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a b s t r a c t 

Detecting locomotion activities are critical for the analysis of human daily activities. In this paper, an 

adaptive on-line classification method is proposed to detect four lower limb locomotion activities – walk- 

ing, running, stair ascent and descent – from the signals of a unique wearable sensor. The method is 

based on a non-parametric triplet Markov model, to detect gait phases and activities simultaneously, in 

an unsupervised way. This capability allows the model to work at run-time, and so to be used on-line. 

Also, an algorithm that adapts model parameters suits for a wide range of healthy human is presented. 

From this adjustment ability, an initial model can gradually approach to the dedicated activity patterns. 

Experimental results with ten healthy subjects show that our algorithm can reach an overall classification 

accuracy up to 99.20%, after the stabilization of parameters adjustment, regardless of the users’ gender, 

height, activity speed . . . Overall, the proposed algorithm presents a good performance in on-line param- 

eters learning and high accuracy in classifying lower limb locomotion activities from a fount-mounted 

inertial measurement unit-based wearable sensor. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Locomotion activity has generated a high level of interest in re-

cent years because of its large number of applications in many re-

search fields, e.g. surveillance systems, health-care for elderly or

sick people [1,2] , rehabilitation [3] , daily life suggestion, and man-

agement . . . Wearable exoskeleton robotics may assist injured peo-

ple to do exercises or daily activities such as walking and stair

climbing [4] . Liparoti et al. [5] presented that gait analysis can be

used in detecting gait abnormalities of disabled people. Of all these

applications, those based on lower limb activities are among the

most numerous [6,7] , including walking, running, stair ascent and

descent, cycling, making turn . . . 

Many different types of sensors have already been used to

analyze locomotion activities. Among them, inertial measurement

units (IMUs) are small and can be used to obtain kinematic in-

formation, such as acceleration and angular rate, of the body part

where the sensor is placed: lower limbs, waist, chest, or arm . . .

San-Segundo et al. [8] proposed a human activity recognition and

segmentation system based on hidden Markov models (HMMs)

for recognizing and segmenting six activities: walking, sitting,
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tanding, lying, stair ascent and descent. The authors in [9] used

ata collected by smartphone and showed that human kinematics

onvey important information about user identity from motion

atterns. The survey [10] reported that other types of sensors like

amera, WIFI, Bluetooth, or electromyogram sensor can also be

sed for locomotion activities. Unfortunately, camera and wireless

ensors need pre-installed cameras and beacons, and this results

n the inability to use them out of the area of the pre-installed

nstruments. Electromyogram sensors need to put many nodes

ith cables on the body, which is not convenient for daily life.

hile IMU has no such restrictions or inconvenience, allowing to

e used almost anywhere, even outdoors. 

Given the many advantages of IMU sensors and their conve-

ience, our goal is to identify four kinds of activity, namely walk-

ng, running, stair ascent and descent, from only one single foot-

ounted IMU sensor. These activities share the feature in com-

on: they are built with the same gait cycle with four phases

amed stance, push-up, swing and step-down. The only difference

elies on the patterns and speed varies of the generated signals.

herefore, the duration of each gait phase and the signal shape

ith respect to specific activity will be different. 

Generally, in order to classify the considered activities, seg-

entation is firstly performed to detect each gait cycle. Then it is

ossible to evaluate the signals within one gait cycle to determine

he corresponding activity [11] . With this strategy, the classification

https://doi.org/10.1016/j.neucom.2019.06.081
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Fig. 1. The placement of the IMU sensor on a shoe. 
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esults are extremely dependent on the accuracy of the gait cycle

nalysis. In this work, we develop a specific “triplet Markov chain”

TMC) model [12] suited to classify the four activities. This model

rovides us with a way to simultaneously detect gait cycles (what-

ver the activity) and the activities themselves, by introducing

wo hidden sequences into the model. In this work, our claimed

ontributions are: 

• A specific TMC model is designed to mimic the natural gait cy-

cles and activity switches by introducing a cyclic left-right state

transition graph, which allows detecting gait cycles and activity

modes simultaneously. 

• A non-parametric TMC model, called TMC-HIST, is proposed to

better represent the distribution of observations conditionally

to activities and gait phases, which is based on the histograms

of historical data. 

• An adaptive and on-line algorithm, based on TMC-HIST, is pre-

sented to allow auto-calibration (i) to the subject, whatever

his/her gender, size, weight . . . , (ii) but also to the change of

activities’ pattern and road conditions at run time. 

The remaining of the paper is organized as follows.

ection 2 presents the off-line classification algorithm, the

roperties of activities and gait phases are illustrated first, and

hen the details of TMC-HIST is described, including the param-

ters learning method. Section 3 shows how it is possible to

ake the algorithm adaptive to users and for its use in real-life

onditions. Section 4 describes the experiments conducted with

 group of ten subjects. Section 5 discusses the performance of

he proposed algorithm compared to the state-of-the-art works, a

eep discussion on the behavior of the algorithm is also proposed

here. Finally, conclusions and future work are proposed in the last

ection. 

. The off-line recognition algorithm 

We start by describing the property and shape of the IMU sig-

als to be used for activity classification. Then, we present the

ovel cyclic left-right TMC model with non-parametric modeling of

ata-driven densities by normalized histograms. The section ends

ith the calculations – required in an off-line scenario, also called

batch mode” – to learn model’s parameters and to make the lo-

omotion activity recognition algorithm unsupervised. 

.1. Activities and gait phases 

The IMU sensor 1 is fixed on the shoe of the right foot as shown

n Fig. 1 , with X -axis of the sensor pointing to right, Y -axis pointing

head and Z -axis up. For not mixing with the symbols of stochastic
1 Shimmer3 GSR + , more details at the manufacturer’s site http://www. 

himmersensing.com/images/uploads/docs/ConsensysPRO _ Spec _ Sheet _ v1.1.0.pdf . 

t  

p  

s  

t  
rocess in the remaining of the paper, the three axes will be repre-

ented as X -axis, Y-axis, Z-axis, respectively. From the 9-DOF (de-

ree of freedom) of the sensor (acceleration, angular rate and mag-

etic field, all in 3D), we will only use angular rates [ ω 

X , ω 

Y , ω 

Z ] .
he reason not considering acceleration is that the shoe and foot

hape vary from person to person, especially for the front slope

here the sensor is placed, thus the acceleration readings may be

ignificantly different in each sensor axes. There are two reasons

or not considering magnetic field. The first one is that it is used

or estimating the orientation of the sensor. However in this work,

e only focus on what kind of activity a person is performing,

ot where the person is heading for. Another reason is that mag-

etic field is very easily distorted by other unpredictable magnetic

ources, such as buildings, electricity devices, cars . . . 

