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Abstract 25 

Purpose: To investigate the use of a probabilistic quad-tree graph (Hidden Markov Tree, HMT) to provide fast 26 

computation, robustness and an interpretational framework for multimodality image processing and to evaluate this 27 

framework for single gross tumor target (GTV) delineation from both positron emission tomography (PET) and 28 

computed tomography (CT) images. 29 

Methods: We exploited joint statistical dependencies between hidden states to handle the data stack using multi-30 

observation, multi-resolution of HMT and Bayesian inference. This framework was applied to segmentation of lung 31 

tumors in PET/CT datasets taking into consideration simultaneously the CT and the PET image information. PET and 32 

CT images were considered using either the original voxels intensities, or after wavelet/contourlet enhancement. The 33 

Dice similarity coefficient (DSC), sensitivity (SE), positive predictive value (PPV) were used to assess the performance 34 

of the proposed approach on one simulated and 15 clinical PET/CT datasets of non-small cell lung cancer (NSCLC) 35 

cases. The surrogate of truth was a statistical consensus (obtained with the Simultaneous Truth And Performance Level 36 

Estimation algorithm) of three manual delineations performed by experts on fused PET/CT images. The proposed 37 

framework was applied to PET-only, CT-only and PET/CT datasets, and were compared to standard and improved 38 

fuzzy c-means (FCM) multimodal implementations.  39 

Results: A high agreement with the consensus of manual delineations was observed when using both PET and CT 40 

images. Contourlet-based HMT led to the best results with a DSC of 0.92±0.11 compared to 0.89±0.13 and 0.90±0.12 41 

for Intensity-based HMT and Wavelet-based HMT respectively. Considering PET or CT only in the HMT led to much 42 

lower accuracy. Standard and improved FCM led to comparatively lower accuracy than HMT, even when considering 43 

multimodal implementations. 44 

Conclusions: We evaluated the accuracy of the proposed HMT-based framework for PET/CT image segmentation. The 45 

proposed method reached good accuracy, especially with pre-processing in the contourlet domain. 46 

 47 

Keywords: Positron emission tomography (PET), computed tomography (CT), Bayesian inference, hidden Markov 48 

trees (HMT), wavelet and contourlet analysis, segmentation 49 

 50 
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INTRODUCTION 52 

 53 

The current trend in modern personalized medicine is to acquire and exploit sequential images for a patient during the 54 

course of its treatment (pre-, per-, post-treatment). These images are also more and more frequently coming from 55 

multiple image modalities including Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron 56 

Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) or UltraSound (US). In 57 

addition, the development of each modality has led to the use of several modes of acquisition, such as various MRI 58 

sequences or the development of several PET and SPECT radiotracers. In clinical oncology and radiotherapy, this has 59 

been especially true, due to the introduction of multimodality imaging integrated devices such as PET/CT and 60 

SPECT/CT, and now the rising development of sequential and simultaneous PET/MRI, which have also led to 61 

significant improvements regarding image fusion and anatomical/physiological data association.  62 

On the one hand, multimodality imaging today provides the physicians with an unprecedented potential wealth of 63 

information, both morphological and functional regarding the pathology 1. On the other hand, the manual and visual 64 

exploitation of the image datasets becomes more and more complex, tedious, subjective and time-consuming owing to 65 

increasing data volumes as well as image characteristics' variability. Automated analysis may thus potentially improve 66 

overall patient management based on the use of multimodality images.  67 

From an image and data processing point of view, most recent developments have been focused on a single image 68 

modality, optimizing and adapting algorithms to deal with its specific characteristics. In clinical research, when 69 

multiple images (from one or several modalities) are being considered, they are most often analyzed independently and 70 

the results are then combined a posteriori, thereby not exploiting the full potential correlation between multimodal 71 

images. One of the main challenges for semi-automatically handling such multimodal datasets is the large variability 72 

in terms of spatial resolution and definition, noise and texture properties, across as well as within modalities. 73 

Several papers have investigated the combination and association of functional and anatomical images for a specific 74 

purpose, such as denoising2 or reconstruction3 of PET data using anatomical priors coming from MRI or CT, correction 75 

of partial volume effects in PET or SPECT by exploiting the associated morphological information 4–6, the use of 76 

associated CT images to spatially register several low-resolution PET images, for instance during treatment 7, 8 or 77 
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several different radiotracers 9, or the definition of tumor target volumes in radiotherapy by considering both PET and 78 

CT images features 10, 11.  79 

This last application in particular has led recently to the development of several (semi)automated methodologies aiming 80 

at determining a single gross tumor volume (GTV) from fused PET/CT datasets, assuming both modalities provide 81 

complementary information regarding a single contour of the tumor volume 10–16. Although an alternative approach 82 

could consist in segmenting each image independently and then combine the obtained volumes a posteriori using some 83 

kind of consensus, these approaches have mostly considered the first approach and used a variety of tools including 84 

supervised learning using textural features of PET/CT images 10, 14, Markov random field 13, random walk segmentation 85 

12, active contours 11, 16 and topology integrated within graph-models 15. The idea underlying all these studies is that the 86 

delineation should benefit from the co-registered modalities’ information in order to produce a single, more robust and 87 

accurate GTV. Most of these previous works have indeed highlighted the potential value in considering both modalities 88 

simultaneously in a common mathematical and algorithmic framework. The objective of most of these studies is to 89 

objectively automate the manual and subjective task of GTV delineation by a radiation oncologist visualizing the fused 90 

PET/CT images. We place our present work in the same context. 91 

Hidden Markov fields (HMF) are well suited to image processing and have been exploited in a variety of applications, 92 

including medical imaging 17. They have been used in PET segmentation 18 and two recent studies investigated the use 93 

of HMF to associate PET and CT datasets with the goal of co-segmentation 13, 19. Markov random fields however 94 

require computationally expensive iterative methods for estimating parameters17, contrary to hidden Markov chains 95 

(HMC) that have also been explored for PET segmentation 20. Finally, hidden Markov trees (HMT) share similar 96 

favorable computational properties with chains, while being quite as robust as fields and providing a useful structure 97 

for the association of multiscale and multimodal images 17, 21. HMT proved their efficiency in several fields. For 98 

example, phylogenetic models in biology are diagrams showing the evolutionary relationships between species 22. 99 

Hierarchical models are also used for aerial image parsing 23. HMT have found numerous applications in imaging, 100 

including astronomical 24, remote sensing 25, 26 and medical imaging for instance in MRI 27. However, medical image 101 

segmentation using HMT is quite rare 28 contrary to Markov fields 29, and to the best of our knowledge, our work is the 102 

first to investigate their use for multimodal PET/CT image segmentation. The present paper is an extension of the first 103 

developments initially presented in a conference proceeding 30. 104 
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 105 

