being parameterized by

 

q = 

(
a 

q 

jk 

)
j,k ∈ �

. Similarly, the form of B 
(
r 2 

1 
, y 2 

1 

)
is not known but

elongs to a given set of forms { L 1 , ���, L S }, with each form L s be-

ng parameterized by b s = 

(
b s 

jk 

)
j,k ∈ �

. Then, minimization of (25) is

pplied to each couple of forms ( K q , L s ), giving estimated ˆ a q =
ˆ a 

q 

jk 

)
j,k ∈ �

and 

ˆ b s = 

(
ˆ b s 

jk 

)
j,k ∈ �

. Then the couple of forms finally

ept is the couple 
(

ˆ K q , ̂  L s 
)

for which the related 

(
ˆ a q , ̂  b s 

)
obtains

he minimum of (25) (comparing to other 

(
ˆ a q 

∗
, ̂  b s 

∗
)

) related to

ther couples 
(
K q ∗ , L s ∗

)
. 

xample 1. Let us consider the linear case A jk 

(
y n +1 

n 

)
=

 jk g 1 
(
y n +1 

n 

)
, B jk 

(
y n +1 

n 

)
= b jk g 2 

(
y n +1 

n 

)
, with g 1 , g 2 given func-

ions. The explicit solution (the vector stacking all a jk and b jk ) of

he minimization of (25) is: 

 ( x ) = ( L T  ( x ) L ( x ) ) 
−1 L T  ( x ) x , (26)

ith x = [ x 2 · · · x N ] T
 

, and matrix given with 

 = 

⎡ ⎢ ⎣ 

p 1 1 , 1 g 
1 
1 , 2 · · · p 1 1 ,K g 

1 
1 , 2 · · · g 1 K,K g 

1 
1 , 2 

. . . 
. . . 

. . . 
. . . 

. . . 

p N−1 
1 , 1 

g N−1 
1 , 2 

· · · p N−1 
1 ,K 

g N−1 
1 , 2 

· · · g N−1 
K,K 

g N−1 
1 , 2 

⎤ ⎥ ⎦ 

, (27)

here p n 
jk 

= p 
(
r n +1 

n = ( j, k ) 
∣∣y N 

1 

)
, and g n 

1 , 2 
= 

[
x T n g T

 

1 

(
y n +1 

n 

)
g T 

2 

(
y n +1 

n 

)]
.

For the general case we can turn to various numerical algo-

ithms to minimize the error. A potential solution can be the

auss-Newton method with linear approximation of the func-

ions, the Powell’s Dog Leg method with a control of trust re-

ion, or some other hybrid methods introduced in [25–27] respec-

ively. In experiments of the next section we adopt the Levenberg–

arquardt (LM) algorithm, which is a damped Gauss–Newton

ethod as proposed in [28] and completed in [29–31] . 

Combining the two identification steps above, the entire

chema of GICE-GLS for CB-CMSHLM identification is given in

ig. 1 . 

Concerning computation complexity of GICE-LS, it is propor-

ional to the number of possible margins forms L , and the possible

opulas forms M . In the general GICE-GLS it is also proportional
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Fig. 1. Schema of CMSHLM estimation from learning sample 
(
x N 1 , y 

N 
1 

)
through GICE-GLS. 
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o the number of possible forms of A a 

(
y 2 

1 

)
and B b 

(
y 2 

1 

)
. Finally, the

lgorithm is proportional to the number of iterations. However, it

s worthwhile to highlight that similar to the classic ICE in sim-

le hidden Gaussian Markov chains, complexity time of ICE-GLS is

inear in sample size N . 

Let us remark that theoretical study of the GICE-GLS sequence

s not tackled here and would probably be somewhat hard. How-

ver, we can note that it is a Markov chain from its very construc-

ion so that, when it converges in distribution, the limit does not

epend on initial values, under some conditions to be verified. In

ifferent experiments we performed we noticed that indeed, re-

ults are very little sensitive to initializations. Next, we provide a

hort study of four different initializations (see experiments for Se-

ies 1). 

. Experiments 

We present two series of experiments on simulated data and

est a simplified version of GICE-GLS, called GICE-LS, in which

he parameterized forms A a jk 

(
y 2 

1 

)
and B b jk 

(
y 2 

1 

)
are known, and the

roblem lies only in estimation of their parameters. 

