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Pixel labeling problem stands among the most commonly considered topics in image pro-
cessing. Many statistical approaches have been developed for this purpose, particularly in 
the frame of hidden Markov random fields. Such models have been extended in many 
directions to better fit image data. Our contribution falls under such extensions and con-
sists of introducing two new models allowing one to deal with non-Gaussian correlated 
noise. The first one is purely probabilistic, whereas the second one calls on Dempster–
Shafer theory of evidence, both being particular triplet Markov fields. The interest of the 
proposed models is assessed in unsupervised segmentation of sampled and real images. 
While both models exhibit significant improvement with respect to classic models, the ev-
idential model turns out to be of particular interest when the hidden label field presents 
fine details.

© 2018 Published by Elsevier Inc.

1. Introduction

Thanks to the development of imaging technology, plenty of data covering optical, SAR and magnetic images are avail-
able daily for various processing tasks aiming at improving the wellbeing of public. For instance, SAR images are of great 
importance in disaster monitoring and can be used day and night [1,2]. Satellite images make it possible to generate reliable 
ground truths to update ground maps [3,4]. Magnetic images are mainly used for medical purposes in diagnoses, or to assist 
a surgeon [5–8]. Many studies have been carried out to take full use of such data [9], especially in the frame of statistical 
data analysis covering image classification, image segmentation and image change detection, all of which can be perceived 
as pixel labeling problems where one has to recover a label “field” from an observable image. In the probabilistic framework 
of this paper, the latter is considered as a noisy version of the label field. In image classification for instance, one has to 
assign each pixel to one among a set of predefined set of classes. Image segmentation is a derivative problem where classes 
are not known in advance. Change detection is another classification problem where each pixel is assigned to “changed” or 
“unchanged”.

Let S be a finite set, with |S| = N , let Y = {Ys}s∈S be the random observable field with each Ys taking its value in 
R (or R

d), and let X = {Xs}s∈S be the random label field with each Xs taking its values from a finite set L = {l1, ..., lK }
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of “classes” or “labels”. Realizations of such random fields will be denoted using lowercase letters. The labeling problem 
consists of estimating X = x from Y = y.

Over the last three decades, there has been a growing research interest in model-based techniques for image labeling 
[10–13]. One classic way to do so is to define, on one hand, the distribution of X usually called “prior” distribution, and on 
the other hand, the distribution of Y conditional on X usually called “noise” or “likelihood” distribution. The most commonly 
used model-based techniques in image labeling can be divided into two groups [14]: standard Gaussian mixture models 
(GMMs) [15,16], and hidden Markov field (HMF) models [17–20]. HMFs have received more attention due to their ability 
to reduce labeling sensitivity to noise. Indeed, the Markovianity of the posterior distribution p(x|y) implies that each pixel 
can be labeled using the observations on all pixels, whereas in GMMs it is labeled from its only observation. Furthermore, 
HMFs have been extended in many directions, most of which focus on the prior distribution. In [21,22], authors consider 
labels nonstationarity using an auxiliary random field modeling the switches of the hidden label field. The resulting model 
belongs to the general family of “triplet Markov fields” (TMFs) introduced in [4,23], also see [21,22,24]. Another way to 
handle heterogeneous behavior of the hidden field relies on the use of theory of evidence [25–27]. Let us also mention the 
recent general family of models including many classic cases, evidential or not [25].

All such extensions focus on improving the prior distribution, whereas the likelihood one is usually considered as simple 
product of likelihoods defined on pixels. In some Gaussian situations these likelihoods may be suitable; in some other, 
different densities like Gamma, Raylegh, Fisher, or still Beta can be used [17]. When the noise shape is not known, it can be 
modeled through a Gaussian mixture, which leads to GMMs. Besides, the use of GMMs can have precise interpretation. In 
forest monitoring for instance, forest is the only interesting label, but its intensity is just between water and building. Using 
Gaussian, Gamma, or any other one-peak distribution to model likelihoods can make it harder to distinguish forest from 
water and building. Of course, one can still classify the data into three classes and then find out the forest, but considering 
Gaussian mixture likelihood one can classify the image to forest and non-forest directly.

As well known, two assumptions are usually set for the likelihood in HMFs:

• (H1) for a given realization X = x, the random variable (Ys)s∈S are independent on each other; and,
• (H2) the distribution of each Ys conditional on X is equal to its distribution conditional on Xs .

In practice, such assumptions can turn out to be too restrictive, as one can easily see that there are numerous situations 
in which neither of (H1) nor (H2) hypotheses is justified. In the example of a satellite image segmentation into three classes 
“water”, “forest” and “desert”, one can consider that trees near water have different aspect than those located near desert, so 
that (H2) is not verified. Similarly, aspect of the forest at a given pixel depends on the neighboring trees aspect, which makes 
(H1) difficult to justify. Also, it is well known that HMFs can fail when the label images are inhomogeneous. Homogeneity 
of an area containing two classes can be defined through p(xs �= xt) where s and t are neighbors [28]. Extending such 
definition to the case of more classes seems more complicated and requires a deeper analysis.

The contribution of our paper is to propose two new models. The first one, called “correlated Gaussian mixture-hidden
Markov field” (CGM-HMF), uses correlated mixtures as likelihoods; thus (H1) is no longer assumed. We will also see that 
(H2) is no longer assumed as well. The second one is an extension of the CGM-HMF to the evidential context. More precisely, 
the hidden label field in CGM-HMF is extended to an “evidential” label field: the model will be called “correlated Gaussian 
mixture-hidden evidential Markov field” (CGM-HEMF). The superiority of CGM-HEMF with respect to CGM-HMF is that it is 
better suited to situations in which there exist very little homogeneous areas in the label field. Indeed, it has been shown 
in [26] – and confirmed in [25] – that introducing evidential fields can be of interest in such cases. The interest of the 
proposed models is established via unsupervised segmentations – with parameter estimation using “iterative conditional 
estimation” (ICE) – on simulated and real images. More precisely, estimated parameters ensure a good balance between 
homogeneous and inhomogeneous areas in “evidential Markov field” so that variables are more (resp. less) dependent 
in homogeneous (resp. inhomogeneous) areas. As shown with experiments, this property may increase the segmentation 
accuracy.