The scope of this work is thus to evaluate the value of a unified framework based on HMT for PET/CT segmentation 106 

with the objective of GTV delineation in radiotherapy planning. Results are provided on 1 simulated case and on 15 107 

clinical datasets with comparison to a statistical consensus of three different manual delineations. Finally, we elaborate 108 

at several potential improvements regarding the framework itself, as well as other applications that may benefit from 109 

its use, and that will be investigated in future studies. 110 

MATERIALS AND METHODS 111 

1. Hidden Markov Tree framework 112 

In this section, we present the mathematical methodology used to handle, associate and process multimodal medical 113 

images using different resolutions and modalities within a unified framework based on a HMT. 114 

The multiresolution nature of the data can be managed by using the successive scales of the HMT in order to handle 115 

data represented at different resolutions. Another modeling approach consists in using the different levels in the HMT 116 

not to represent data of different resolutions, but rather as an algorithmic solution to model dependencies between 117 

neighboring observations at successive scales, while the data is associated only with the last scale of the HMT. In that 118 

case, different modalities are handled by considering observed data in a given voxel as a vector containing several 119 

values, each vector component representing a modality’s observation. This setting was chosen for the present work: in 120 

radiotherapy planning clinical practice, the PET image is up-sampled to exactly the same dimension as the CT, so that 121 

the images can be overlaid for visualization and manual delineation. We used cubic B-spline interpolation to up-sample 122 

the PET image so that a PET voxel exactly corresponds to a CT voxel. Therefore both PET and CT voxels intensities 123 

are associated as a 2-value vector with the leaves of the tree (the level/scale at the bottom of the tree), as illustrated in 124 

figure 1. Note that all the scales/levels above in the tree are only used as calculus and parameters estimation tools and 125 

none of their nodes are associated with PET/CT voxels values. 126 

The HMT will exploit conjointly within the same algorithmic framework each couple of voxels’ intensities (one PET, 127 

one CT) to take a segmentation decision based on the probability of this couple to belong to a class (tumor) or another 128 

(background). This probability is calculated by combining two different probabilities: the first corresponds to the prior 129 
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probability of each node of the tree to belong to a given class, which will be based on the fathers-children statistical 130 

transitions in the tree structure (section 1.1). Regarding the segmentation task, the most important probability will be 131 

the one associated with each leaf. Indeed, the probabilities estimated in the above scales are only calculus and 132 

estimation tools to incorporate spatial neighborhood and multiscale information. The second corresponds to the 133 

observation probability calculated based on the voxel couple of values (PET and CT) with respect to the respective 134 

joint generalized normal distribution estimated for the entire PET/CT region of interest containing the tumor and 135 

background (section 1.2). Each case requires automatic estimation of all parameters defining the HMT model and these 136 

estimated parameters are then used to perform the actual segmentation (section 1.3). 137 

1.1 Hidden Markov Tree model 138 

Contrary to HMC, a HMT is a hierarchical hidden Markov model, which is able to take into account the probabilistic 139 

dependencies between scales directly. At a given scale, the probabilistic spatial dependencies among voxels are then 140 

taken into account via dependency on a common ancestor (Figure 1). Similarly to HMCs, HMTs allow fast data 141 

processing owing to their computational efficiency. Despite their simplicity, they are able to produce results with 142 

similar performance as hidden Markov fields 17. 143 

           The HMT model is defined as follows: let S be a finite set of points and 𝑋 = (𝑋𝑠)𝑠∈𝑆 , 𝑌 = (𝑌𝑠)𝑠∈𝑆0
 two random vectors 144 

indexed respectively on S and 𝑆0 ⊂  𝑆  subset of observed voxels. Each Xs takes its values in the finite set of classes 145 

Ω={ω1,..,ωk} (in this work tumor and background) and Ys takes its values in the set of observations (real values 146 

corresponding to voxels’ intensities). Let S1, ..., SR be a partition of S representing different "generations". Each 𝑠𝜖𝑆𝑖 147 

admits 𝑠+ ⊂ 𝑆𝑖+1 (called his "children") in such a way that every element of 𝑡 𝜖𝑆𝑖+1 has a unique "father" 𝑡−𝜖𝑆𝑖 such 148 

that (𝑠+)− = 𝑠. We assume that S1 is a singleton so as its element r is called "root". Setting 𝑝(𝑥, 𝑦) density of the 149 

distribution of (X, Y), the random vector (X, Y) is a HMT if: 150 

𝑝(𝑥, 𝑦) = 𝑝(𝑥𝑟)𝑝(𝑦𝑟|𝑥𝑟) ∏ ∏ 𝑝(𝑥𝑠|𝑥𝑠−)𝑠𝜖𝑆𝑗
𝑁
𝑗=2 𝑝(𝑦𝑠|𝑥𝑠),   (1)  151 

where  𝑝(𝑦𝑠|𝑥𝑠) = 1 if  𝑠 ∉ 𝑆0 152 

 153 

 154 

http://fr.wikipedia.org/wiki/Inclusion_%28math%C3%A9matiques%29#.E2.8A.82
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 155 

Figure 1: Hidden Markov Tree (HMT) Model with the associated PET/CT image (selection centered on the tumor): 156 

the root, scale R-1 with 4 children, scale 2 with 16, down to scale R-6 with 4096 “leaves” (64×64), each one being 157 

associated with a vector of 2 values (y1 and y2) corresponding to the PET and CT intensities. The classification as 158 

“tumor” or “background” is 𝑥 = (𝑥𝑠)𝑠∈𝑆0
. 159 

 160 

1.2 Observation modeling 161 

With respect to image segmentation in a statistical setting, a Gaussian distribution is sufficient to model PET voxels’ 162 

intensities and more complex distributions through the use of the Pearson’s system (containing 7 different 163 

distributions)31 does not improve accuracy 32. However, in the present case the framework has to conjointly model PET 164 

and CT distributions that could be very different, hence calling for a more flexible statistical model. Therefore the 165 

observation's noise densities  𝑝(𝑦𝑠|𝑥𝑠) (for 𝑠 ∈ 𝑆0) considered are of the generalized normal distribution form 33.  166 

1.3 HMT parameters estimation 167 

The parameters of the HMT that need to be estimated are listed in table 1. The table also lists how their values are 168 

initialized, as well as the aspects of these parameters that are not estimated but rather set a priori. 169 
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HMT parameter 

category 

Parameter Initialization Parameter aspects that are not 

estimated but set a priori 

Prior model Root prior distribution  Equal probability for each class Each node has 4 children. The 

number of scales and 

nodes/leaves are set depending 

on the size of the input image 

(e.g. 6 scales for a 64×64 

image). 