In the first series, the learning sample and data to be restored

re simulated according to a CB-CMSHLM. After having identified

he CB-CMSHLM through GICE-LS from the learning sample, filter-

ng and smoothing obtained results are compared to the results

ot from the other two methods. The first one uses parameters es-

imated by ICE-LS and data are restored by exact restoration con-

idering Gaussian margins and copulas. In the second one, identi-

cation and restoration are performed through CGOMSM-ABF pro-

osed in [8,9] . The aim is to show that when data are not Gaussian

onsidering them as Gaussian can significantly degrade the filter-

ng and smoothing results. 

In the second series, data are sampled with respect to a

GOMSM. The aim is to verify that when data follows the sim-

ler Gaussian CGOMSM, which is a particular case of CB-CMSHLM,

ICE-LS based filtering and smoothing provides a result compara-

le to those obtained with ICE-LS and CGOMSM- ABF. 

The considered CB-CMSHLM is defined as follows. 

– Both hidden states and observations are scalar; 

– The Markov chain R 

N 
1 

is stationary and has K = 2 jumps; 

– The margins are of six possible forms (see Appendix for de-

tails): 

H = { H 1 , · · · , H 6 } = { Gamma, Fisk, Gaussian, Laplace, 
Beta, Beta prime } , (28) 
– The copulas are of seven possible forms (all of them – except

Product – belong to one-parameter copula families (see Ap-

pendix for details): 

G = { G 1 , · · · , G 7 } = { Gumble, Gaussian, 

Clayton, FGM, Arch12, Arch14, Product } , (29) 

– All estimators ˆ θ j ( l ) are the Maximum Likelihood ones; 

– Rule D 

1 consists of minimizing the Kolmogorov distance be-

tween empirical distribution 

ˆ F and candidates F 1 ∈ H 1 , ���,

F L ∈ H L . The Kolmogorov distance between two CDFs F, F ′ is

defined as 

d 
(
F , F ′ 

)
= sup 

y ∈ R 

d 

∣∣F ( y ) − F ′ ( y ) 
∣∣, (30) 

where the notation |.| denotes the absolute value, and thus for a

sample μQ 
1 

= 

(
μ1 , · · · , μQ 

)
the chosen CDF D 

1 
(
μQ 

1 

)
among can-

didates F 1 ∈ H 1 , ���, F L ∈ H L , is defined with: 

D 

1 
(
μQ 

1 

)
= arg inf 

l∈ { 1 , ··· ,L } 

[
d 
(
F l , ˆ F 

)]
, (31) 

where empirical CDF ˆ F is given by: 

ˆ F ( μ) = 

1 

Q 

Q ∑ 

n =1 

1 [ μn ≤μ] , (32) 

– Estimators ˆ a jk are obtained with the method presented in [32] .

For a sample μ2 Q 
1 

= 

(
( μ1 , μ2 ) , · · · , 

(
μ2 Q−1 , μ2 Q 

))
, we have: 

ˆ a 
(
μ2 Q 

1 

)
= arg max 

a 

[ 

N−1 ∑ 

n =1 

log 
(
c a 
(

ˆ F ( μn ) , ˆ F ( μn +1 ) 
))] 

, (33) 

where, ˆ F ( μn ) , ˆ F ( μn +1 ) are empirical CDFs calculated from(
μ1 , · · · , μ2 Q−1 

)
and ( μ2 , ���, μ2 Q ) respectively. Let us remark

that other copula estimation methods [33–35] could replace the

applied ones. 

– Finally, the rule D 

2 is the maximum of pseudo-likelihood: for

a sample μ2 Q 
1 

= 

(
( μ1 , μ2 ) , · · · , 

(
μ2 Q−1 , μ2 Q 

))
, copula ˆ c related

to each distribution p ( μ2 n −1 , μ2 n ) is chosen among candidates

c 1 ∈ G 1 , ���, c M 

∈ G M 

with: 

D 

2 
(
μ2 Q 

1 

)
= arg sup 

m ∈ { 1 , ··· ,M } 

N−1 ∏ 

n =1 

c m 

([
ˆ F ( μn ) , ˆ F ( μn +1 ) 

])
, (34) 

with 

ˆ F ( μn ) , ˆ F ( μn +1 ) being empirical CDFs as above. 
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Table 1 

True margins, copulas, and their estimates from GICE-LS (extracted from cases in which true copulas and margins are perfectly found). 