A quite large amount of methods have been used in investigat-

ng locomotion activities from IMU sensors, and we are going to

nly focus on works reported recently. Wu et al. [13] investigated

he performance of imbalanced dataset for human activity recog-

ition, their method showed better results compared to the ex-

sting methods. Traditional classifiers like Support Vector Machine

SVM) [14] , Gaussian Mixture Model (GMM) [15] are commonly ap-

lied in locomotion activity detection. Authors in [16] also used

everal features and classifiers to test their impacts on recognition

ccuracy, with the help of acceleration of 9 sensors on the body.

hey proved that detecting particular locomotion activities accu-

ately needs specific features and classifiers. Their results showed

hat mean and standard deviation features provided the best accu-

acy out of all features evaluated by both KNN (K-nearest neigh-

or) and ensemble methods, while spectral entropy produced the

orst performance. They also concluded that data pre-processing

as nearly no impact on classifying accuracy. Also of interest, Wen

nd Wang [17] proposed an AdaBoost-based algorithm to adapt

nd refine the model at run-time, by automatically selecting the

ost discriminating features. Their results were tested on sev-

ral smartphone data-sets and showed significant improvement in

ecognition performance. Except for traditional classifiers, machine

earning or deep learning techniques have also been investigated to

ecognize activities. Hassan et al. [6] proposed a method for activ-

ties training and recognition by using Deep Belief Network (DBN)

nd obtained an overall accuracy of 95.85% among 12 activities on

martphone sensor data. Whereas Ignatov [18] used Convolutional

eural Networks (CNN) to recognize 6 human activities, includ-

ng 3 lower limb activities, in real-time from accelerometers. This

ethod obtained an accuracy higher than 97%, and achieved an

verall accuracy of 82.76% on a cross-dataset experiment. 

The four activities we consider in this paper share a similar pe-

iodic pattern: from attaching to the ground to swinging in the

ir and then attaching to the ground again. This periodic pattern

s called gait cycle and generally there are two common ways for

egmenting each gait cycle: 

(1) One simplest way is that one gait cycle is divided into two

gait phases [19] , namely stance phase and swing phase. 

(2) Based on the two gait phases in the first approach, we can

divide the gait cycle into more detailed phases. As intro-

duced in [20] , we utilize four gait phases in one gait cycle,

i.e. stance, push-up, swing and step down. 

The researchers Wang et al. did a lot of researches on activity

ecognition and the related applications using inertial sensors.

mong their researches, Wang et al. [21] proposed an equestrian

ports analysis based on the joint angle of rider’s lower limb

nd the gait cycle of the horse, Qiu et al. [22] proposed a pedes-

rian trajectory reconstruction method by detecting the stance

hase when walking. These algorithms obtained good results and

howed the great possible applications of gait analysis. However,

he first research was working on the entire gait cycle without

http://www.shimmersensing.com/images/uploads/docs/ConsensysPRO_Spec_Sheet_v1.1.0.pdf
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Fig. 2. Right foot gait phases of walking cycle: push-up → swing → step down → stance. Similar gait cycle can be deduced for the three other activities, the only 

difference relying in the duration and signal shape of each gait phase. 

Fig. 3. Angular rates of four activities for each sensor axis ( ω 

X , ω 

Y , ω 

Z ). The sig- 

nals show that the patterns of the four kinds of gait cycle are quite different. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. TMC dependency graph for activity recognition. 
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2 Note that N is required for the model presentation but it will not be used for 

the on-line algorithm. 
employing the gait phases, and the second one only focused on

detecting stance gait phase of walking, not on all the gait phases

and multiple activities. Martinez-Hernandez and Dehghani-Sanij

[11] developed an adaptive Bayesian inference system using three

sensors placed on leg to recognize walking on different road

conditions, i.e. level-ground, ramp ascent and descent. They in-

troduced gait phases and attempted to recognize activities and

gait phases simultaneously. The high accuracy (99.87%) indicates

that gait phases can significantly improve the accuracy for walking

activity. Inspired by the previous work, our goal is to extend the

gait cycle to more general cases. Like the scheme of walking gait

cycle shown in Fig. 2 , apparently similar behaviors hold for all the

other three activities. 

The angular rates of the three sensor axes are quite different

for different activities ( cf. Fig. 3 ), hence providing a way to distin-

guish them correctly. In the off-line scenario, the entire data are

acquired first, then, activities and gait phases are estimated using

a parameter learning method, detailed in the next sections. 

2.2. Non-parametric TMC 

Consider a first discrete stochastic process X = (X 1 , . . . , X N ) ,

each X n , n ∈ { 1 , . . . , N} , takes its values in � = { 1 , 2 , 3 , 4 } . The four

values in � respectively represent walking, running, stair ascent

and descent. In a similar way, consider another discrete stochastic
rocess U = (U 1 , . . . , U N ) , each U n ∈ � = { 1 , 2 , 3 , 4 } . The four values

n � respectively represent stance, push-up, swing and step down.

he number N denotes the length of the stochastic process 2 and

he total number of possible combinations of states in X n and U n is

 = 4 × 4 = 16 . Then, let Y = (Y 1 , . . . , Y N ) be a real-valued process

epresenting the observation of the model, each Y n ∈ R 

q , where q

s the observation dimension. 