Parent-child transition 

probabilities 

Calculated using a first rough 

segmentation through a Fuzzy 

C-means algorithm 
Observation 

model (data 

likelihood) 

Mean of distribution for each class 

The distribution of each class is 

a generalized normal 

distribution. 

Standard deviation of distribution 

for each class 

Shape parameter (generalized 

normal distribution) for each class 

Table 1: parameters of the HMT 170 

 171 

We emphasize that parameters of the HMT are not set or chosen arbitrarily or empirically but all of them are 172 

automatically estimated from the observed PET, or CT, or the PET/CT intensities. To estimate the parameters we chose 173 

the iterative Stochastic Expectation Maximization (SEM) algorithm 34 which is a stochastic version of the EM algorithm 174 

34. The EM algorithm has been adapted to HMT 25, and in the present work we used a SEM version adapted to the HMT 175 

model. The parameters are first initialized using a simple fuzzy c-means. The loglikelihood and conditional 176 

probabilities involved in the (S)EM rely on the use of backward and forward probabilities, in a similar manner as in 177 

HMC. Segmentation (assigning a class to the hidden states based on the tree structure probabilities and the observed 178 

data) is then obtained using the estimated parameters with the Modes of Posterior Marginal (MPM) 35 inference, a 179 

Bayesian estimator which associates to each site the most probable class given all the data. This estimator requires the 180 

computation of the posterior marginals. These are computed through the Baum-Welsh algorithm 36 by propagating 181 

information first from the “leaves” to the “root”, and then in the inverse direction, from the “root” to the “leaves”. In 182 

this work we used the conditional version of Baum-Welsh algorithm 37 to avoid underflow issues. More details can be 183 

found in 25. 184 

 185 

2. Pre-processing 186 

The HMT model was applied to three different data representations. Observations in each node were defined as the 187 

intensity in each image voxel (as illustrated in figure 1) or its corresponding element in image obtained after pre-188 

processing in the wavelet or contourlet domains. 189 

The spatio-frequential (wavelet or contourlet) transforms provide the ability to exploit image information at different 190 

resolutions and directions, in order to better quantitatively describe the information provided by the observed data. The 191 
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use of images rebuilt after pre-processing in the spatio-frequential domain has been suggested recently for PET image 192 

segmentation 38. We thus decided to investigate the potential benefit of such an approach within our context of PET/CT 193 

segmentation, considering the contourlets in addition to the wavelets. 194 

2.1 Wavelets pre-processing 195 

The wavelet transform (WT) is etablished as a powerful tool for statistical signal and image processing. In this work, 196 

we used the isotropic undecimated wavelet transform (IUWT) based on the ‘à trous’ algorithm 39. The non decimation 197 

avoids the pseudo Gibbs phenomenon. The “à trous” algorithm decomposes an image I0(x,y,z) into a list of wavelet 198 

planes {wj(x,y,z)} with intermediate smoothed planes {Fj(x,y,z)}. This approximation sequence {Fj(x,y,z)} is obtained 199 

through N successive filtering with a 3D low-pass filter h 5 related to a scaling function φ3D  which must satisfy a number 200 

of properties (compactly supported, regularity, symmetry, convergence in the Fourier space and derivability). B-spline 201 

interpolations were chosen in this work. At each iteration j, the approximation image Ij+1 is given according to equation 202 

(2). 203 

)o+z,n+y,m+x(o)In,h(m,=z)y,(x,I jjj

];[on,m,

j+j 222
22

1 


     (2) 204 

The wavelet planes wj+1 are defined as the differences between two consecutive approximations Ij and Ij+1 containing 205 

the details at a resolution level between Ij and Ij+1 in such a way that the initial image I0(x,y) can be rebuilt from its 206 

details layers as in equation (3). 207 


N=j

=j

jN z)y,(x,w+z)y,(x,I=z)y,(x,I
1

0
                     (3) 208 

2.2 Contourlets pre-processing 209 

The Contourlet transform (CoT, to avoid confusion with CT, computed tomography) 40 is an extension of the WT using 210 

non-separable and directional filter banks. Thanks to its remarkable properties (multiresolution, localization, 211 

directionality and anisotropy), CoT is a more efficient tool than WT for capturing intrinsic geometrical structures of 212 

images. CoT is implemented by the pyramidal directional filter bank (PDFB). In a first step, a Laplacian pyramidal 213 

(LP) decomposition is applied to the image so as to obtain a number of radial subbands. In the second step, each LP 214 

subband is decomposed into a power of two's number of directional subbands through a filter banks. In this work, we 215 

used the non-subsampled contourlet transform (NSCT) 41. First, the M-most significant coefficients from all subbands 216 
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are retained whereas the rest are set to 0. Second, the image is rebuilt using the selected coefficients. PET and CT 217 

images and their wavelet or contourlet-based pre-processing results are illustrated in figure 2. In a previous work38, the 218 

value M was arbitrarily set at 200 for PET. In our case we determined these values empirically by exploring values 219 

between 100 and 3000. The best performance was reached for M=800 for PET images and M=2000 for CT images.  220 

 221 

Figure 2: Four examples of PET/CT clinical datasets (a, d, g, j) preprocessed in the contourlets (b, e, h, k) or wavelets 

(c, f, i, l) domains. Note the increased contrast and loss of background details. 

  222 
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3. Evaluation study 223 

3.1 Simulated dataset 

We have been advocating for a long time the use of realistic simulated datasets with voxel-based ground-truth as part of a rigorous 224 

validation framework for PET segmentation 42, 43 and have contributed in making such datasets available to the community 44, 45. 225 

However these past efforts were focused on the PET component and did not include CT simulated images. For the present work 226 

in order to investigate the complementary value of PET/CT vs. CT-only or PET-only HMT segmentation, a digital phantom of a 227 

lung tumor located close to the mediastinum and the chest wall was designed and both a PET image and CT image were simulated. 228 

No breathing was simulated. The simulated PET was generated with GATE (Geant4 Application for Tomography Emission) and 229 

reconstructed following the same process as described previously 44, 45. PET spatial resolution was ~4mm and voxel size of the 230 

reconstructed PET image was 4×4×4 mm3. The CT simulated image was generated using the same digital phantom used for the 231 

PET simulation. The CT simulation is based on a Monte-Carlo simulation where X-rays are created and tracked individually 232 

through the voxelized phantom using the Siddon projector 46 and attenuated following the Beer-Lambert Law. Compton and 233 