To summarize, we propose two new models: CGM-HMF and CGM-HEMF such that:

(i) CGM-HMF allows one to deal with non Gaussian correlated noise verifying neither (H1) nor (H2);
(ii) CGM-EHMF, which is an extension of the probabilistic Markov label field in CGM-HMF to an evidential one, with as 

result better efficiency in label images containing homogeneous and inhomogeneous areas case.

Let us point out that these new models are particular cases of the general TMF. Indeed, every Markov field (U , X, Y )

where X is searched, Y is observed, and U is finite is a TMF. The model proposed in [25] is thus a particular TMF, and so is 
the one proposed in this paper. However, the present TMF is different from the one proposed in [25] in two points: (i) the 
noise considered here is not Gaussian; and (ii), it is correlated.

The remainder of the paper is organized as follows. Section 2 briefly summarizes the hidden Markov fields, Gaussian 
mixtures, and Dempster–Shafer theory of evidence aspects needed in the paper. The new models are specified in Section 3. 
Experimental results obtained on synthetic and real images are provided in Section 4. Finally, concluding remarks and future 
directions are presented in Section 5.
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2. Hidden Markov fields, Gaussian mixtures, and theory of evidence

In this section, we briefly recall the basic notions of hidden Markov fields, Gaussian mixture models, and theory of 
evidence, needed for the sake of this paper.

2.1. Hidden Markov fields

Let us consider the image labeling problem discussed in the introduction. According to hidden Markov fields (HMFs), 
the random field X is assumed Markovian with respect to a system of cliques C , defined according to some neighborhood 
system. The model name “hidden Markov field” stands from the very fact that the hidden field X is Markov. According to 
the Hammersley–Clifford equivalence [29], the random field X such that p(x) > 0 for each x ∈ N L , is a Markov field if and 
only if its distribution is given by

p(x) ∝ exp

[
−

∑
c∈C

ψc(xc)

]
(1)

where for each clique c, xc = (xs)s∈c and ψc is a function taking its values in R, called “potential function”.
On the other hand, in accordance with hypotheses (H1) and (H2) the likelihood distribution p(y|x) is defined by

p(y|x) ∝ exp

[∑
s∈S

log (p(ys|xs))

]
(2)

Then we have

p(x|y) ∝ p(x, y) = p(x)p(y|x)

∝ exp

[
−

∑
c∈C

ψc(xc) +
∑
s∈S

log (p(ys|xs))

]
(3)

It is important to highlight that the posterior distribution (3) remains Markov, which allows one to sample realizations 
of X . This is at the origin of possibilities of applying Bayesian optimal methods to search realizations of X from Y = y.

Remark 2.1. Let us remark that we adopt the qualifier “prior” for the hidden field X distribution as usually done in the 
literature. However, parameters defining this distribution are not known and are estimated from observations, so that this 
distribution is partly a “posterior” one. More generally, in TMFs (X, U , Y ) we may say that “prior” knowledge is the general 
form of its distribution, while exact parameters can be seen as a “posterior” one. In addition, neither the distribution of 
(X, U ) nor that of X is Markov in general and cannot be produced, so that its “prior” knowledge directly stems from the 
knowledge of the whole distribution of (X, U , Y ).

2.2. Gaussian mixture models

Mixture models are particularly interesting probabilistic tools. For example, they can handle automatically the possibility 
of presence of more than one subpopulation within an overall population without requiring the prior identification to 
which sub-population an individual observation belongs. Another application, used in this paper, is to approximate unknown 
distributions with Gaussian mixtures. Gaussian mixture model (GMM), which is among the most commonly used mixture 
models, is defined through the weighted summation of Gaussian distributions with the sum of all weights being 1. More 
explicitly, it is given by

p(y) =
M∑

j=1

π j P j(y) (4)

where P j is Gaussian given by some mean μ j and some variance σ 2
j .

Such mixtures can be inserted in the HMF (1)–(2): for each label lk ∈ L, the distribution p(ys|xs) is a Gaussian mixture 
[6,14,30]:

p(ys|xs = lk) =
M∑

j=1

πkj Pkj(ys) (5)

where the likelihood Pkj(ys) is still constructed by a Gaussian distribution.
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We obtain a richer model, that we will call “blind Gaussian mixture-HMF” (BGM-HMF), being able to approximate non-
Gaussian noises. However, hypotheses (H1) and (H2) continue to hold. The word “blind” has two meanings here. First, it 
means that given X = x, the distribution of each Ys only depends on Xs and thus is “blind” of Xt for t �= s, which is (H2). 
Second, given X = x the distribution of each Ys is “blind” of Yt for t �= s, which is (H1).