Margins and parameters f 1 ( θ1 ) (Gamma) f 2 ( θ2 ) (Fisk) Copulas and parameters c 11 ( α11 ) (Gumbel) c 22 ( α22 ) (Clayton) c 12 ( α12 ) = c 21 ( α21 ) (Gaussian) 

True θ i 16.00 4.00 True αjk 1.10 4.67 0.45 

Estimated θ i 13,72 3.93 Estimated αjk 1.15 4.46 0.46 

Fig. 2. Error ratio tendency of estimated R N 1 according to GICE and ICE iterations in 

Series 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Error ratios and MSEs of optimal (based on true parameters) restorations, as 

well as the GICE-LS, ICE-LS and CGOMSM-ABF based ones (average of 100 

independent experiments). 

Optimal GICE-LS ICE-LS CGOMSM-ABF 

Filtering Error 0.139 0.156 0.404 0.462 

MSE 2.380 2.771 5.762 9.353 

Smoothing Error 0.084 0.103 0.378 0.456 

MSE 2.290 2.631 5.750 9.273 

Table 3 

True a jk , b jk , d jk and their estimates (extracted from cases in which true cop- 

ulas and margins are found). 

True Estimates 

( j, k ) (1,1) (1,2) (2,1) (2,2) (1,1) (1,2) (2,1) (2,2) 

a j,k 0.20 0.40 0.60 0.80 0.27 0.41 0.69 0.81 

b j,k 0.70 0.50 0.60 0.90 0.69 0.56 0.63 0.90 

d j,k 0.00 0.00 0.00 0.00 0.00 -0.01 -0.13 -0.01 

Table 4 

Margins identification error ratio. f 1 is Gamma, and f 2 is Fisk - see Table 1 . 

Gamma Fisk Gaussian Laplace Beta Beta prime 

Identified f 1 87% 12% - 1% - - 

Identified f 2 1% 99% - - - - 

t  

f

(  

 

(  

 

 

Series 1. 

In both series the probabilities p jk = p ( r 1 = j, r 2 = k ) defining

the distribution of stationary R 

N 
1 

are p 11 = p 22 = 0 . 45 , p 12 = p 21 =
0 . 05 . A set of N = 50 0 0 simulated ( x n , y n ) is taken as a learn-

ing sample used for the model identification, and another set

of N = 10 0 0 simulated data is taken for testing form identifica-

tion, parameter estimation, and related filtering and smoothing

based on real and estimated models. The margins and copulas

in p 
(
r N 1 , y 

N 
1 

)
are set in Table 1 . p 

(
x n +1 

∣∣x n , r n = j, r n +1 = k, y n +1 
n 

)
are Gaussian with means a jk x n + B jk 

(
y n +1 

n 

)
– where B jk 

(
y n +1 

n 

)
=

b jk y n y n +1 + d jk are non-linear in y n , y n +1 , and the variances σ 2 
jk 

=[
C n +1 

(
r n = j, r n +1 = k, y n +1 

n 

)]2 
, which are thus independent from n

and y n +1 
n . Let us recall that variances σ 2 

jk 
are only used to sam-

ple data and neither interfere in filtering nor smoothing. They are

taken as σ 2 
11 

= σ 2 
22 

= 1 . 0 , and σ 2 
12 

= σ 2 
21 

= 0 . 8 . Restoration results

of all four methods are indicated in Table 2 . From the results and
Fig. 3. Two examples of trajectories from Series
hose of other similar experiments performed, we can advance the

ollowing conclusions: 

1) GICE-LS based filtering and smoothing are quite efficient for the

data which follows CB-CMSHLM, with MSE close to the optimal

one; 

2) ICE-LS provides better results than CGOMSM-ABF. Both of them

wrongly assume that p 
(
y N 

1 

∣∣r N 
1 

)
is Gaussian; the difference lies

in the fact that CGOMSM-ABF also assumes p 
(
x n +1 

n 

∣∣r n +1 
n , y n +1 

n 

)
Gaussian, while ICE-LS limits the Gaussian assumption to
 1 experiment (100 samples, smoothing). 
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Fig. 4. Error ratio evolution while initializing with different margins and copulas (a). Trajectories evolution while initializing with different copulas (b). Auto corresponds 

to the GICE-LS initialization, Gaussian-Gaussian means all Gaussian margins and all Gaussian copulas, Laplace-FGM means all Laplace margins and all FGM copulas, and 

BetaPrime-Arch14 refers to all BetaPrime margins and all Arch14 copulas. 