Let now consider the process T = (X, U , Y ) . T is said to be a

riplet Markov chain (TMC) if it is Markovian [12] . TMCs are strictly

ore general than pairwise Markov chains (PMCs) [23] , which are

hemselves more general than HMMs, see for example [24] for de-

ailed explanations. In a general TMC, none of the processes X , Y ,

 X , U ), ( X , Y ), ( U , Y ) are necessarily Markovian [25] , but the con-

entional algorithms of the parameter learning still work for TMCs.

he BaumWelch algorithm (but not necessarily the Viterbi algo-

ithm) applies in triplet Markov models, so Bayesian MPM (Max-

mum Posterior Mode) criterion can be used to recover both X

nd U , i.e. activities and gait phases, from Y only, once parame-

ers of the model are known. When assuming stationarity of pro-

esses, such classification algorithm can be made unsupervised, by

stimating model parameters using the Expectation–Maximization

EM) principle under Gaussian distributions assumption [26] . Un-

ortunately, Gaussian assumption is not suited for our application,

o we develop a non-parametric representation of data-driven den-

ities. Meanwhile, the on-line algorithm presented in the next sec-

ion is designed to compensate for the stationary assumption. 

Let the realizations of X n , U n and Y n be denoted by x n , u n and y n
espectively, so v n = (x n , u n ) , t n = ( v n , y n ) . Also, for simplification,

e will denote the probability p(X n = x n , U n = u n | Y 1 = y 1 , . . . , Y N =
 N ) by p(x n , u n | y N 1 

) for example. The dependency graph of the

pecific TMC suited for our application is shown in Fig. 4 .

he transition probability of T , p ( t n +1 | t n ) = p ( v n +1 , y n +1 | v n , y n ) , is
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Fig. 5. State transition graph of the TMC-based activity recognition algorithm. The 

values (1,2,3,4) represent the stance, push-up, swing and step down respectively, for 

the four gait phases. 

s

 

w  

t  

s  

b  

s  

w  

p  

t  

m  

M  

s  

d  

w  

t  

w  

m

 

“  

W  

w  

 

c

β

T  

e

T  

B

v

f

 

m
 

a  

d  

g  

e  

b  

w  

e  

i  

c

 

 

 

 

 

 

 

s  

d

3

 

l  

a  

a  

n  

fi  

w

3

 

l  

l  

a  

m  

t  

p  

d

 

t  

m  
implified to 

p ( t n +1 | t n ) = p ( x n +1 , u n +1 | x n , u n ) p ( y n +1 | x n +1 , u n +1 ) , (1)

hich provides to process T = (V , Y ) , with V = (X, U ) , the struc-

ure of a classical HMC. The first term p ( x n +1 , u n +1 | x n , u n ) is the

tate transition probability, the dimension of the transition matrix

eing m × m (recalling that m = 16 ). For activity recognition, the

tate can only transfer from one gait phase to the next gait phase

ithin the same activity, or, from stance phase of one activity to

ush-up phase of another activity, as shown in Fig. 5 . Therefore,

here are only 44 non-zero entries in the m × m joint probability

atrix p( v n , v n +1 ) . Process V has the shape of a cyclic left-right

arkov chain. The second term in Eq. (1) is the probability of ob-

erving y n conditionally to each state. Most of the time, this kind of

ensity is modeled by using Gaussian distributions, whereas in this

ork we propose a non-parametric modeling method by using his-

ograms to represent p ( y n | v n ) for its best ability to fit users’ steps,

hatever their size. The number of histograms to be managed is

 × q . The resulting model is called TMC-HIST in the remaining. 

Let us now detail the Baum–Welch algorithm (also called

forward–backward procedure”) suited to the TMC-HIST model.

e are trying to calculate p(x n , u n | y N 1 
) . First, consider the for-

ard and backward probabilities αn ( v n ) = p( v n , y n 1 
) and βn ( v n ) =

p(y N 
n +1 

| v n ) , where v n = x n × u n ∈ � × �. Classically, they can be

omputed by the following two recursions, using Eq. (1) 

α1 ( v 1 ) = p ( v 1 , y 1 ) , 

αn ( v n ) = 

∑ 

v n −1 ∈ �×�

αn −1 ( v n −1 ) p ( v n | v n −1 ) p ( y n | v n ) , 

N ( v N ) = 1 , 

βn ( v n ) = 

∑ 

v n +1 ∈ �×�

p ( v n +1 | v n ) p ( y n +1 | v n +1 ) βn +1 ( v n +1 ) . (2) 

hen, p( v n | y n 1 
) , p( v n | y N 1 

) and p( v n , v n +1 | y N 1 
) are computed by

quations 

p ( v n | y n 1 ) = 

αn ( v n ) ∑ 

v n ∈ �×� αn ( v n ) 
, (3) 

p 
(
v n | y N 1 

)
= 

αn ( v n ) βn ( v n ) ∑ 

v n ∈ �×� αn ( v n ) βn ( v n ) 
, (4) 
p 
(
v n , v n +1 | y N 1 

)
= 

αn ( v n ) p ( v n +1 | v n ) p ( y n +1 | v n +1 ) βn +1 ( v n +1 ) ∑ 

v n , v n +1 ∈ �×�

αn ( v n ) p ( v n +1 | v n ) p ( y n +1 | v n +1 ) βn +1 ( v n +1 ) 
. (5) 

he optimal classification 

ˆ v N 1 = { ̂ v 1 , . . . , ̂  v N } , according to the

ayesian MPM criterion, is then given by 

ˆ 
 n = arg max 

v n ∈ �×�
p 
(
v n | y N 1 

)
, (6) 

or n = 1 , . . . , N. 

These calculations can be performed once the parameters of the

odel, i.e. the m × m joint probability matrix p ( x n +1 , u n +1 , x n , u n )
nd the m × q histograms, are known. In the absence of learning

ata, the well-known Expectation–Maximization (EM) principle is

enerally applied for learning parameters because it provides the

xact re-estimation formula for parameters under Gaussian distri-

ution assumptions. As we deal with non-parametric histograms,

e make use of another unsupervised learning method called “It-

rative Conditional Estimation” (ICE) [23,27] , which is applicable

n a wide range of situations. Here, we simply recall the ICE pro-

edure: 

(1) Initialize parameters by some method. This point will be dis-

cussed in details in the next section. 