2.3. Theory of evidence

In the language of theory of evidence (TE, [31]), the label set L = {l1, ..., lK } is called a “universe of discourse”, or “frame 
of discernment”. As above, Xs will take its values from L. Let 2L be the powerset associated to L. A “basic belief assignment” 
(bba) is a function τ from 2L to [0, 1] satisfying τ (∅) = 0 and 

∑
A∈2L τ (A) = 1. A bba τ then defines a “plausibility” function 

Pl and a “credibility” function Cr [32], both defined from 2L to [0, 1] by Pl(B) = ∑
A∩B �=∅ τ (A) and Cr(B) = ∑

A⊆B τ (A)

respectively. For a given bba τ , related Pl and Cr are linked by Pl(B) + Cr(Bc) = 1, where Bc is the complementary set of B
with respect to L. Then, a probability p can be perceived as a special case for which τ is null outside of singletons. Indeed, 
in such a case Pl = Cr and they are a probability, once singletons {lk} are considered as elements lk . Moreover, if two bbas 
τ1 and τ2 represent two pieces of evidence, we can merge, or fuse, them using the so called “Dempster–Shafer fusion” (DS 
fusion), which defines τ = τ1 ⊕ τ2 given by:

τ (A) = (τ1 ⊕ τ2)(A) ∝
∑

A1∩A2=A �=∅
τ1(A1)τ2(A2) (6)

We can see that if either τ1 or τ2 is a probability, then τ1 ⊕τ2 is a probability. The interest of TE in Bayesian classification 
is the following. Let us consider a pixel s ∈ S , a prior probability p∗(xs) on L, and K noise densities p(ys|xs) on R. Then, 
the posterior probability p ys (xs) = p(xs|ys) is itself the DS fusion of the probability p∗ with the probability qys defined on 
L by qys (xs) = p(ys |xs)∑K

k=1 p(ys |xs=lk)
:

p ys = p∗ ⊕ qys (7)

Formula (7) is of interest since when either p∗ or qys is extended to a bba which is not a probability, p ys remains a 
probability. Then, it can be seen as an extension of the posterior distribution and thus, can used to perform Bayesian 
classification. Such extensions can be of interest in image processing using Markov models, as has been described in recent 
papers [25,33], and also in signal processing using Markov chains models, as studied in [34–36].

3. Probabilistic and evidential hidden Markov fields with correlated non-Gaussian noise

This section contains four subsections. In the first one, we recall the HMF with “blind” Gaussian mixture, called “blind 
Gaussian mixture-HMF” (BGM-HMF). In subsection 3.2, we propose a new model, which is purely probabilistic (without 
theory of evidence), called “correlated Gaussian mixture-HMF” (CGM-HMF). The former model is well suited to non Gaussian 
independent noise, while the latter is likely to improve it in the case of non-Gaussian correlated noise. In subsection 3.3, 
we recall the recent model tested in [25,37], which will be called “blind Gaussian mixture-hidden evidential Markov field” 
(BGM-HEMF). So BGM-HEMF is an extension of BGM-HMF obtained by extending the Markov label field to an evidential 
one. Finally, in subsection 4.2 we introduce the new “correlated Gaussian mixture-HEMF” (CGM-HEMF) model, which is a 
particularly well-suitable extension of BGM-HMF to deal with non-Gaussian correlated noise. Besides, extending probabilistic 
BGM-HMF and CGM-HMF to evidential BGM-HEMF and CGM-HEMF allows one to better label images containing fine details. 
Denoting by G-HMF the Gaussian HMF and by G-HEMF the Gaussian HEMF, the generality order of different extensions is 
illustrated in Fig. 1.

3.1. Blind Gaussian mixture-hidden Markov field (BGM-HMF)

The expression of the hidden Markov field is given by (1)–(3). One can see that extending the likelihood to Gaussian 
mixture is equivalent to introducing an auxiliary field U = (Us)s∈S , where Us ∈ � = {λ1, ..., λM} and setting

p(x, u, y) ∝ exp

[
−

∑
c∈C

ψc(xc) −
∑
s∈S

ηs(xs, us) +
∑
s∈S

log (p(ys|xs, us))

]
(8)

Indeed, since p(x, y) = ∑
u∈�N p(x, y, u), we have:

p(x, y) ∝ exp

[
−

∑
c∈C

ψc(xc)

]∏
s∈S

⎡
⎣ ∑

us∈�

exp
[ − ηs(xs, us)

]
p(ys|xs, us)

⎤
⎦ (9)

and thus, p(x, y) is a HMF with p(ys|xs) being mixtures 
∑

us∈� α(us)p(ys|xs, us), where the mixture coefficients are α(us) =
exp [−ηs(xs, us)]. These models can approximate situations in which p(ys|xs) are not Gaussian; however, both (H1) and (H2) 
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Fig. 1. Growing generality of hidden probabilistic models G-HMF, BGM-HMF, CGM-HMF; and hidden evidential ones BGM-HEMF, CGM-HEMF. G-HMF and 
G-HEMF are the Gaussian HMF, and the Gaussian evidential HMF, respectively.

hypotheses remain. For this reason, such models will be called “blind Gaussian mixture-HMF” (BGM-HMF) where the word 
“blind” refers to the fact that the distribution of each Ys conditional on Xs , being independent of other Yt and Xt , is “blind” 
of context.

3.2. Correlated Gaussian mixture-hidden Markov field (CGM-HMF)

Let us consider the following extension of (8):

p(x, u, y) ∝ exp

[
−

∑
c∈C

ψc(xc) −
∑
c∈C

ϕc(uc) −
∑
s∈S

ηs(xs, us) +
∑
s∈S

log
(

p(ys|xs, us)
)]

(10)

which will be called “correlated Gaussian mixture-hidden Markov field” (CGM-HMF). The difference is that a term 
− 

∑
c∈C ϕc(uc) has been added in the energy. As (10) remains a triplet Markov model, the usual Bayesian segmentation 

can be performed. Indeed, setting V = (X, U ), the field (V , Y ) is a classic HMF. However, the distribution of the noise 
p(y|x) = ∑

u∈�N p(u, y|x) is complex and does verify neither (H1) nor (H2). Indeed, according to (10) one can see that 
p(u, y|x) can be seen as a standard HMF, where the field U is hidden Markov whereas the field Y models independent 
noise (conditionally on U ). Then, it is well known that p(y|x), which is the marginal distribution of the HMF p(y, u|x), does 
verify neither (H1) nor (H2). Let us briefly show on a simple example why the last assertion is true.