Table 5 

Copulas identification error ratio. c 11 is Gumbel, c 12 = c 21 are Gaussians, and c 22 is Clayton - see 

Table 1 . 

Gumbel Gaussian Clayton FGM Arch12 Arch14 Product 

Identified c 11 96% 2% 1% - 1% - - 

Identified c 12 = c 21 34% 58% 4% 8% - - - 

Identified c 22 2% - 96% 1% 1% - - 

Table 6 

Error ratio and smoothing MSE while initializing with different margins and copulas. 

Auto corresponds to the GICE-LS initialization, Gaussian-Gaussian means all Gaussian 

margins and all Gaussian copulas, Laplace-FGM means all Laplace margins and all FGM 

copulas, and BetaPrime-Arch14 refers to all BetaPrime margins and all Arch14 copulas. 

Initialization Auto Gaussian-Gaussian Laplace-FGM BetaPrime-Arch14 

Error ratio 0.062 0.060 0.063 0.055 

MSE 3.013 3.142 2.930 3.439 

Table 7 

Error ratios and Mean Square Errors (MSEs) of optimal (based on true param- 

eters) filtering and smoothing, and GICE-L S, ICE-L S, and CGOMSM-ABF based 

ones. Data sampled with CGOMSM with parameters given in Tables 8 and 9 . 

Optimal GICE-LS ICE-LS CGOMSM-ABF 

Filtering Error 0.245 0.289 0.249 0.247 

MSE 1.037 1.047 1.044 1.044 

Smoothing Error 0.211 0.261 0.215 0.213 

MSE 1.032 1.044 1.039 1.040 
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i  

t

f  

5  

s  

s  

t  

c  

B

p 
(
x n +1 

∣∣x n , r n +1 
n , y n +1 

n 

)
. Thus, the non-linearity of B jk ( y n +1 ) =

b jk y n y n +1 + d jk is better taken into account by ICE-LS; 

3) GICE can select false margins and copula, especially for c 12 =
c 21 (see Tables 4 and 5 ). However, this does not significantly

degrade the optimal filtering and smoothing results; 

4) The estimates of p jk from GICE-LS are quite close to the true

ones: ˆ p 11 = 0 . 474 , ˆ p 22 = 0 . 445 , ˆ p 12 = ˆ p 21 = 0 . 040 ; 

5) According to Fig. 2 , where the error ratio of unsupervised

switches estimation is concerned, GICE is much more effective

than ICE; 

6) The two trajectory examples displayed in Fig. 3 clearly illus-

trate the superiority of GICE-LS over the other methods on the

restoration of general CB-CMSHLM data considered; 
7) According to Table 3 estimates of a jk , b jk , and d jk are quite cor-

rect. 

As stated at the end of the previous section, the sequence of

argins, copulas, and parameters produced with GICE-GLS is a

arkov chain and thus, under some ergodic theorem hypotheses,

heir evolution “forgets” initialization. Let us present a short study

f four different initializations: 

• Auto refers to the GICE-LS initialization described above; 
• Gaussian-Gaussian means an initialization with all Gaussian

margins and all Gaussian copulas; 
• Laplace-FGM refers to an initialization with all Laplace margins

and all FGM copulas; 
• BetaPrime-Arch14 means an initialization with all BetaPrime

margins and all Arch14 copulas. 

Table 6 reports the error ratio and smoothing MSE while initial-

zing with different margins and copulas, whereas Fig. 4 (a) gives

he error ratio evolution of unsupervised MPM search of R 

N 
1 = r N 1 

rom Y 

N 
1 

= y N 
1 

as a function of GICE iterations. It appears that after

0 iterations, the initialization has little influence. Similarly, semi-

upervised GICE-LS based smoothing results presented in Fig. 4 (b)

how that Auto, Gaussian-Gaussian, and Laplace-FGM initializa-

ions give the same plot (hidden behind the green one), the green

urve is almost identical to the red one which corresponds to a

etaPrime-Arch14 initialization. 
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Table 8 

True margins, copulas (Gaussian) and their estimates (extracted from cases in which true copulas and mar- 

gins are found). 