(2) Compute the forward–backward algorithm using current pa-

rameters, and compute the state transition probability con-

ditioned on observations: 

p 
(
v n +1 | v n , y N 1 

)
= 

p 
(
v n , v n +1 | y N 1 

)
p 
(
v n | y N 1 

) ; (7) 

(3) Simulate a realization of state sequence ˜ v = ( ̃ v 1 , . . . , ̃  v N ) by

using p(v 1 | y N 1 
) and p( v n +1 | v n , y N 1 

) given in Eqs. (4) and (7) ; 

(4) Update the joint probability matrix and histograms accord-

ing to ˜ v and y N 
1 

; 

(5) Stop when the number of ICE iterations reaches a predefined

maximum value, 100 for example, else go back to step (2). 

This unsupervised algorithm can only be applied in an off-line

cenario, i.e. when all the data have been collected. Next section is

evoted to present an algorithm suited for on-line data. 

. Adaptive on-line classification algorithm 

The diagram of the adaptive on-line algorithm for lower limb

ocomotion activities classification is displayed in Fig. 6 . The entire

lgorithm is composed of four stages: (i) model training, (ii) data

cquisition and pre-processing, (iii) complete gait detection, (iv) fi-

al decision and posterior update. The (i) stage will be described

rstly, (ii) and (iii) stages will then be presented together, (iv) stage

ill finally be described. 

.1. Model training 

The TMC-HIST model needs to be trained before being used on-

ine, this trained model will act as an initial model for the on-

ine recognition. It guarantees that the algorithm is initialized in

 status that will allow a roughly correct classification. The trained

odel needs to detect all kinds of activities and activity switches,

hus the training data should contain the four activities and all

ossible activity switches. While it should be noticed that on-line

ata does not have this restriction. 

Following Fullerton et al. [16] and according to our own tests,

wo kinds of features are selected for observations: the sliding

ean μn and sliding standard deviation σ n of the angular rates
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Fig. 6. Diagram of the adaptive on-line inference algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. In each sub-figures, blue line is the filtered angular rate norm. The red, pur- 

ple, cyan and green represent stance, push-up, swing and step-down, respectively. 
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ω j for the three axes of the sensor, computed at time n on a time

period of length W : 

μi 
n = 

1 

W 

n ∑ 

j= n −W +1 

ω 

i 
j , 

σ i 
n = 

√ 

1 

W 

n ∑ 

j= n −W +1 

(
ω 

i 
j 
− μi 

n 

)
2 , (8)

where i ∈ {X , Y, Z} represents the axis of sensor. 

Hence, an observation y n are composed of three mean values

and three standard deviations, i.e. a q = 6 -dimensional vector, and

the total number of histograms in TMC-HIST is therefore 96. The

three axes of the sensor are correlated in the movement, while the

applied histograms represent the marginal probability density of

each axis. Using a 3-dimensional histogram would probably suit

the application more closely. But it would need too much data to

form a reliable density and drastically increase the computation

time. 

Parameters learning needs p( v n , v n +1 ) and p ( y n | v n ) to be initial-

ized. The ground truth of activity x n can be easily obtained from

the sequence of activities used in the experiment. But unfortu-

nately, the ground truth of gait phases u n is unavailable because

of the lacking of proper device to acquire it. Therefore, a semi-

supervised initialization method is developed according to the fol-

lowing procedure: 

(1) Set filtering cut-off frequency f k and stance threshold h k for

each activity k ∈ � . The value of f k for each activity is set to

5 Hz , 9 Hz , 4 . 5 Hz , 6 Hz , respectively. The value of h k for each

activity is set to 0 . 52 rad/s , 1 . 92 rad/s , 0 . 52 rad/s , 0 . 52 rad/s ,

respectively. All these values were obtained through tests. 

(2) Use a Butterworth low-pass filter to filter the norm of an-

gular rate according to f k , then segment the filtered angular

rate by corresponding h k . All the periods below the thresh-

old will be regarded as stance gait phase, all the periods

above will be regarded as non-stance phases. 

(3) In each period of non-stance phase, the three peaks rep-

resent the three non-stance gait phases, i.e. push-up, swing,

and step-down. Thus, the three non-stance gait phases can
be initialized according to the peaks. Here, we simply use

four indices: the start and end indices of the non-stance

phase, the middle index between the first and second peaks,

the middle index between the second and third peaks, to

obtain the three non-stance gait phases. 

(4) Once gait phases have been segmented for all the activities,

p( v n , v n +1 ) and p ( y n | v n ) can be easily obtained by using triv-

ial empirical estimators. 

An excerpt of the initialization procedure is given in Fig. 7 . 

Segmentation results are only roughly segmented by a very

imple method and the initialized parameters are far from the

ptimal ones. Then ICE is applied to improve fitting parameters.

ne point should be clarified here: the training stage is a semi-

upervised method since the ground truth of activity is only used
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c  
or initialization. While the learning stage by ICE is an unsuper-

ised method to get the final training model. 

.2. On-line data acquisition and complete gait detection 

The data is fed to the on-line algorithm once it arrives. Then

eature extraction is performed based on the new data and the

tored ones, by using Eq. (8) . The data is accumulated during the

equired time to obtain a complete gait with the sequence: push-

p → swing → step down → stance. In order to decide whether

 gait is complete, a one-step forward process of TMC-HIST model

s firstly conducted to estimate current gait phase, which derives

rom the marginal probability of p(x n , u n | y n 1 
) over x n , using MPM

ethod 

˜ 
 n = arg max 

u n ∈ �

{ ∑ 

x n ∈ �
p ( x n , u n | y n 1 ) 

} 

. (9) 

hen, the current gait phase and the features are stored in a stack,

hich contains all the gait phases and corresponding features of

he current gait cycle. Afterward, a decision is made to verify

hether an entire gait is complete or not. If the stack is shorter

han a threshold t min or does not contain a complete sequence of

ait phases, the algorithm will return and wait for another new

ata to come in. The current forward result p(x n , u n | y n 1 
) , obtained

rom Eq. (3) , will be stored for the use of the forward process of

he next sampling time. The value of t min is set to 0 . 5 s based on

he fastest speed of gait cycle among the four activities. Otherwise,

t means that an entire gait is completed and all the features stored

ill be sent to the last stage. 