Rayleigh scattering were not computed. The simulation was performed using 360 projections around the phantom (1 projection 234 

per degree), and 5×109 particles were created to achieve ~10000 counts/voxel in the histogram. The source aperture was 20 degrees, 235 

a focal spot size of 0 mm was simulated, and a mono-energetic at 60 keV was simulated to avoid beam-hardening artifacts in the 236 

final reconstructed image. A line detector composed of 750 pixel elements and 1 mm pixel size, was placed behind the phantom. 237 

The phantom was centered in the image space, the position of the X-ray source was (-700, 0, 0) mm and the position of the 238 

simulated detector was (350, 0, 0) mm. Finally, the simulated histogram was reconstructed using a maximum likelihood for 239 

transmission tomography (MLTR) algorithm based on a gradient-ascent method 47. For this study, the CT data was reconstructed 240 

using 5 iterations and 72 subsets, 1 mm voxel size, and the final image was blurred with 1 mm Gaussian filter. As explained in 241 

section 1, the reconstructed PET image was up-sampled to be of same size as the CT dataset to be associated within the HMT 242 

framework. Figure 3 shows the digital phantom and the associated simulated PET and CT images. 243 
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Figure 3. (a) Digital phantom with complete tumor ground-truth contour in red and sub-volume in orange, with a mean 

value of -5HU and 3 SUV. The rest of the tumor has a mean value of 20 HU and 12 SUV. Background uptake in the 

lung was set at 0.8 SUV whereas HU were set at -850. Bones were set at 700 HU. The uptake in the surrounding soft 

tissues (mediastinum) was set at 1.6 SUV and the HU at 40 and -80 (light and dark grey voxels respectively); (b-c) 

corresponding reconstructed and upsampled PET (b) and CT (c) images. 

3.2 Clinical Datasets 

The proposed methodology was evaluated on PET/CT clinical images. Fifteen patients with confirmed non–small cell 244 

lung cancer (NSCLC), stage Ib–IIIb, for which no obvious spatial mismatch between the CT and the PET images (due 245 

to respiratory motion and/or positioning differences between the two acquisitions) was observed, were analyzed. All 246 

patients underwent an 18F-FDG PET/CT examination for staging purposes before treatment. Patients were instructed 247 

to fast for a minimum of 6 h before examination. Free-breathing PET and CT images were acquired 45–60 min after 248 

18F-FDG injection. A total of seven 5-min bed positions with overlap were used for whole-body PET (Biograph 249 

PET/CT; Siemens) acquisitions, which were corrected for attenuation using the CT data and iteratively reconstructed 250 

using the ordered-subsets expectation maximization algorithm (4 iterations, 8 subsets). The noise levels in PET and 251 

CT correspond to standard PET/CT clinical acquisitions. Voxel sizes of PET and CT datasets were 5.31×5.31×5 mm3 252 

and 0.98×0.98×5 mm3 respectively. Spatial resolution of the PET scanner is estimated at 4.5 mm full-width at half-253 

maximum (FWHM) in the center of the field of view, whereas spatial resolution of the CT scanner is estimated below 254 

1 mm FWHM. The PET and CT images were assumed to be co-registered at reconstruction. The PET images were up-255 

sampled using a cubic B-spline interpolation scheme 48 so that it corresponds to the dimension of the CT image.  256 

3.3 Surrogate of truth 

In the simulated case, the ground-truth of the phantom was used. In the clinical dataset, all patients underwent surgery 257 

and the maximum diameter was measured on the surgical specimen, as previously described 49. In the absence of other 258 

surrogate of truth such as histopathological volumes, the validation of the approach consisted in comparing automatic 259 

segmentation of the tumor with a statistical consensus of manual delineations performed by three different experts on 260 

each slice of the fused PET/CT images. The experts were asked to draw contours with the goal of defining a GTV for 261 

radiotherapy planning. The consensus was obtained using the simultaneous truth and performance level estimation 262 

(STAPLE) algorithm  50, an expectation-maximization algorithm that computes a probabilistic estimate of the true 263 
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segmentation from a collection of segmentations. In order to strengthen the reliability of this consensus, the maximum 264 

diameter measured in histopathology was compared with the one measured on the STAPLE consensus. The maximum 265 

diameter was not further used for the validation of the proposed algorithm since we are interested here in spatial 266 

PET/CT overlap, which cannot be rigorously evaluated with the maximum diameter only. 267 

3.4 PET, CT and PET/CT comparison 

The proposed framework was first evaluated on the simulated PET/CT dataset, and then on the 15 clinical cases, by 268 

considering either the PET or the CT image only, then using both PET and CT images. Parameters of the HMT model 269 

as described in table 1 were in each case automatically estimated from the input images. They are therefore not set with 270 

the same values for each configuration (PET, CT and PET/CT) but iteratively estimated for each image and each 271 

configuration. Note however that the structure of the tree (1 father, 4 sons for instance) and type of statistical 272 

distributions (set as generalized normal distributions) are the same in all configurations since they are not estimated. 273 

Note also that the segmentation algorithms are not applied to the entire whole-body datasets, but rather on a selected 274 

cropped volume around the tumor (as illustrated in figures 2 and 5 for instance). 275 

3.5 Other methods for comparison 

Segmentation results were also generated using the standard fuzzy c-means (FCM) algorithm and the fuzzy local 276 

information c-means (FLICM) 51 for comparison purposes. FLICM is an FCM implementation adding a weighted norm 277 

to account for outliers due to the noise and uses two parameters: a regularization parameter and the size of the 278 

surrounding kernel. We used the recommended parameters values (regularization equal to 1 and kernel radius equal to 279 

3 voxels) 51. Alternative values for these two parameters were explored without obtaining improved performances. 280 

Both methods were implemented as multimodal, i.e. using as input vectors containing the intensities of both up-281 

sampled PET and CT images. The input regions (cropped from the entire image) were the same for all methods under 282 

comparison. 283 

3.6 Evaluation metrics and figures of merit 
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The performance of segmentation was assessed using Dice similarity coefficient (DSC), sensitivity (SE) and positive 284 

predictive value (PPV). Let us denote by 𝑉𝑇 the true lesion volume, 𝑉𝑆  the segmented volume, 𝑉𝑇 ∩ 𝑉𝑆 the intersection 285 

between volumes 𝑉𝑇  and 𝑉𝑆 and size (𝑉) the size of volume 𝑉. 286 

The sensitivity (SE) is defined as the ratio between the size of the segmented volume intersecting the true volume, and 287 

the true volume:  288 

𝑆𝐸 =
𝑠𝑖𝑧𝑒(𝑉𝑇∩𝑉𝑆)