Example 3.1. Let us consider just two neighboring pixels s and t . Equation (10) becomes: p(xs, xt , us, ut, ys, yt) = p(xs,

xt)p(us, ut |xs, xt)p(ys|us, xs)p(yt |ut, xt). So, p(ys, yt |xs, xt) = ∑
us,ut

p(us, ut |xs, xt)p(ys|us, xs)p(yt |ut , xt), p(ys|xs, xt) =∑
us,ut

p(us, ut |xs, xt)p(ys|us, xs) and p(yt |xs, xt) = ∑
us,ut

p(us, ut |xs, xt)p(yt |ut , xt). Then, taking p(us, ut |xs, xt) such that 
p(us, ut |xs, xt) �= p(us|xs, xt)p(ut |xs, xt) and p(us|xs, xt) �= p(us|xs), we see that p(ys, yt |xs, xt) �= p(ys|xs, xt)p(yt |xs, xt) and 
p(ys|xs, xt) �= p(ys|xs).

Finally, we note that CGM-HMF is able to take the non-Gaussian and correlated nature of the noise into account simul-
taneously.

3.3. Blind Gaussian mixture-hidden evidential Markov field (BGM-HEMF)

Let us recall the basic evidential hidden Markov field (HEMF), introduced in [26] and shown to be efficient in unsuper-
vised segmentation of SAR images in [37]. The idea is to notice that the posterior distribution (3) in the basic HMF can be 
seen as the DS fusion (6) of the Markov field (1) and the probability distribution

qy(x) =
∏
s∈S

p(ys|xs)∑
l∈L p(ys|xs = l)

. (11)

Indeed, recalling p(x) = γ exp
[−∑

c∈C ψc(xc)
]

and p(y|x) = ∏
s∈S p(ys|xs), we have

p(x|y) = p(x)p(ys|xs)

p(y)

= exp
[−∑

c∈C ψc(xc)
]∏

s∈S p(ys|xs)
p(y)



46 L. An et al. / International Journal of Approximate Reasoning 102 (2018) 41–59
=
(∑

x

∏
s∈S p(ys|xs)

p(y)

)(
exp

[−∑
c∈C ψc(xc)

]∏
s∈S p(ys|xs)∑

x

∏
s∈S p(ys|xs)

)

=
(∑

x

∏
s∈S p(ys|xs)

γ p(y)

)(
γ exp

[
−

∑
c∈C

ψc(xc)

]∏
s∈S

p(ys|xs)∑
xs

p(ys|xs)

)

= γ (y)p(x)qy(x)

with γ (y) =
∑

x
∏

s∈S p(ys |xs)

γ p(y)
. This means that p(x|y) is DS fusion between Markov p(x) and qy(x).

Then, the Markov field of (1) is extended to an “evidential” Markov field (EMF) M = (Ms)s∈S , where each Ms takes its 
values in the powerset 2L instead of L. Thus p(m) ∝ exp

[−∑
c∈C ψc(mc)

]
. As (11) is a probability, the DS fusion of such 

an EMF with (11) gives a probability p(x|y), which is written p(x|y) ∝ ∑
x∈m p(m)qy(x), where the sum 

∑
x∈m is made 

over all m = (ms)s∈S ∈ [2L]N such that xs ∈ ms for each s ∈ S . Then one observes that computing DS fusion is equivalent 
to computing p(x|y) in the triplet Markov field (X, M, Y ), where (X, M) = (Xs, Ms)s∈S takes its values in the subset �
of L × 2L of couples (xs, ms) verifying xs ∈ ms . Thus DS fusion can be seen as computation of a marginal distribution in 
a probabilistic triplet Markov field, which is a core point making link between probabilistic Markov fields and theory of 
evidence.

Finally, an “evidential hidden Markov field” (EHMF) is mathematically equivalent to a TMF (X, M, Y ), whose distribution 
is of the form:

p(x,m, y) ∝ 1x∈m exp

[
−

∑
c∈C

ψc(mc) +
∑
s∈S

log(p(ys|xs))

]
(12)

and is defined on a subset of [L × 2L × R]N of (xs, ms, ys) such that xs ∈ ms . We see how EHMFs extend HMFs: when this 
subset is reduced to (xs, ms, ys) such that ms = {xs}, EHMF is reduced to a HMF.

Example 3.2. Let us consider the standard EHMF, which turned out to improve HMF’s results in situations where the label 
field contains fine details [26]. The subset of [L × 2L × R]N of (xs, ms, ys) such that xs ∈ ms is reduced to two elements 
of the form (xs, {xs}, ys), (xs, L, ys). Thus for K labels, the number of “new labels” when extending HMF to HEMF is only 
multiplied by two. However, as we will see in section 4, this slight extension will be of importance in finding fine details 
when segmenting noisy images.

Blind Gaussian mixture-hidden evidential Markov field (BGM-HEMF) is obtained from HEMF in a similar way that BGM-
HMF is obtained from HMF, by introducing an auxiliary field U . We obtain:

p(x,m, u, y) ∝ 1x∈m exp

[
−

∑
c∈C

ψc(mc) −
∑
s∈S

ηs(xs, us) +
∑
s∈S

log(p(ys|xs, us))

]
(13)

Some examples of application of BGM-HMF can be seen in [25].