Margins f 1 ( θ1 ) f 2 ( θ2 ) Copulas c 11 ( α11 ) c 22 ( α22 ) c 12 ( α12 ) = c 21 ( α21 ) 

True θ i 0.00 1.00 True αjk 0.80 0.20 0.45 

ICE Estimated θ i 0.01 1.00 Estimated αjk 0.79 0.20 0.42 

GICE Estimated θ i -0.04 0.99 Estimated αjk 0.78 0.23 0.49 

Table 9 

True a jk , b jk , e jk , d jk and their estimates (extracted from cases in which true copulas and margins are found). 

True ICE-LS estimates GICE-LS estimates 

( j, k ) (1,1) (1,2) (2,1) (2,2) (1,1) (1,2) (2,1) (2,2) (1,1) (1,2) (2,1) (2,2) 

a jk 0.30 0.50 0.50 0.70 0.30 0.52 0.48 0.69 0.34 0.56 0.47 0.67 

b jk 0.61 0.05 0.25 -0.19 0.60 0.03 0.25 -0.16 0.50 0.05 0.20 -0.11 

e jk 0.30 0.70 0.30 0.70 0.31 0.71 0.31 0.71 0.39 0.78 0.27 0.64 

d jk 0.00 0.00 0.00 0.00 0.01 0.04 0.08 -0.01 0.01 0.07 0.01 0.02 

Table 10 

Margins identification error ratio. f 1 and f 2 are Gaussians. 

Gamma Fisk Gaussian Laplace Beta Beta prime 

Identified f 1 2% 1% 86% 11% - - 

Identified f 2 5% 3% 54% 1% - 37% 

Table 11 

Copulas identification error ratio. c 11 is Gumbel, c 12 = c 21 are Gaussians, and c 22 is Clayton. 

Gumbel Gaussian Clayton FGM Arch12 Arch14 Product 

Identified c 11 1% 43% 2% - 3% 51% - 

Identified c 12 = c 21 32% 52% 10% 4% - 2% - 

Identified c 22 14% 60% 4% 19% - 3% - 
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Performing on a 3.6 GHz CPU, GICE-LS in this series takes about

180 s (for 100 iterations), while filtering and smoothing both takes

around 0.03 s 

Series 2. 

In this second series, data is sampled with respect to a

CGOMSM. The aim is to verify whether more complex GICE-LS,

which considers six possible margins and seven possible copulas, is

competing compared to ICE-LS, which uses just the right Gaussian

margins and copulas. Thus in this series, both p 
(
y n +1 

n 

∣∣r n +1 
n 

)
and

p 
(
x n +1 

∣∣x n , r n +1 
n , y n +1 

n 

)
are set to be Gaussian with A jk 

(
y n +1 

n 

)
= a jk 

and B jk 
(
y n +1 

n 

)
= b jk y n + e jk y n +1 + d jk , with a jk , b jk , e jk and their es-

timates specified in Table 9 . Estimated switching joint probabilities

from GICE are p 11 = 0 . 485 , p 22 = 0 . 421 , p 12 = p 21 = 0 . 047 ; while

from ICE, they are p 11 = 0 . 489 , p 22 = 0 . 419 , p 12 = p 21 = 0 . 046 . 

According to Table 7 GICE-LS based filtering and smoothing re-

sults are comparable to ICE-LS and CGOMSM-ABF based ones, all of

them being close to the optimal results. As in the previous series,

GICE cannot always find Gaussian margins and Gaussian copulas –

see Tables 10 and 11 . However, this does not affect the restoration

seriously since the found distributions are close to Gaussian ones,

at least where filtering and smoothing are concerned. 

5. Conclusion 

We introduce an identifiable general switching CMSHLM model

with copulas, called copulas based CMSHLM (CB-CMSHLM), and

propose a family of methods called “generalized Iterative condi-

tional estimation with generalized least squares” (GICE-GLS) for its

identification from a set of admissible family of models. Recursive

exact filtering and smoothing are then possible using CB-CMSHLM

in a semi-unsupervised way. The high adaptable identification abil-

ity of GICE-LS, which is a particular simplified GICE-GLS, has been
erified by experiments on both Gaussian linear and non-Gaussian

on-linear data. 