.3. Final decision and posterior update 

The activity and gait phases in one detected gait cycle are de-

oted by x ′ n and u ′ n , and N 

′ is the number of samples for the

orresponding gait cycle. This stage proceeds only when one gait

s completed and contains two steps: (1) final decision for ac-

ivity and gait phases, (2) posterior update of the joint proba-

ility p( v ′ n , v ′ n +1 
| y N ′ 

1 
) and the histograms that represent p ( y n | x n ,

 n ), if necessary. First, the features from the previous stage are

moothed by the forward–backward process to get p( v ′ n | y N ′ 1 
) , then

he smoothed activities and gait phases are obtained using MPM

riterion again: 

̂ x ′ n = arg max 
x ′ n ∈ �

{ ∑ 

u ′ n ∈ �
p 
(
x ′ n , u 

′ 
n | y N ′ 1 

)} 

, 

̂ 

 

′ 
n = arg max 

u ′ n ∈ �

{ ∑ 

x ′ n ∈ �
p 
(
x ′ n , u 

′ 
n | y N ′ 1 

)} 

. (10) 

he final decision of gait phases is ̂ u ′ n , for each sampling time.

owever, there is only one possible activity for each gait cycle, so

he final decision of activity ̂ x ′ depends on the most frequent esti-

ated activity among ̂ x ′ n : 

 

 

′ = arg max 
k ∈ �

{ N ′ ∑ 

n =1 

1 ̂ x ′ n = k 

} 

(11) 

here 1 is a Boolean-valued function which takes value 1 when it

atisfies the condition, or takes 0 if not. Then, all the ̂ x ′ n within one

ait cycle are set to the final decision 

̂ x ′ . 
Based on the final decision of activity and gait phases, we can

ccumulate the features into the stacks for posterior update. In the

ait phase stacks, there are four different 4 × 4 matrices for each

ctivity and each matrix is a counter relative to the p(u ′ n , u ′ n +1 
| y N ′ 

1 
) ,

hich is a marginal probability of p( v ′ n , v ′ n +1 
| y N ′ 

1 
) over all x ′ n and

 

′ 
n +1 . The sequence of gait phases from final decision are divided

nto N 

′ − 1 pairs of (u ′ n , u ′ n +1 
) , the number of each (u ′ n , u ′ n +1 

) case
s then accumulated into the matrix according to ̂ x ′ . As the name

uggests, the observation histograms stacks contain m × q different

tacks and accumulate the observations, i.e. features, according tô 

 

′ and 

̂ u ′ n . 
Two thresholds h gait and h observation are applied here to decide

hether these two kinds of stacks are large enough to update the

MC-HIST model. When one matrix in gait phase stacks has accu-

ulated more than h gait gaits, the joint probability of the relative

ctivity will be calculated, and the corresponding joint probability

n TMC-HIST model will be updated. After that, all the entries in

his matrix are reset to zero. Likewise, the histograms in TMC-HIST

odel are replaced if the related stack’s volume exceeds h observation ;

eset is also conducted after the update. It should be noticed is

hat all the matrices and histogram stacks are accumulated and

pdated independently, because the duration of each gait phase

s different from each other. Thanks to the posterior update, the

n-line algorithm can adjust the parameters in TMC-HIST model

ccording to the users’ activity patterns and the road conditions,

uch as the speed of foot strike, ascent or descent slope . . . 

. Experimental results 

Ten healthy subjects were invited for the experiment: three fe-

ales and seven males, age from 25 to 47 years old, weight from

7 to 83 kg , height from 160 to 184 cm . The sensor sampling rate

as set to 100 Hz , and the range of gyroscope to ±10 0 0 deg/s . The

indow size W for feature extraction was set to 15 samples based

n our experience, which corresponds to 0 . 15 s . It was determined

y the stance duration when running, which is the shortest gait

hase duration of all the activities. This is reasonable since a win-

ow size bigger than the duration may reduce the detection accu-

acy of the shortest gait phase, whereas a too small W may not be

ufficient for calculating the mean value and standard deviation.

he ranges of the histograms in TMC-HIST were set from −15 rad/s

o 15 rad/s for mean value, and from 0 rad/s to 15 rad/s for stan-

ard deviation, and the bins number of the histograms was all set

o 300. 

The proposed algorithm is evaluated on a designed experi-

ent, which is conducted by the subjects. We utilize a 2-fold

ross-validation method, by equally separating the subjects into

wo groups. This way guarantees that training data and testing

ata come from different sources. The experiment was conducted

round a building with four floors on the campus of École Centrale

e Lyon (France). The selected path consists of walking and run-

ing around the building (with ramp road conditions), as well as

limbing and descending stairs. The exact sequence of activities is 

1. 600 m of walking, 

2. 600 m of running, 

3. four round trips of climbing stairs from ground floor to the 4th

floor and back to the ground floor, 

4. repeat steps 1–3 a second time. 

Hence, one experiment consists in repeating two times the

ame sequence of activities, called here “a section”. The ground

ruth of the experiment can be seen in Fig. 10 . It consists of 1200 m

f walking and running, 32 floors of stair ascent and descent. The

verage time to complete one experiment is about 30 min. All the

ubjects perform the activities at their preferred speed, but are

sked to keep the same speed within one experiment as much as

ossible. This ensures that the activity patterns and speeds vary

mong the subjects, but almost keep constant within one exper-

ment. The speed ranges of the four activities among the sub-

ects are 1 . 09 –1 . 68 m/s , 2 . 14 –3 . 82 m/s , 89 . 79 –123 . 68 stairs/min,

6 . 07 –140 . 97 stairs/min. 

The implementation of the algorithms is done in Matlab, the

ode is running on a 3 . 2 GHz CPU computer with 64-bit Win7
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Fig. 8. Averaged activity recognition accuracy (in %) according to h observation and h gait (size of stacks), for the first section of experiment (a) and for the second section (b). 

Table 1 

Confusion matrix of batch mode classification. 