3.4. Correlated Gaussian mixture-hidden evidential Markov field (CGM-HEMF)

Finally, the new “correlated Gaussian mixture-HEMF” (CGM-HEMF) model proposed is obtained from BGM-HEMF in a 
similar manner that CGM-HMF is obtained from BGM-HMF, by considering potential functions ϕc . We get:

p(x,m, u, y) ∝ 1x∈m exp

[
−

∑
c∈C

ψc(mc) −
∑
c∈C

ϕc(uc) −
∑
s∈S

ηs(xs, us) +
∑
s∈S

log(p(ys|xs, us))

]
(14)

As it remains a triplet Markov field, with the third discrete finite field being (M, U ), searching X from Y by conven-
tional Bayesian methods, like Iterated Conditional Modes (ICM) [38], maximum posterior marginal (MPM) [39], maximum a 
posteriori (MAP) [40], or graph cut [41], remains feasible.

3.5. Parameter estimation and Bayesian segmentation

All models above are of the form p(w, y) ∝ exp
[−∑

c∈C ξc(wc) + ∑
s∈S log (p(ys|ws))

]
. Indeed, W = (X, U ) in BGM-

HMF and CGM-HMF; and W = (X, M, U ) in BGM-HEMF and CGM-HEMF. Thus at the processing level, they can finally be 
dealt with as in the hidden Markov field context. To perform segmentation we use ICM. We scan the image and compute, 
at each s ∈ S , the distribution p(ws|wNs , ys), where Ns is the neighborhood of s. Then at scan n, the ŵn

s set at s is the 
label maximizing p(ws|wNs , ys). After few scans – about five or six – the estimated image ŵn = (ŵn

s )s∈S stabilizes and is 
considered as segmentation result [42].

For parameter estimation, we use the method specified in [4]. Let us set θ = (α, β) with α being the parameters defining 
potential functions ξc and β being the ones defining Gaussian densities p(ys|ws) = p(ys|us, xs). We use particular Iterative 
Conditional Estimation (ICE) method producing a sequence θ0, θ1, ..., θq, θq+1, ... according to:
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Fig. 2. Synthetic binary class images corrupted by independent and correlated noises. 1. Original class-images; 2. Synthetic image corrupted by independent 
noise; 3. Synthetic image corrupted by correlated noise; of: (a) Letter B; and, (b) Key.

(i) initialization θ0 is given by automatic histogram thresholding segmentation;
(ii) to compute θq+1 from θq do:

• sample wq according to p(w|y, θq), using Gibbs sampler;
• use (wq, y) to estimate βq+1 using classic estimators;
• use wq to estimate αq+1 with least squares fit [43];

(iii) stop when an end criterion is satisfied (in this study, when the number of changing pixels is less than 50).

Let us notice that “iterative conditional estimation” (ICE) method is different from the expectation-maximization (EM) 
one, even if can present some similarities. The main difference is that ICE uses conditional expectation while EM uses the 
maximum likelihood [44]. In particular the proposed method is different from the EM one proposed in [45].

Remark 3.1. Our paper deals with hidden evidential Markov fields obtained by extension to evidential masses of classic 
hidden Markov fields. Similar extension of classic hidden Markov chains (HMCs [46,47]) leads to “evidential Markov chains” 
(HEMCs [48,33]). Some of extensions of the classic hidden Markov chains use imprecise probability theory [49–51], or hid-
den fuzzy sets [52–54]. The difference with HEMCs is that in these different extensions uncertainty is dealt with at imprecise 
transitions level, while in HEMCs the class chain searched for is not Markov, and thus transitions are not considered. How-
ever, different ideas proposed in imprecise Markov chains could possibly be transposed to Markov fields, and then models 
so obtained should be compared to different HEMFs considered in this paper.

4. Experiments

In this section, we assess the performance of our proposed models against some conventional models described in 
section 3. Besides, we also compare the CGM-HEMF with the recent method SVA-B [55]. In the first subsection, we test 
BGM-HMF, CGM-HMF and SVA-B on simulated and real images, while the second paragraph is devoted to BGM-HEMF, 
CGM-HEMF and SVA-B, tested on simulated, real images and Berkeley dataset [56]. The comparation of [55] with [57–60]
has shown the superiority of [55]. For all experiments, the performance of each model will be evaluated both qualitatively 
and quantitatively. For this purpose, all approaches will be assessed with respect to the reference map in terms of overall 
accuracy (OA) and Kappa coefficient (κ ) [61]. A classification is better as the OA, resp. κ , is higher. While overall accuracy 
may appear more intuitive, such metric may introduce a significant bias in the case of unbalanced classes. Hence, the Kappa 
coefficient (κ ) is usually adopted as a universal metric for objective comparison purpose.

4.1. Unsupervised segmentation using BGM-HMF and CGM-HMF

We present two series of experiments: simulated and real images. The first series deals with two sampled class-images 
corrupted by non-Gaussian correlated noise. Let us consider the two label-images “Letter B” and “Key” presented in Fig. 2. 
Let X be the label field with each Xs taking its values from L = {l1, l2} where l1 and l2 corresponds to black pixels and 
white ones respectively. The non-Gaussian noise considered here is the Gamma one. In independent case, the two densities 
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Fig. 3. Histograms of Letter B image in the: (a) Independent noise case; and, (b) Correlated noise case. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

related to the two classes are Gamma G1(0.5, 2) and G2(3, 1) given by the densities: f1(y) = y0.5−1e− y
2

20.5�(0.5)
and f1(y) = y3−1e− y

1

13�(3)

respectively. Histograms in Fig. 3(a) show that they are quite different from Gaussian densities.
On the other hand, the correlated noise is obtained as follows:

yi, j =
[

(yk
i, j − μk) + (yk

i−1, j − μk) + (yk
i, j−1 − μk)√

3
+ μk

]
(15)

where i, j is the location of the pixel; y1 and y2 are two independent noises with the densities being G1(0.5, 2) and G2(3, 1)

respectively; μ1 = 1 and μ2 = 3 are the means; lk is the label of the pixel with k ∈ {1, 2}. This produces a sampled image 
exhibiting a complicated correlated noise. More explicitly, one obtains a correlation coefficient of 0.23 (evaluated from the 
resulted image). We show the histograms of noises and the related observed images in Fig. 2 and Fig. 3.