There are many perspectives for further work: 

1) Include the estimation of C n +1 in (4) , when dealing with the

parameter estimations of A n +1 and B n +1 ; possibly by weighted

least-square; 

2) Other alternative parameter estimation methods under the GICE

frame are worth trying to improve the performance in specific

situations. For example, the moments method could replace ML

as the estimator for margins, while for copulas, a popular way

is to estimate their Kendall’s tau. Moreover, instead of the semi-

parametric estimation applied in our work, parametric or non-

parametric methods [33,35] are probably also worth a test; 

3) The model and methods proposed are easy to extend to

higher dimensional state-spaces, at least when parameters are

known. Their interest with respect to Markov chain Monte

Carlo (MCMC) based methods is expected to increase when

the state-space dimension grows, since under high dimension

circumstance, a large amount of particles will be required by

MCMC methods, therefore it loads us with the burden of calcu-

lation; 

4) The proposed GICE-GLS identification for CB-CMSHLMs is semi-

supervised, for which a sample containing observations Y 

N 
1 and

states X 

N 
1 

is required, while switches R 

N 
1 

are unknown. Extend-

ing the method to a fully unsupervised one, which would work

from the Y 

N 
1 only, is an important perspective for applications.

One possible idea to explore solutions could be inspired by the

“double EM” algorithm proposed in the Gaussian case in [36] ; 

5) There are many possible variations over the several known

copulas, margins, and functions A n +1 , B n +1 and C n +1 in (4) .

Choosing the best model for a given concrete problem opens

a huge field of perspectives. In particular, stochastic volatility is

an important item in finance [22,37–39] among others. Some
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first approximation studies with CGOMSMs turned out to work

well [8,40] , and thus applying more complex CMSHLMs is a

possible perspective for further works; 

6) Markov chains dealt in this paper are the simplest Markov

graphical models and extensions of proposed CB-CMSHLMs

to other Markov graphical models, for example those stud-

ied in [41] , is another perspective to view. Some rare applica-

tions of hidden particular Markov graphical models with copu-

las to image processing have been proposed in hidden Markov

trees [42] , or hidden Markov fields [43,44] ; however, copulas

are still rarely used in hidden Markov models because the ob-

servations are, in general, assumed to be independent condi-

tionally on hidden states; 

7) Classic switches considered in this paper could possibly be ex-

tended to “fuzzy” switches, as recently proposed in [45,46] ,

which results in as many possibilities of extensions of the pro-

posed models. 
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ppendix. 

Six standard forms of margin distributions and related parame-

ers used in experiments are: 

– Gamma: Setting 	( θ ) = 

∫ + ∞ 

0 t θ−1 exp ( −t ) dt and γ ( θ, y ) = ∫ y 
0 

t θ−1 exp ( −t ) dt, CDF F and PDF f are F ( y ) = 

γ ( θ,y ) 
	( θ ) 

, f ( y ) =
y θ−1 exp ( −y ) 

	( θ ) 
(for θ > 0); 

– Fisk (also known as log-logistic distribution): F ( y ) = 

1 
1+ y −θ ,

f ( y ) = 

θy θ−1 

( 1+ y θ ) 2 
(for θ > 0); 

– Gaussian: Setting er f (x ) = 

2 √ 

π

∫ x 
0 exp (−t 2 ) dt , F ( y ) =

1 
2 

(
1 + erf 

(
y √ 

2 

))
and f ( y ) = 

1 √ 

2 π
exp 

(
− y 2 

2 

)
; 

– Laplace: F ( y ) = 

{
1 − 1 

2 exp ( −y ) if y ≥ 0 
1 
2 exp ( y ) if y < 0 

, f ( y ) = 

1 
2 exp ( −| y | ) ; 

– Beta: setting B ( θ1 , θ2 ) = 

∫ 1 
0 t 

θ1 −1 ( 1 −t ) θ2 −1 
dt, I ( x, θ1 , θ2 ) =∫ x 

0 t 
θ1 −1 ( 1 − t ) θ2 −1 dt, F ( y ) = 

I ( y,θ1 ,θ2 ) 
B ( θ1 ,θ2 ) 

, and f ( y ) =
	( θ1 + θ2 ) y 

θ1 −1 ( 1 −y ) θ2 −1 

	( θ1 ) 	( θ2 ) 
(for θ1 > 0, θ2 > 0); 

– Beta prime (also called beta distribution of the second kind

or inverted beta distribution): F ( y ) = I 
(

y 
1+ y , θ1 , θ2 

)
, and f ( y ) =

y θ1 −1 ( 1+ y ) −θ1 −θ2 

B ( θ1 ,θ2 ) 
(for θ1 > 0, for θ2 > 0). 