Predicted activity 

Walk (%) Run (%) Stair 

ascent (%) 

Stair 

descent (%) 

True 

activity 

Walk 74 . 34 16 . 71 5 . 45 3 . 50 

Run 3 . 79 95 . 38 0 . 54 0 . 29 

Stair ascent 2 . 45 4 . 00 85 . 70 7 . 85 

Stair descent 1 . 82 2 . 32 3 . 70 92 . 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Accuracy in the most recent 10 0 0 samples w.r.t. each activities. 
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operating system. The average experiment time of all the sub-

jects is 29.80 min, while the average calculation time by code is

2.60 min. Since calculation time are more than 11 times faster

than that experimental one, thus the processing can be theo-

retically made on-line on a processor of frequency higher than

3 . 2 GHz / 11 = 291 MHz . 

A global analysis over the ten subjects will be displayed first,

to show a general performance of the batch model classification

and of the adaptive classification algorithm we propose. Then, one

subject’s data will be used for precisely analyzing the parameters

updating. 

The confusion matrix of batch mode classification using TMC-

HIST is shown in Table 1 . The overall accuracy is 83.17% and the

Matthews correlation coefficient (MCC 

3 [28] ) is 0.7823. For the

four activities, namely walking, running, stair ascent and descent,

the sensitivities are 0.7434, 0.9538, 0.8570, 0.9215, respectively; the

specificities are 0.9715, 0.8834, 0.9610, 0.9656, respectively. 

For investigating the influences of h gait and h observation – the size

of the stacks before updating TMC-HIST – have on the activity clas-

sification performance. Fig. 8 shows the influence on average accu-

racy over the ten subjects w.r.t. different values of the thresholds

h gait and h observation . From the results, h observation affects the accu-

racy more than h gait does, which means that the update of his-

tograms is more critical than the update of joint probability matrix.

Hence, the accuracy obtained in the second section is higher than

in the first section, which indicates our proposed on-line algorithm

can adjust the parameters in TMC-HIST model properly and im-

prove the classifying accuracy gradually. We can see that, as the
3 MCC is a measure for multi-category classification, it can balance the influence 

that produced by the different proportion of each category, a value close to 1 means 

a perfect classification. 

c  

m  

i  

a  

c  
alue of h observation increases, the average accuracy reaches above

9% when h observation ∈ [600, 750]. According to this experiment, we

elect h observ ation = 700 and h gait = 6 to analyze the performance of

he proposed on-line algorithm. 

Confusion matrices of the first and second sections of the ex-

eriment are shown in Table 2 . We can see that the classifica-

ion performance of each activity is improved from the first to the

econd. The sensitivities of the four activities (walking, running,

tair ascent and descent) are 0.9869, 0.9944, 0.9765, 0.9470 respec-

ively in the first section, while they are 0.9939, 0.9983, 0.9862,

.9820 in the second section. Similarly, the specificities are 0.9968,

.9940, 0.9897, 0.9959 in the first section; while they are 0.9965,

.9987, 0.9958, 0.9982 in the second section. The overall accuracy

ncreases from 98.14% to 99.20%, and MCC increases from 0.9682 to

.9869. The better performances in the second section show that

he parameters adjustment in the proposed on-line algorithm is

eneficial, which gradually leads to an improvement of classifica-

ion performances. 

In order to intuitively understand the adaptation of the pro-

osed on-line algorithm, Fig. 9 shows the accuracy of each activ-

ty in the most recent 10 0 0 samples, i.e. , the accuracy that cal-

ulated from the latest 10 s with respect to each activity. The

ost recent accuracy can be used for investigating the converg-

ng rate. As shown in the figure, running is the fastest to converge

t an accuracy over 99%, walking converges at about 40 s , stair as-

ent and descent reach a relatively high accuracy after 100 s . The
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Table 2 

Confusion matrix of the first section (up) and second section (down) of experiments. 

Predicted activity 

Walk (%) Run (%) Stair ascent (%) Stair descent (%) 

True activity Walk 98 . 69 0 . 58 0 . 37 0 . 36 

Run 0 . 48 99 . 44 0 . 00 0 . 08 

Stair ascent 0 . 13 1 . 18 97 . 65 1 . 05 

Stair descent 0 . 29 0 . 05 4 . 96 94 . 70 

Predicted activity 

Walk (%) Run (%) Stair ascent (%) Stair descent (%) 

True activity Walk 99 . 39 0 . 21 0 . 23 0 . 16 

Run 0 . 16 99 . 83 0 . 01 0 . 00 

Stair ascent 0 . 86 0 . 00 98 . 62 0 . 52 

Stair descent 0 . 09 0 . 00 1 . 71 98 . 20 

Fig. 10. Classified activities from the proposed algorithm for subject 5. For the first 

section, accuracy and Matthews correlation coefficient are 94.49% and 0.9055 re- 

spectively, while, for the second section, the values are 98.99% and 0.9800 respec- 

tively. 
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rops in accuracy after convergence are due to the activity switch,

hich may affect the classification behavior during a short time,

ut will perform well again after the activity switch. It is not dif-

cult to find that walking and running are easier to be classified

han climbing stairs, showing that the model approximation with

espect to climbing stairs is slower than that of walking and run-

ing. Nevertheless, all the activities reach a high accuracy level in

he experiments finally. 

For understanding parameters updating, a typical subject’s data

s selected here (subject 5, male, 25 years old, 52 kg weight and

70 cm tall). One reason for selecting this experimental data is be-

ause the accuracy and MCC in the second section, 98.99% and

.9800 respectively, are lower than the averaged values of all the

ubjects. So, Fig. 10 shows the ground truth and classified activ-

ties of the subject 5. It can be seen that, in the second section,

ome samples of walking are wrongly classified as stair descent.

nd stair ascent and stair descent are misclassified at the begin-

ing. But as expected, the performance in the second section is

uch better than in the previous one. Regarding the gait phases,

here is no precise evaluation method because of the lacking of the

roper device to collect the ground truth of gait cycles. However,

s shown in Fig. 11 , it is obvious that the gait cycles detection be-

omes more regular when the model’s parameters have converged

o fit the subject gait rhythm. Indeed, gait cycles are introduced in

he proposed algorithm to make the on-line algorithm possible and

elp to obtain a better activity classifying result, therefore, a well-

etected gait cycle assists to obtain a good classification of activity.