The presented results and other similar results we obtained allow drawing the following conclusions:

• for the independent noise SVA-B performs a little better than BGM-HMF and CGM-HMF, but for correlated noise CGM-
HMF performs much better than SVA-B;

• in the case of independent noise, CGM-HMF yields comparable results to BGM-HMF. This could appear as evident; 
however, this is not in the unsupervised case considered here. In fact, this means that the parameter estimation method 
used in more complex CGM-HMF is able to find again the simpler BGM-HMF;

• the most interesting conclusion is that the noise correlation is taken into account by CGM-HMF which results in signif-
icant improvement of unsupervised segmentation. Indeed, CGM-HMF performs as well on correlated noise context as 
on independent noise one. (See Figs. 4 and 5.)

In the second series, we consider two cases of SAR images. In the first one, shown in Fig. 6(a), the ground truth consid-
ered is hand-drawn. The second image “Amazonia”, shown in Fig. 6(b), has a genuine ground truth. Visual results are given 
in Fig. 6, while ratios of recovered classes and Kappa coefficient are specified in Table 1.

According to the presented results we can state that CGM-HMF is able to take the noise correlation into account, which 
results in improvement of well classified pixels rate and Kappa coefficient as well.

4.2. Unsupervised segmentation using BGM-HEMF and CGM-HEMF

4.2.1. Hand written images segmentation
Let us first apply BGM-HEMF and CGM-HEMF to the same synthetic images as in Section 4.1. The results obtained are 

provided in Fig. 7 and 8. A comparative performance evaluation is also provided through quantitative metrics in Table 2.
We can see that results are comparable when overall accuracy or Kappa coefficient are considered. However, errors are 

not made in a similar manner and results are visually somewhat different. In particular, edges seem to be better found by 
the evidential models. These differences will give a striking advantage to evidential models when label images contain fine 
details we are going to consider now.

Let us consider three images: “Nazca bird”, “Fingerprint”, and “Tree”, presented in Fig. 9. Such images are noised using 
the same independent and correlated noise as in the Section 4.1.
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Fig. 4. Unsupervised segmentation results of synthetic image corrupted by independent noise: (a) Letter B; and, (b) Key; using 1. SVA-B; 2. BGM-HMF; and, 
3. CGM-HMF.

Fig. 5. Unsupervised segmentation results of synthetic image corrupted by correlated noise: (a) Letter B; and, (b) Key; using 1. SVA-B; 2. BGM-HMF; and, 
3. CGM-HMF.

We segment the observed images by SVA-B, BGM-HMF, CGM-HMF, BGM-HEMF and CGM-HEMF respectively. Results 
corresponding to independent noise are given in Fig. 10, while results corresponding to correlated noise are given in Fig. 11. 
Overall, accuracy and Kappa coefficients are given in Table 3.

According to these different results, we can state the following:

(i) SVA-B incorporates spatial information and Potts model to establish a tradeoff between fine details and noises. However, 
CGM-HEMF performs still better, especially in the case of correlated noise;

(ii) BGM-HEMF and CGM-HEMF seem to benefit from the efficiency of BGML in parts of images presenting fine details, 
and from the efficiency of BGM-HMF and CGM-HMF in homogeneous parts. A theoretical partial explanation of this 
phenomenon is given in Remark 4.1 below;

(iii) when the noise is independent both BGM-HEMF and CGM-HEMF give similar results. This means that the parameters 
estimation method applied to CGM-HEMF is robust enough to find that the original data is not correlated;

(iv) the most important ascertainment is to notice that when the noise is correlated, unsupervised segmentation based on 
the new CGM-HEMF can strongly improve the results obtained with BGM-HEMF.
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Fig. 6. Unsupervised segmentation of real SAR images. 1. Original image; 2. Ground truth; 3. Segmentation result using SVA-B; 4. Segmentation result using 
BGM-HMF; and, 5. Segmentation result using CGM-HMF; of (a) Jet propulsion; and, (b) Amazonia.
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Table 1
Performance evaluation of different approaches on real 
SAR images.

Image SVA-B BGM-HMF CGM-HMF

Overall accuracy (%)

Jet propulsion 91.70 96.66 97.55
Amazonia 63.23 61.48 66.64

Kappa

Jet propulsion 0.800 0.912 0.935
Amazonia 0.454 0.411 0.485

Fig. 7. Unsupervised segmentation results of synthetic image corrupted by independent noise: (a) Letter B; and, (b) Key; using 1. BGM-HEMF; and, 2. CGM-
HEMF.

Fig. 8. Unsupervised segmentation results of synthetic image corrupted by correlated noise: (a) Letter B; and, (b) Key; using 1. BGM-HEMF; and, 2. CGM-
HEMF.

Comparing results Fig. 11(a).1–11(c).1 with Fig. 11(a).2–11(c).2 is of interest as it probably explains the good results 
obtained using the proposed CGM-HEMF. We can see that results of Fig. 11(a).1–11(c).1 are bad as the noise is strong and 
spatial information is not taken into account. However, fine details are not lost, even if they are not found efficiently. On 
the contrary, results of Fig. 11(a).2–11(c).2 are good outside fine details, but these details are lost. Introducing evidential 
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Table 2
Performance evaluation of different approaches on synthetic images.