𝑠𝑖𝑧𝑒(𝑉𝑇)
             (4)                         289 

The positive predictive value (PPV) is defined as the ratio between the size of the segmented volume intersecting the 290 

true volume and the measured size of the segmented volume: 291 

 292 

𝑃𝑃𝑉 =
𝑠𝑖𝑧𝑒(𝑉𝑇∩𝑉𝑆)

𝑠𝑖𝑧𝑒(𝑉𝑆)
      (5)         293 

The combination of a high PPV and a low SE indicates an under-evaluation of the true volume, whereas the inverse 294 

indicates an over-evaluation of the true volume.                          295 

The Dice similarity coefficient (DSC) is a statistical measure of accuracy in image segmentation. This metric assesses 296 

the spatial overlap between the segmented volume (𝑉𝑆) and the true one (𝑉𝑇) and is defined as the ratio between twice 297 

the size of the segmented volume intersecting the true volume and the size of the sum of VS and VT. 298 

𝐷𝑆𝐶 =
2×𝑠𝑖𝑧𝑒(𝑉𝑇∩𝑉𝑆)

𝑠𝑖𝑧𝑒(𝑉𝑇+𝑉𝑆)
     (6)      299 

                              300 

The Kruskal–Wallis rank test was used (MedcalcTM, Medcalc software, Belgium) to statistically compare the 301 

performance of each methods.  302 

 303 

RESULTS 304 

Validity of the manual consensus 305 

The consensus of three manual delineations led to volumes with a maximum diameter very close to the histopathology 306 

measurement, with a correlation of 0.91, and differences of 9±7%, which is in line with previous observations on the 307 



 

15 

 

same datasets by the original authors 49 and other studies 55. This consensus of manual delineations can therefore be 308 

considered a reliable surrogate of truth for evaluating the proposed methodology. 309 

HMT segmentation results 310 

Simulated dataset 311 

Figures 4 and 5 show the IHMT segmentation results considering only the PET, only the CT, or the joint PET/CT. The 312 

PET-only segmentation led to very high PPV (0.96) but low SE (0.65) (DSC of 0.77), due to the heterogeneous uptake 313 

of the tumor, although with no issue differentiating the rest of the tumor uptake from the surrounding normal tissues 314 

uptake. On the contrary the CT-only segmentation led to very high SE (0.98) but low PPV (0.64) (DSC of 0.77) due to 315 

the lack of contrast between tumor and surrounding normal soft tissues. The PET/CT combination led to a better 316 

coverage of the tumor with high SE (0.90) and PPV (0.97) (DSC of 0.93). 317 

 318 

Figure 4. Simulated (a) PET, (b) CT and (c) overlaid PET/CT images with HMT segmentation on (a) PET only in blue, (b) CT 319 

only in yellow and  PET/CT in green. 320 

 321 
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Figure 5. All contours reported to the digital phantom (a), the simulated CT (b) and the simulated PET (c). Cyan box corresponds 322 

to the initial selection used as input. Red is the ground-truth, blue is PET-only segmentation, yellow is CT-only segmentation and 323 

green is PET/CT segmentation. 324 

Clinical datasets 325 

Table 2 summarizes the DSC calculated respectively across the 15 cases, comparing IHMT applied to either PET or 326 

CT only, or on PET/CT. The HMT on PET/CT obtained the best accuracy with DSC of 0.89±0.13 compared to 327 

0.50±0.28 on PET only and 0.48±0.35 on CT only. Using WHMT and CHMT the conclusions were similar with the 328 

same hierarchy, with slightly better DSC, and a small advantage for CHMT over WHMT. The differences between 329 

IMHT, WHMT and CHMT were not significant (p>0.1).  330 

 PET-only CT-only PET/CT 

IHMT 0.50±0.28 0.48±0.35 0.89±0.13 

WHMT 0.61±0.29 0.56±0.31 0.90±0.12   

CHMT 0.64±0.23 0.59±0.29 0.92±0.11 

Table 2: Performance of IHMT, WHMT and CHMT according to DSC for the 15 cases exploiting either PET or CT 331 

only, or PET/CT. 332 

Figure 6 illustrates two examples of IHMT segmentation on PET only, CT only and PET/CT, showing a similar 333 

behavior on a clinical case as it was shown on the simulated case.  334 

 335 
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Figure 6: Comparison of monomodal (PET or CT) segmentation with multimodal PET/CT segmentation using IHMT 336 

on two cases. Yellow contour is the STAPLE consensus, whereas red, blue and pink contours are IHMT segmentations 337 

using PET only, CT only and PET/CT respectively.  338 

Figure 7 shows 4 examples of HMT segmentations compared to the consensus of manual delineations for the PET/CT 339 

cases illustrated in figure 2. 340 

 341 

 342 

Figure 7: Comparison of IHMT (blue), WHMT (purple) and CHMT (pink) PET/CT segmentations obtained on the 4 343 

cases from figure 2. Green contours are the STAPLE consensus. 344 

Quantitative results of all figures of merit calculated across the 15 cases are summarized in table 3, for IHMT, WHMT 345 

CHMT, FCM and FLICM. The three HMT methods led to an accurate tumor segmentation, characterized by high PPV, 346 
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SE and DSC values. CHMT slightly outperformed the two other methods with higher mean PPV, SE and DSC values 347 

along with smaller standard deviations, thanks mostly to an improvement in sensitivity. There was however no 348 

statistically significant differences between the three approaches. On the contrary, FCM and FLIMC led to significantly 349 

lower accuracy (p<0.01), with slightly higher PPV but at the cost of a much lower SE (<70%) resulting in mean DSC 350 

below 0.8. The difference between FCM and FLICM was on the other hand not significant (p=0.2). 351 

 352 

 FCM FLICM IHMT WHMT CHMT 

SE (%) 68.3 ± 15.1 65.1 ± 14.0 85.7 ± 12.0 86.9 ± 13.1 92.7 ± 5.2 

PPV (%) 89.9 ± 7.7 92.6 ± 8.0 85.2 ± 9.3 86.3 ± 16.4 86.1 ± 7.4 

DSC 0.73 ± 0.19 0.75 ± 0.16 0.89 ± 0.13 0.90 ± 0.12 0.92 ± 0.11 

Table 3: Performance of FCM, FLICM, IHMT, WHMT and CHMT according to SE, PPV and DSC for the 15 patients 353 

cases. 354 

 355 

Figure 8 shows the distribution of the DSC across the entire patient datasets for the three HMT methods. Although the 356 

differences between the three methods were not significant, smaller spread and higher values were obtained with 357 

WHMT and CHMT compared to IHMT.  358 
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 359 

Figure 8: Distributions of the DSC values obtained by IHMT, WHMT and CHMT on the 15 cases. 360 

In figure 9, we show an outlier case for which the DSC is 0.62, 0.60 and 0.62 for IHMT, WHMT and CHMT 361 

respectively. These results may be influenced by the tumor's neighborhood to the ribs and soft tissues in the lung.  362 

 363 

Figure 9: Illustration of the outlier case: (a) PET/CT clinical dataset image preprocessed in the (b) contourlet or (c) 

wavelet domain and (d) comparison of IHMT, WHMT and CHMT contours. 