Seven forms of copulas and related parameters used in experi-

ents are: 

– Gumbel copula: Setting U 1 = ( − ln ( μ1 ) ) 
α
, U 2 =

( − ln ( μ2 ) ) 
α
, CDF C and PDF c are (for α ∈

[1 , + ∞ [ ) C ( μ1 , μ2 ) = exp 

(
−( U 1 + U 2 ) 

1 /α
)
, c ( μ1 , μ2 ) =

U 1 
μ1 ln ( μ1 ) 

U 2 
μ2 ln ( μ2 ) 

( α − 1 + U 1 + U 2 ) 
1 /α( U 1 + U 2 ) 

1 /α−2 

exp 

[
−( U 1 + U 2 ) 

1 /α
]
; 

– Gaussian copula: Setting φ standard Gaussian PDF (mean 0

and variance 1), ξ = 

[
φ−1 (μ1 ) 

φ−2 (μ2 ) 

]
, I = 

[
1 0 

0 1 

]
, ρ = 

[
1 α
α 1 

]
(for α ∈ ] − 1 , 1[ ), C ( μ1 , μ2 ) = 

∫ μ1 
0 

φ
(

φ−1 ( μ2 ) −αφ−1 ( μ1 ) √ 

1 −α2 

)
dμ,

c ( μ1 , μ2 ) = 

1 
1 −α2 exp 

(
− 1 

2 ξ
ᵀ ( ρ − I ) ξ

)
; 

– Clayton copula: C ( μ1 , μ2 ) = 

(
μ−α

1 
+ μ−α

2 
− 1 

)1 /α
, 
c ( μ1 , μ2 ) = ( 1 + α) μ−1 −α
1 

μ−1 −α
2 

(
μ−α

1 
+ μ−α

2 
− 1 

)−( 1 /α) −2 
(for 

α ∈ [0 , + ∞ [ ); 

– FGM (Farlie–Gumbel–Morgenstern) copula: C ( μ1 , μ2 ) 
= μ1 μ2 ( 1 + α( 1 − μ1 ) ( 1 − μ2 ) ) , c ( μ1 , μ2 ) = 1 + α ( 1 − 2 μ1 )

( 1 − 2 μ2 ) ; 

– Arch 12 (Archimedean of order 12) copula: Set-

ting U 1 = 

(
1 

u 1 
− 1 

)α

, U 2 = 

(
1 

u 2 
− 1 

)α

(for α ∈

[1 , + ∞ [ ), C ( μ1 , μ2 ) = 

(
1 + ( U 1 + U 2 ) 

1 /α
)−1 

, c ( μ1 , μ2 ) =
U 1 

u 1 ( 1 −u 1 ) 
U 2 

u 2 ( 1 −u 2 ) 

[
α−1+ ( 1+ α) ( U 1 + U 2 ) 1 /α

]
( U 1 + U 2 ) ( 1 /α) −2 [

1+ ( U 1 + U 2 ) 1 /α
]3 ; 

– Arch 14 (Archimedean of order 14) copula: Set-

ting U 1 = 

(
u −1 /α

1 
− 1 

)α

, U 2 = 

(
u −1 /α

2 
− 1 

)α

(for α ∈
[1 , + ∞ [ ), C ( μ1 , μ2 ) = 

(
1 + ( U 1 + U 2 ) 

1 /α
)−α

, c ( μ1 , μ2 ) =
U 1 U 2 ( U 1 + U 2 ) 

( 1 /α) −2 
[
1 + ( U 1 + U 2 ) 

1 /α
]−2 −α

[
α−1+2 α( U 1 + U 2 ) 1 /α

]
αu 1 u 2 

(
u 

1 /α
1 

−1 

)(
u 

1 /α
2 

−1 

)
– Product copula: C ( μ1 , μ2 ) = μ1 μ2 , c ( μ1 , μ2 ) = 1 . 
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