Image SVA-B BGM-HMF CGM-HMF BGM-HEMF CGM-HEMF

Overall accuracy (%)

A
Letter B 94.92 93.82 93.29 95.13 94.75
Key 97.67 96.79 97.29 97.78 98.01

B
Letter B 89.36 87.81 92.88 88.33 92.07
Key 90.27 91.88 96.18 93.15 97.17

Kappa

A
Letter B 0.887 0.866 0.851 0.886 0.879
Key 0.904 0.872 0.890 0.897 0.909

B
Letter B 0.775 0.747 0.846 0.733 0.819
Key 0.674 0.718 0.850 0.777 0.870

Fig. 9. Synthetic images. 1. Original class-images; 2. Synthetic image corrupted by independent noise; 3. Synthetic image corrupted by correlated noise; of: 
(a) Nazca bird; (b) Fingerprint; and, (c) Tree.

variables allows one to benefit from these two advantages simultaneously. To better understand why, let us consider a 
case of two neighboring pixels s and t and two labels L = {l1, l2}. In the probabilistic case, we have p(xs, xt , ys, yt) =
p(xs, xt)p(ys|xs)p(ys|xs). In the evidential case, we have additional variables Ms and Mt such that (Ms, Mt) takes its values 
in {{l1}, {l2}, L}2, and p(xs, ms, ys, xt , mt, yt) ∝ 1(xs,xt )∈(ms,mt ) p(ms, mt)p(ys|xs)p(ys|xs). We see that when p(ms, mt) mainly 
charges {{l1}, {l2}}2, we are close to the probabilistic case, and we find again this case when p(ms, mt) is null outside 
{{l1}, {l2}}2. Similarly, when p(ms, mt) mainly charges (L, L) we are close to the independent case p(xs, ms, ys, xt , mt, yt) ∝
p(ys|xs)p(ys|xs), and we find again this case when p(ms, mt) is null outside {(L, L)}. This remark extended to the whole 
set of pixels in the Markov field context illustrates how the proximity to the first or to the second case can be managed 
according to the place of a pixel in the image. Such interpretation is confirmed by experiments presented in Fig. 12, where 
we give estimation of M = (Ms)s∈S . Indeed, we find that m̂s = L in spots with fine details. The interesting point is that the 
segmentation is unsupervised, and thus the right balance between these two aspects of the model seems to be automatically 
found, for each pixel, in the parameter estimation stage. Let us remark that similar remarks have been made in the context 
of hidden Markov chains in [33], also see [62].
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Fig. 10. Unsupervised segmentation of synthetic images corrupted by independent noise: (a) Nazca bird; (b) Fingerprint; and, (c) Tree, by: 1. SVA-B; 
2. BGM-HMF; 3. CGM-HMF; 4. BGM-HEMF; and, 5. CGM-HEMF.

4.2.2. Unsupervised segmentation of real images
This part is devoted to the segmentation of real images. More explicitly we consider one SAR image (Fig. 13(a)), and two 

optical images: a gray-level image “Landscape 1” (Fig. 14(a)); and a color image “Landscape 2” (Fig. 15(a)). The first two 
images are to be segmented into three classes whereas the last one is to be segmented into five classes.

As well acknowledged, the histogram of SAR image is not Gaussian distribution, and SAR image is heavily interfered 
by speckle noise. Thus it is challenging to process SAR data. Besides, according to Fig. 13(a), the data used in our paper 
includes plenty of small edges, which makes it even more difficult to enhance the robustness against noise and keep the 
edges simultaneously. We segment the data by above five approaches and show the result in Fig. 13. According to the 
results obtained, SVA-B, BGM-HMF and CGM-HMF are robust against noise but cannot segment the fine lines. BGM-HEMF 
and CGM-HEMF are robust against noise and also keep the edges. Besides, CGM-HEMF performs better than BGM-HEMF in 
some spots; in particular around the rich-edge area. We can see from the red panels that the segmentation obtained by 
CGM-HEMF includes more details with respect to the one obtained through BGM-HEMF.

For the optical image “Landscape 1”, it is reasonable to assume the histogram of one specific class as Gaussian, but when 
there are some subsets within one class the distribution will be Gaussian mixture. Thus except the SAR data, we also test 
the proposed method on complex optical image as shown in Fig. 14(a). This optical image includes a rich-edge area (the 
tree) and a stationary area (the field). Besides, according to its histogram there are some subsets in this image. According 
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Fig. 11. Unsupervised segmentation of synthetic images corrupted by correlated noise: (a) Nazca bird; (b) Fingerprint; and, (c) Tree, by: 1. SVA-B; 2. BGM-
HMF; 3. CGM-HMF; 4. BGM-HEMF; and, 5. CGM-HEMF.

Table 3
Performance evaluation of different approaches on synthetic images.

Image SVA-B BGM-HMF CGM-HMF BGM-HEMF CGM-HEMF

Overall accuracy (%)

A
Nazca 86.15 43.02 44.33 90.47 90.85
Fingerprint 82.62 83.11 81.51 87.50 87.88
Tree 85.69 81.42 84.30 90.17 89.40

B
Nazca 73.86 50.56 54.33 85.69 88.41
Fingerprint 76.81 73.74 75.41 83.50 85.39
Tree 76.62 63.23 80.02 87.34 90.70

Kappa

A
Nazca 0.5633 0.1261 0.1315 0.6166 0.6193
Fingerprint 0.6135 0.6203 0.5593 0.6811 0.6963
Tree 0.5235 0.4761 0.4971 0.5760 0.5570

B
Nazca 0.4223 0.1696 0.2824 0.5468 0.5976
Fingerprint 0.4817 0.4701 0.4998 0.5484 0.5981
Tree 0.3790 0.2365 0.4070 0.5541 0.6005
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Fig. 12. Estimates of L extracted from the estimated evidential field M̂ = (M̂s)s∈S , in the CGM-HEMF case. Pixels are labeled black if M̂s = L, and white if 
either M̂s = {l1}, or M̂s = {l2}. (a) Nazca bird; (b) Fingerprint; and, (c) Tree.