 364 

DISCUSSION 365 

The accuracy of GTV definition becomes crucial in order to exploit fully image-guided, intensity-modulated, motion-366 

compensated radiotherapy treatment, for which margins that are added to the GTV to derive the clinical (CTV) and 367 
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planning target volume (PTV) are continuously reduced with each technical improvement. The manual definition of 368 

the GTV by radiation oncologists, which is time-consuming and prone to very high inter- and intra- observer variability 369 

therefore appears to be a major limiting factor amongst the automation efforts occurring in all other steps of 370 

radiotherapy treatment planning and delivery. It has been standard practice for decades to perform manual delineation 371 

of GTV on CT scans. However, over the last few years there has been a growing exploitation of 18F-FDG PET 372 

functional imaging in the radiotherapy practice. The addition of FDG PET as a complementary information within the 373 

treatment planning step by fusion of CT and PET datasets has been performed in order to improve tumor visualization 374 

and delineation by radiation oncologists. This has led to important changes in practice and guidelines for treatment 375 

planning in several cancer models including lung cancer 56, 57, including smaller or larger irradiation volumes, higher 376 

inter- and intra- observer reproducibility, and faster delineation 49. 377 

Today radiation oncologists are therefore required to take into consideration complementary visual information using 378 

multimodality imaging when defining GTV. In addition to being used for dose calculation due to the correlation 379 

between Hounsfield units and electron density, CT has always been a modality of choice for manual delineation due 380 

to a high spatial resolution and rather homogeneous tissue densities. PET is intrinsically less well suited to the task as 381 

it suffers from limited spatial resolution, small reconstruction grids (and thus large voxels and limited spatial sampling), 382 

low signal-to-noise ratio and complex uptake distributions shapes and heterogeneities. PET however provides an often 383 

higher contrast between the tumor and healthy background, especially in challenging cases where the anatomical tumor 384 

volume is attached to the chest wall or mediastinum, or in cases of atelectasis. Manual delineation of PET/CT datasets 385 

remains a complex, tedious, time-consuming and less than ideally reproducible task 58. Efforts to provide automated 386 

PET/CT tumor segmentations are therefore still necessary. This is going to become even more crucial as additional 387 

hybrid imaging is increasingly introduced in clinical therapy with the development of PET/MRI scanners. Despite 388 

these recent developments, the majority of commercially available automated and semi-automated segmentation 389 

algorithms do not usually consider more than one modality at a time.  390 

Several works have recently addressed the PET/CT multimodal segmentation 12–14, 19. A method based on a decision 391 

tree with K-Nearest Neighbors classifiers relying on textural features from both PET and CT images and originally 392 

developed for head and neck 10 was retrained for NSCLC 14. This approach requires a training dataset to build the 393 

decision tree and is clearly dependent on it as it requires different training for each localization. Compared to a 394 
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consensus of 3 manual contours generated by STAPLE (similarly as in our study), it demonstrated very high specificity 395 

of almost 1, at the cost of low specificity (<0.7) for a mean DSC of 0.61 only.  396 

Another framework for the segmentation of multimodal PET/CT/MRI images models functional and anatomical data 397 

in a product lattice and applies simultaneous delineations of tumor regions based on a random walk algorithm 12. Results 398 

in term of DSC were compared for PET-only, CT-only, MRI-only, PET-CT, PET-MRI and PET-CT-MRI 399 

segmentations, with mean values of 0.832, 0.878, 0.882, 0.914, 0.931 and 0.934 respectively, demonstrating increasing 400 

accuracy with each additional image modality being exploited by the algorithm. Our results comparing segmentations 401 

using either PET or CT only, or PET/CT, are in line with these observations, higher accuracy being obtained when 402 

exploiting both modalities. 403 

Another approach used a HMF based segmentation of PET and CT image separately with a regularized term penalizing 404 

the segmentation difference between the two modalities 19. PET/CT segmentation led to an accuracy of 0.86±0.05 in 405 

terms of DSC which is comparable to our results, with however likely lower computational efficiency: HMT ensures 406 

better computational properties and faster estimation of parameters than HMF 17. A similar approach was evaluated by 407 

comparing PET-only, CT-only and the association of PET and CT images through optimization of a HMF based 408 

segmentation with the graph cut algorithm, where each node is associated with a pair of corresponding voxels in PET 409 

and CT images 13. More importantly, the method allows obtaining different segmentations on the PET and the CT 410 

through this co-segmentation framework. This original approach was compared with a standard fused PET/CT 411 

segmentation, the surrogate of truth being a manual delineation by a radiation oncologist on CT images with the 412 

guidance of PET images. The proposed method combining PET and CT led to a much higher accuracy than PET-only 413 

and CT-only in a set of 23 lung tumors (DSC of 0.81±0.08 compared to 0.66±0.13 and 0.48±0.27 with PET-only and 414 

CT-only). However, the improvement of the proposed approach compared to a segmentation on fused PET/CT, 415 

comparable to our approach, (DSC of 0.79±0.08) was not significant. 416 

Note that the comparison with our results is challenging since these methods were evaluated on different datasets. 417 

However, we can also observe that the range of overlap values we obtained in the present work compared with manual 418 

delineation, is competitive or even better than those previously reported in similar evaluation settings. 419 

In the present work, we developed a HMT based framework allowing the exploitation of several image modalities of 420 

the same object of interest (here, tumors). This framework was implemented under the assumption that the 421 
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segmentation would benefit from combining both modalities. We aimed at automating the manual task of the radiation 422 

oncologist in defining a single GTV from PET/CT images, contrary to a CT segmentation guided by PET (or the 423 

opposite). The proposed framework was evaluated NSCLC cases previously considered as a reference comparison set 424 

by several other studies 16, 43, 59. Given our goal (a single GTV derived from both PET and CT images, as is performed 425 

by radiation oncologists), the validation protocol consisted in comparing automatic results with the surrogate of truth 426 

defined by a statistical consensus of three manual delineations, in order to address inter-observer variability. The 427 

accuracy was assessed using 3 complementary metrics in order to provide a full picture of the performance. In addition, 428 

we investigated the potential benefit of a pre-processing filtering step of the PET/CT images using either the contourlet 429 