. Discussion 

This section proposes an in-depth discussion on the experimen-

al results for key points of the proposed algorithm, such as the
lassification accuracy, convergence rate, gait phase detection, pa-

ameter update . . . 

.1. Classification performance 

A comparison of the performances of the proposed adaptive on-

ine algorithm compared to some state-of-the-art algorithms is dis-

layed in Table 3 . These algorithms are evaluated according to sev-

ral aspects including the number of sensors, the average accuracy,

he MCC . . . 

Among all the works that use one single sensor reported in

able 3 , the proposed algorithm obtains the highest average ac-

uracy with 99.20%. While the Phase Variable obtained an accu-

acy of 98.30% for only 3 activities: walking, stair ascent and de-

cent. Descriptor-based methods obtained 97.12% on 6 lower limb

ctivities, whereas energy expenditure prediction obtained 95.05%

n 5 lower limb activities. Adaboost Stump got an accuracy range

rom 95% to 98% on 5 lower limb activities and PLP+HMM obtained

7.5 ± 1.6% on 6 activities, with 3 lower limb activities identical

o the work of Phase Variable. In the group of multiple sensors,

og-Sum distance used 5 sensors to classify 6 activities (standing

till, sitting still, laying down, walking forward, stair ascent and de-

cent). The accuracy of Log-sum distance can reach 99%. Empirical

ode decomposition used 17 sensors to classify 9 activities and

btained an overall accuracy at 97.78%. Among the 9 activities, the

 lower limb activities had an accuracy at about 96%. Adaptive Ba-

IS used 3 sensors and obtained 99.87% on three activities: walk-

ng on level ground, ramp ascent and descent. NWFE+PCA+LS-SVM

sed 2 sensors and obtained an overall accuracy at 99.65% for 10

aily activities. Among the 10 activities, the 5 lower limb activities

ad an accuracy at about 96.46%. If looking at all the algorithms

hat give an accuracy higher than 99%, the proposed algorithm is

he only one that uses one single sensor, besides, the proposed al-

orithm obtained the highest MCC value. The use of multiple sen-

ors is very interesting and can give very high accuracy. Neverthe-

ess, recognizing activities with only one sensor is still relevant be-

ause it is more realistic than multiple sensors for quantified-self

pplications. It should be noticed that the state-of-the-art works

nd our algorithm are tested on different datasets, consisting of

ifferent activities and different amounts of samples. But from a

eneral view of the results, we can still state that our proposed

lgorithm obtain performances comparable to or even better than

he best ones, whereas allowing on-line processing. 

.2. Convergence rate 

It can be deduced from Figs. 8 and 9 that the convergence rate

s affected by two aspects: the thresholds ( h observation , h gait ) and the

ctivity category. These two aspects will be discussed in the fol-

owing. 
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Fig. 11. The detected gait cycles at the beginning of each activity (left column) compared to the ones when the estimation of the model’s parameter has converged (right 

column). 

Table 3 

Comparison of the performance w.r.t. state-of-the-art algorithms for classifying lower limb locomotion activities. 

Method Sensors Position No. of activity/subject Accuracy MCC On-line 

Adaptive BasIS [11] 3 Foot, shank, thigh 3/8 99.87% – No 

Phase Variable [29] 1 Thigh 3/7 98.30% – No 

NWFE + PCA + LS-SVM [30] 2 Ankle, wrist 10/23 99.65% (daily activity) 0.9804 No 

Descriptor-based [31] 1 Waist 6/30 97.12% 0.966 No 

Log-Sum Distance [32] 5 Waist, wrists, ankles 6/3 99.00% 0.9734 No 

Energy expenditure prediction [33] 1 Foot 5/10 95.05% 0.9336 No 

Adaboost Stump [34] 1 Trouser pocket 5/12 95 –98% – Yes 

Empirical mode decomposition [35] 17 Whole body 9/4 97.78% 0.823 No 

PLP + HMM [8] 1 Waist 6/30 97.5 ± 1.6% – No 

The proposed algorithm (TMC-HIST) 1 Foot 4/10 99.20% 0.9869 Yes 
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The first aspect is the thresholds that control the parameters

updating, cf. Fig. 8 . In the first experimental section, the accuracy

at h observ ation = 1300 is relatively lower than that of h observ ation =
700 (96.41% compared to 98.14%), which means that using a small

value of h observation gives a faster convergence rate than using a

large value. While in the second section, the accuracies where

h observ ation = 700 and h observ ation = 1300 are improved to 99.2% and

99 . 22% , respectively. The close performance in the second section

indicates that high accuracy can be reached through parameter up-

dating with sufficient data. It should be noticed that in Fig. 8 (b),

there are some isolated values when h observation is larger than 1200.
his is because that in the experiment of one special subject, a

arge quantity of walking data are classified as running at the be-

inning, and the too late updating makes all the consequent walk-

ng data be classified as running. On the contrary, we can see that

 too small h observation leads to a worse result in the second section

ompared to the first section. It is due to the fact that the accu-

ulated data number in each stack is not enough for representing

he distribution of p ( y n | v n ). A large number of bins in histogram

equires more data to form the proper density, if h observation is too

mall, the updated histograms cannot properly represent p ( y n | v n ).

n this case, the classification performance will be not too bad
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ince the initial model is obtained from training data. But, after

everal updates by the inadequate observation stacks, TMC-HIST

odel will be far from the actual one, which results in a reduction

f accuracy. Therefore, based on the accuracy shown in Fig. 8 (b),

e recommend h observation to be equal to 2 –2 . 5 times the bins num-

er of histograms. 

It seems like the variation in h gait has little impact on the accu-

acy. The main reason is that the transition probability p(t n +1 | t n )
here v n +1 � = v n is very small for all kinds of v n and all subjects.

ndeed, each state will keep the same for a period of time and then

ransfer to the next state. Thus, a slight change in p( v n , v n +1 ) will

ot lead to a significant change in the classification performance. 