Fig. 13. Unsupervised segmentation of a real SAR image. (a) Original image; (b) Image histogram; (c) SVA-B segmentation; (d) BGM-HMF segmentation; 
(e) CGM-HMF segmentation; (f) BGM-HEMF segmentation; and, (g) CGM-HEMF segmentation.

to Fig. 14, the segmentation results obtained by correlated-likelihood based methods experience less noises than the ones 
obtained by independent-likelihood based methods. BGM-HMF and CGM-HMF perform well in enhancing the robustness 
against noise, but they cannot segment the branches of the tree well. BGM-HEMF and CGM-HEMF can still segment the 
image better.

Let us now consider the color optical image “Landscape 2”. Segmentation is applied on the gray levels at each of the three 
primitive colors and joint probability is computed simply as the product of the three posterior probabilities (which subsumes 
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Fig. 14. Unsupervised segmentation of an optical image “Landscape”. (a) Original image; (b) Image histogram; (c) SVA-B segmentation; (d) BGM-HMF 
segmentation; (e) CGM-HMF segmentation; (f) BGM-HEMF segmentation; and, (g) CGM-HEMF segmentation.

independence of the three features). One can see from the results provided in Fig. 15 that HEMF-based segmentation allows 
one to find the road which is a rich-edge region while taking advantages of Markov regularization. One can conclude 
that HEMF-based segmentation establishes an adequate tradeoff between regularization ability and edge preserving. This 
confirms the interest of introducing theory of evidence.

Finally, estimates of some parameters of CGM-HEMF related to some data considered in this study are provided in 
Table 4.

Results in Table 4 are related to BGM-HEMF (14), with cliques of second order. Thus c in ϕc(mc) and φc(mc) have 

two neighbors (s, t), which can be horizontal or vertical. For horizontal neighbors (s, t) we set 

{
−αh

n for ms = mt

αh
n for ms �== mt

, 

and similarly for vertical neighbors with αv
m instead of αh

m . Similarly for φ(s,t) = (us, ut), which thus are defined with αv
u

and αh
u . We can notice that ideal αv

u and αh
u should be null for non-correlated noise, which is not case and thus parameter 

estimation method seems little robust with respect to these parameters. However, this is possibly due to slow variation of 
the whole model with them, and thus their little influence on segmentation result.

4.2.3. Segmentation of Berkeley dataset
To make strong conclusions, we also consider the Berkeley segmentation dataset to evaluate the proposed methods 

along with the existing ones. To this end, we choose 50 images exhibiting fine details, that we will refer to as fine details 
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Fig. 15. Unsupervised segmentation of a color optical image “Landscape 2”. (a) Original image; (b) SVA-B segmentation; (c) BGM-HMF segmentation; 
(d) CGM-HMF segmentation; (e) BGM-HEMF segmentation; and, (f) CGM-HEMF segmentation.

Table 4
Estimated parameter according to CGM-HEMF model.

Parameter Indep. Letter B Corr. Letter B Indep. Nazca bird Corr. Nazca bird Jet propulsion Landscape

αh
m 0.8546 0.8722 0.3233 0.3848 0.7655 0.4553

αv
m 0.6565 0.7014 0.4012 0.3992 0.6980 0.5334

αh
u 0.1725 0.3022 0.1056 0.2020 0.2432 0.2873

αv
u 0.1346 0.3123 0.1043 0.2143 0.2544 0.2489

Table 5
Performance evaluation of different approaches on Berkeley dataset.

Image SVA-B BGM-HMF CGM-HMF BGM-HEMF CGM-HEMF

Overall accuracy (%)

FDI 83.45 76.31 80.25 87.11 91.02
NFDI 94.05 91.31 94.56 90.23 94.34

Kappa

FDI 0.6071 0.5002 0.5229 0.6237 0.7043
NFDI 0.8006 0.7933 0.8490 0.7423 0.8181

images (FDI); and 50 images without fine details, that we will refer to as non-fine details images (NFDI). The average overall 
accuracy and Kappa coefficient are illustrated in Table 5.

For NFDI, all the CGM-HMF, CGM-HEMF and SVA-B perform well and yield comparable overall accuracy and Kappa coef-
ficient. On the other hand for FDI, BGM-HEMF and CGM-HEMF perform much better than SVA-B, BGM-HMF and CGM-HMF. 
Indeed, CGM-HEMF benefits from the following three aspects: (i) Markov regularization which allows to take into account 
the spatial contextual information; (ii) theory of evidence which establishes a good tradeoff between noise and prior infor-
mation; and (iii) considering correlated noise which allows to model the actual noise more efficiently.

Remark 4.1. The ability of detecting fine details and large-size classes observed in Markov fields with correlated noise 
context would probably be kept in mono-dimensional problems modeled with Markov chains. Thus extending the evidential 
Markov chain proposed in [48,62] probably is an interesting perspective.

5. Conclusion

In this paper, we have proposed two original Markov field models aiming to segment images corrupted with non 
Gaussian and correlated noise. Both models have been assessed in unsupervised segmentation. The first one, probabilistic, 
efficiently improves results when the noise is correlated. The second one, which extends former “evidential” models [25], 
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turns out to be particularly interesting when images simultaneously contain homogeneous parts (regions of a same label 
of large size) and inhomogeneous parts (regions of a same label of small size). An interesting future direction would be 
to consider by considering other compound hypotheses than the frame of discernment L in the case of multiclass data 
classification.
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