(CHMT) or wavelet (WHMT) transforms. 430 

Our proposed multimodal HMT framework achieved high overlap with the surrogate of truth HMT, providing balanced 431 

segmentation with high PPV and high SE (both >0.80). Overall, the results were slightly improved when applying the 432 

HMT framework on images filtered in the contourlet domain, although the difference was not significant. All HMT 433 

methods significantly outperformed (p<0.01) multimodal FCM and FLICM, which tended to under-estimate volumes 434 

(high PPV, low SE).  435 

In this work, we proposed a joint-segmentation framework for anatomical and functional images that has the potential 436 

to combine more than two images (in the present study PET and CT), since extra modalities can be handled and 437 

analyzed simultaneously. As an extension of this work, we thus aim to test the proposed framework on PET/CT rectal 438 

cancer datasets 60, 61, as well as MRI-PET and MRI-CT-PET datasets. 439 

Our work has several limitations. The proposed framework assumes an appropriate co-registration of the considered 440 

images, with an accurate correspondence between PET and CT images. Data were acquired in free-breathing 441 

acquisitions and no correction for respiratory motion was applied. Datasets with obvious mismatches between PET and 442 

CT data were excluded prior to the present evaluation, as they would lead to strong bias in both manual and automatic 443 

segmentations. The inclusion of datasets strongly affected by respiratory motion would require pre-processing 444 

corrections outside the scope of the present study 62, 63. In our NSCLC cases, bias due to breathing motion cannot be 445 

excluded, even after exclusion of the obvious cases. Other tumor locations with less/no motion could be considered 446 

such as head and neck or brain tumors, however we do not possess PET/CT images for such tumors for which 447 

histopathology measurements are available, the only dataset available to us consisting of head and neck PET images 448 
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only 64. We did not use the maximum diameter measurement as an evaluation metric, because it would not allow 449 

differentiating spatial overlap differences between methods. It was however used to check the reliability of the manual 450 

consensus. Another limitation concerns the wavelet and contourlet pre-processing steps: we empirically set the 451 

threshold under which significant wavelets and contourlets coefficients were excluded. In the previous work that 452 

proposed the approach, the value was set arbitrarily at 200 without justification 38. We found this parameter is quite 453 

robust, as choosing different values only lowered the accuracy of WHMT and CHMT to the level of IHMT. We plan 454 

to further improve the robustness of this step by implementing a case-by-case automated adaptive selection of the most 455 

significant coefficients. Our HMT-based approach could not be directly compared to other previously published 456 

advanced multimodal segmentation methods. These are indeed not freely available and are complex to implement, 457 

which was beyond the scope of the present work. The current efforts of the AAPM Task Group 211 for PET image 458 

segmentation benchmarking 42 are going to be expanded to address PET/CT segmentation. When ready, such a 459 

benchmark will allow a more comprehensive and direct comparison of various multimodal algorithms. We did not 460 

investigate our approach within the context of dose painting or dose redistribution/boosting, as our goal was to automate 461 

the definition of the GTV. Such a GTV could however constitute a starting point for a dose 462 

painting/boosting/redistribution strategy analysis within this GTV. 463 

Although the HMT used to build the proposed framework showed interesting properties in terms of overall 464 

performance, robustness and stability, we will further investigate the use of more sophisticated HMT models, among 465 

which we can cite pairwise Markov trees (PMTs) that extend the classic HMT 65. Another rich recent family of models 466 

are the triplet Markov trees (TMTs) 66, which extend PMTs and combined with the theory of evidence (Dempster-467 

Shafer), can be useful when dealing with non-stationary data 67. These future developments could be exploited to deal 468 

with other applications of the framework such as partial volume effects correction, therapy follow-up using sequential 469 

PET/CT datasets, and fusion of multi tracer PET/CT datasets, or even motion characterization and correction. 470 

 471 

CONCLUSIONS 472 

In this work, we developed a framework based on HMT for multimodal image processing and analysis and investigated 473 

its relevance for multimodal PET/CT segmentation. Tumor delineation was performed by exploiting the hierarchical 474 

and multi-observation properties of a HMT to exploit the CT and the PET image simultaneously. The impact of pre-475 
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processing in the wavelet and contourlet domains on the segmentation accuracy was also investigated. The proposed 476 

method led to high accuracy, the best results being obtained after filtering in the contourlet domain, with higher DSC 477 

and the best trade-off between sensitivity and positive predictive value. HMT models could be further applied to 478 

PET/MR and PET multitracer data. Validation of the PET/CT segmentation on datasets with full volume 479 

histopathological reference will also be investigated. 480 

 481 

Acknowledgements: This work was funded by a grant from the French Ministry of Research. This research is also 482 

supported by the Dutch technology Foundation STW (grant n° 10696 DuCAT & n° P14-19 Radiomics STRaTegy), 483 

which is the applied science division of NWO, and the Technology Programme of the Ministry of Economic Affairs. 484 

Disclosure of conflict of interest: The authors have no relevant conflicts of interest to disclose. 485 

  486 



 

25 

 

REFERENCES 487 

1   D. De Ruysscher, J. Belderbos, B. Reymen, W. van Elmpt, A. van Baardwijk, R. Wanders, F. Hoebers, M. Vooijs, M. Ollers, 488 

and P. Lambin, “State of the art radiation therapy for lung cancer 2012: a glimpse of the future,” Clin. Lung Cancer 14(2), 489 

89–95 (2013). 490 
2   F.E. Turkheimer, N. Boussion, A.N. Anderson, N. Pavese, P. Piccini, and D. Visvikis, “PET image denoising using a 491 

synergistic multiresolution analysis of structural (MRI/CT) and functional datasets,” J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 492 

49(4), 657–666 (2008). 493 
3   P. Novosad and A.J. Reader, “MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis 494 

functions,” Phys. Med. Biol. 61(12), 4624–4644 (2016). 495 
4   C. Coello, F. Willoch, P. Selnes, L. Gjerstad, T. Fladby, and A. Skretting, “Correction of partial volume effect in (18)F-FDG 496 

PET brain studies using coregistered MR volumes: voxel based analysis of tracer uptake in the white matter,” NeuroImage 497 

72, 183–192 (2013). 498 
5   A. Le Pogam, M. Hatt, P. Descourt, N. Boussion, C. Tsoumpas, F.E. Turkheimer, C. Prunier-Aesch, J.-L. Baulieu, D. 499 