Another aspect is the activity category. Fig. 9 shows that walk-

ng and running are faster than the other two to reach an accu-

acy higher than 99%. This means that the parameters in TMC-

IST relative to walking and running converge faster than those

f stair ascent and stair descent. This phenomenon is certainly to

he amount of effort required to climb 32 floors. It is then more

ifficult to keep the same pace within one experiment. As shown

n Fig. 11 , we can find that the feature patterns of each gait cycle

orresponding to walking and running are similar in both two ex-

erimental sections, while the distinctions of stairs ascent and de-

cent are larger than the former two activities. As a result, conver-

ence rates corresponding to stair ascent and descent are slowed

own by the distinction, and that is also why the accuracy fluctu-

tes extensively after reaching a high value. Regarding the fastest

onvergence rate (running), the signal values are much higher than

he others, which indicates that the running signal is unique from

he others and easy to distinguish. 

.3. Adaptation and on-line 

As a matter of fact, the gait complete detection stage of the

lgorithm makes the on-line possible, while the posterior update

tage enables the TMC-HIST model to be adaptive. Introducing

he gait cycle to assist locomotion is practical, because each gait

hase gives a prior condition to confine the number of possible

tates to be estimated in TMC-HIST. Indeed, the Adaptive BasIS al-

orithm [11] also introduced gait cycles to help classifying three

ctivities of level ground walking, ramp ascent and descent walk-

ng. The Phase Variable algorithm tried to segment each gait cycle

o classify the activities of level ground walking, stair ascent and

escent activities. Both of these two algorithms obtained good re-

ults, as illustrated in Section 5.1 , but they did not utilize the actual

tructure of the gait phases in one gait cycle, i.e. the transition se-

uence of gait phases. While in our proposed algorithm, a Markov

hain is established to mimic this structure. Generally, segmenta-

ion of gait cycles can only be accomplished in an off-line scenario,

t is difficult to make a decision if only one sample is known. The

uthors of Phase Variable algorithm [29] stated that their method

an be applied to the on-line scenario if using a small time win-

ow. However, thanks to the state transitions among the activities

nd gait phases, gait phase can be estimated at each sampling time

ith the help of previous estimation. Activity is then detected after

he current gait cycle is completed, and does not need to wait for

he entire data or to set a time window for segmentation. It should

e noticed that the gait detection is based on the forward proce-

ure of TMC-HIST model, which is not as reliable as the backward

rocedure. A precise evaluation of the algorithm behavior with re-

pect to gait phases was not conducted because of the lacking of

roper device to collect ground truth. 

Many adaptive methods were proposed for motion analysis. A

achine learning method using adaptive local motion descriptor

n [36] was proposed for recognizing human motion in videos. A

ast and adaptive sparse representation method in [37] reached an

ccuracy up to 94% for the recognition of human activities using
earable sensors. Zhang et al. [38] proposed an adaptive time

indow method for human activity classification and reached an

ccuracy up to 99.2%. Hameed et al. [39] proposed adaptive zero

rossing technique to detect muscle activity based on electrocar-

iography signals. Li et al. [34] and Wen and Wang [17] used

daboost for human activity classification with inertial sensors,

nd obtained accuracy up to 98%, particularly, Li’s method was

pplied in on-line scenarios. In our proposed algorithm, the adap-

ive functionality is conducted by the posterior update stage, by

pdating the parameters in TMC-HIST to approximate the user’s

ctivity patterns. Combining with the gait cycle detection, our

esults show that a roughly estimated gait cycle makes posterior

pdate works appropriately, then activity classification is improved

ecause of parameters adaptation. See Fig. 11 , for each activity, the

etected gait cycles are more regular than the ones detected at

he beginning. And, in return, the improved activity classification

esults can refine the gait cycle detection till to the gait cycle

etection behave well when the model has converged. 

.4. Limitations 

The proposed algorithm is of interest in the fields that related

o human activity recognition and gait analysis, especially for those

ower limb activities that have a periodic pattern of feet or legs.

ut, we understand that there are limitations in the proposed al-

orithm. The presently proposed algorithm only works for motions,

hile static activities are not involved, such as standing, sitting, ly-

ng, etc. Another limitation is that the initial model cannot be too

ar away from the testing data, otherwise, the algorithm cannot ob-

ain acceptable classification results for updating the parameters.

n the same way, if one subject makes a huge shift in the pattern

f one activity, it may probably cause a failure. However, based on

he analysis of the data used in this paper, we can state that a shift

oes not exceed the range described in the Section 4 may possibly

ork for the proposed algorithm. 

. Conclusion and future work 

We propose an adaptive and on-line algorithm for classifying

ower limb locomotion activities, by using a foot-mounted IMU

ensor. The activities include walking, running, stair ascent and de-

cent, and share a similar gait phase sequence: stance → push-up

 swing → step down. The key-idea is to detect the gait cycle by

stimating gait phases, the activity is then classified through each

ait cycle. This is done by a specific triplet Markov chain (TMC)

odel which allow the joint classification of gait phases and ac-

ivity thanks to two discrete hidden processes. In particular, the

riginality of the TMC considered is the introduction of non para-

etric observation densities, adaptively estimated with histograms.

herefore, a TMC-HIST with a specific state transition graph is pro-

osed to mimic the natural sequence of gait sequence and activ-

ty switches. Next, a TMC-HIST-based adaptive on-line algorithm is

eveloped, which can adjust automatically the parameters in TMC-

IST to approximate subject’s activity patterns gradually from an

nitial model. The initial model is learned by an semi-supervised

arameter learning method. Experimental results show that TMC-

IST is capable of estimating gait phases and activities accurately,

nd the adaptive on-line algorithm obtains a high performance in

ctivity classification. 

The future work will focus on the signals issued from the same

ind of sensor but located in the pocket, which is more realistic

han on a foot when considering a quantified-self scenario. The dif-

culty will then be to precisely detect gait phases and cycles since

he sensor cannot directly measure the kinematic information of

he foot. Another problem that needs to be solved is introducing

ore activities which do not contain gait cycles (standing, sitting
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or making turn) or different gait cycles (cycling). If the actual TMC

model is not efficient in that situation, introducing semi-Markov

model or switching model in TMC may be helpful. 
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