Guilloteau, and D. Visvikis, “Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects 500 

in positron emission tomography,” Med. Phys. 38(9), 4920–4923 (2011). 501 
6   A. Bousse, S. Pedemonte, B.A. Thomas, K. Erlandsson, S. Ourselin, S. Arridge, and B.F. Hutton, “Markov random field and 502 

Gaussian mixture for segmented MRI-based partial volume correction in PET,” Phys. Med. Biol. 57(20), 6681–6705 (2012). 503 
7   S. David, D. Visvikis, G. Quellec, C.C. Le Rest, P. Fernandez, M. Allard, C. Roux, and M. Hatt, “Image change detection 504 

using paradoxical theory for patient follow-up quantitation and therapy assessment,” IEEE Trans. Med. Imaging 31(9), 1743–505 

1753 (2012). 506 
8   H. Necib, C. Garcia, A. Wagner, B. Vanderlinden, P. Emonts, A. Hendlisz, P. Flamen, and I. Buvat, “Detection and 507 

characterization of tumor changes in 18F-FDG PET patient monitoring using parametric imaging,” J Nucl Med 52(3), 354–508 

61 (2011). 509 
9   B. Lelandais, S. Ruan, T. Denœux, P. Vera, and I. Gardin, “Fusion of multi-tracer PET images for dose painting,” Med. 510 

Image Anal. 18(7), 1247–1259 (2014). 511 
10   H. Yu, C. Caldwell, K. Mah, I. Poon, J. Balogh, R. MacKenzie, N. Khaouam, and R. Tirona, “Automated radiation targeting 512 

in head-and-neck cancer using region-based texture analysis of PET and CT images,” Int. J. Radiat. Oncol. Biol. Phys. 75(2), 513 

618–625 (2009). 514 
11   I. El Naqa, D. Yang, A. Apte, D. Khullar, S. Mutic, J. Zheng, J.D. Bradley, P. Grigsby, and J.O. Deasy, “Concurrent 515 

multimodality image segmentation by active contours for radiotherapy treatment planning,” Med Phys 34(12), 4738–49 516 

(2007). 517 
12   U. Bagci, J.K. Udupa, N. Mendhiratta, B. Foster, Z. Xu, J. Yao, X. Chen, and D.J. Mollura, “Joint segmentation of anatomical 518 

and functional images: Applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images,” 519 

Med. Image Anal. 17(8), 929–945 (2013). 520 
13   Q. Song, J. Bai, D. Han, S. Bhatia, W. Sun, W. Rockey, J.E. Bayouth, J.M. Buatti, and X. Wu, “Optimal co-segmentation of 521 

tumor in PET-CT images with context information,” IEEE Trans. Med. Imaging 32(9), 1685–1697 (2013). 522 
14   D. Markel, C. Caldwell, H. Alasti, H. Soliman, Y. Ung, J. Lee, and A. Sun, “Automatic Segmentation of Lung Carcinoma 523 

Using 3D Texture Features in 18-FDG PET/CT,” Int. J. Mol. Imaging 2013, 980769 (2013). 524 
15   H. Cui, X. Wang, J. Zhou, S. Eberl, Y. Yin, D. Feng, and M. Fulham, “Topology polymorphism graph for lung tumor 525 

segmentation in PET-CT images,” Phys. Med. Biol. 60(12), 4893–4914 (2015). 526 
16   D. Markel, H. Zaidi, and I. El Naqa, “Novel multimodality segmentation using level sets and Jensen-Rényi divergence,” Med. 527 
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Appendix 642 

 643 

Annex 644 

 645 

Let 0S , 1S , …, NS  be successive scales, with  rS 0  containing just the root, 1S  containing four children of 646 

r , and so on, as showed in Figure 1. Let NSSSS  ...10  be the set of all nodes. For nSs , with Nn 0 , 647 

we will denote with 
s  the four children of s  (which are in 1nS ), and for nSs , with Nn 0  we will denote 648 

with 
s  the unique parent of s  (which is in 1nS ). The distribution of the classic HMT Ssss YXYX  ),(),(  used in 649 

the paper is defined by  650 

 651 
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 653 

)(
NN ss xyp  are generalized Gaussian distributions modeling PET/CT images ),( CT

s
PET
ss NNN

yyy  . Then the problem is 654 

to compute )(
Nss yxp  for each NSs , which is the probability to have tumorxs  , tumornoxs  . Then co-655 

segmenting images ),( CT
s

PET
ss NNN

yyyy   consists of setting at each node NSs  “tumor” if 656 

)()( ytumornonxpytumorxp ss  , and “no tumor” if not. Setting 1  as “tumor” and 2  as “no tumor” the co-657 

segmentation 
NNNN s

CT
s

PET
ss xyyyy ˆ),(   is thus given with 658 
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 661 

The computation of )( yxp s  for each NSs  is made on two steps: Backward - Up step, and Forward - Down step.  662 

For each nS  and nSs  let 
s  be the set of all the descendent of s  (which is the set of leaves of the sub-tree 663 

having s  for root), and let )()( sss
n xypx   for NSSs  , and 1)( s

N x . Then one shows: 664 
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 667 

which makes )( s
n x  computable for each Nn 1 , ns Sx  .  668 

The core point is that the distribution of the whole tree SX  conditional on both observed images 669 

),( CT
s

PET
sS NNN

yyyY  , denoted as 
yp , also is a Markov tree distribution, with )( r

y xp  and transitions )( ss
y xxp670 

given by 671 
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Having calculated )( r
y xp  and )( ss

y xxp  with (3), (4), probabilities )( yxp s  for each NSs  are computed by the 674 

following Forward – Down procedure. 675 
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Let NSs . There exists an unique path 1s , 2s , …, Ns  such that ssN  , 


  ssN 1 , …, 
 21 sss r . The 676 

distribution of 
1sX , 

2sX , …, 
NsX  conditional on yY   is then a Markov chain distribution, and )( s

y xp  is 677 

classically computable by: 678 

 679 

)()(
1 r
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y xpxp   given with (4) ; for 1n , …, 1N : 
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 681 

Finally the co-segmentation algorithm runs as follows: 682 

 683 

(1) For each for Ss  and for sx  compute )()( sss
n xypx   par Backward – Up procedure (3); 684 

(2) For each Ss  and sx  compute )( r
y xp , )( ss

y xxp  with (4); 685 

(3) For each NSs  compute )(
Nss yxp  with the Forward – Down procedure (5); 686 

(4) Perform co-segmentation using (2). 687 


