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a b s t r a c t

Statistical smoothing in general non-linear non-Gaussian systems is a challenging problem.
A new smoothing method based on approximating the original system by a recent
switching model has been introduced. Such switching model allows fast and optimal
smoothing. The new algorithm is validated through an application on stochastic volatility
and dynamic beta models. Simulation experiments indicate its remarkable performances
and low processing cost. In practice, the proposed approach can overcome the limitations
of particle smoothing methods and may apply where their usage is discarded.
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1. Introduction

Let us consider two random sequences XN
1 = (X1, . . . ,XN) and YN

1 = (Y1, . . . , YN). XN
1 are hidden, while YN

1 are
observable. For all n ∈ {1, . . . ,N}, Xn and Yn, respectively, take their values in Ra and Rb.

We deal with computing E

Xn

yN1 
and E


XnX

ᵀ
n
yN1 

for all n ∈ {1, . . . ,N}, and we propose a method that applies
when (XN

1 , YN
1 ) is a general stationary hidden Markov model (HMM), which can possibly be neither Gaussian nor linear. In

fact, it works even in a more general framework called pairwise Markov models (PMMs) for which p

xN1 , yN1


is defined by
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p (x1, y1) and the recursion

(Xn+1, Yn+1) = f (Xn, Yn,Wn+1) , (1)

where W1, . . .WN are appropriate independent variables. Fast exact filtering and smoothing are generally not computa-
tionally feasible in such general models and various approximation methods are used. Among them, the particle filters and
smoothers (Cappé et al., 2005; Doucet and Johansen, 2011) are often used in practice (Duffie et al., 2000; Eraker, 2004; Kim
and Nelson, 1999). However, they are particularly CPU intensive.

We remind that the distribution p

xn+1
n , yn+1

n


resulting from (1) do not depend on n because the PMM is assumed to be

stationary. Therefore, the whole distribution p

xN1 , yN1


derives from p


x21, y

2
1


.

Following Gorynin et al. (2015, 2017), we propose to approximate the latter distribution by a Gaussian mixture of K 2

components

p

x21, y

2
1


≈


1≤i,j,≤K

cij pij(x21, y
2
1), (2)

knowing that such an approximation can be made under mild conditions and with an arbitrarily high precision if K is
sufficiently large. Let us interpret cij as a discrete probability distribution of pair (R1, R2): cij = p(R1 = i, R2 = j). Then,
p

x21, y

2
1


can be seen as a marginal distribution of

p

x21, r

2
1, y

2
1


= p


r21


p

x21, y

2
1

r21 
, (3)

and p

x21, y

2
1


=


1≤r1,r2,≤K p


r21


p

x21, y

2
1

r21 
suggests to set, using (2), p


x21, y

2
1

r21 = (i, j)


= pij(x21, y
2
1).

LetRN
1 = (R1, . . . , RN) be a stationary discrete random sequence, Rn taking its values in the set of classesΩ = {1, . . . , K}.

We remind that (3) entirely defines the distribution of the stationaryMarkov triplet TN
1 = (XN

1 ,RN
1 , YN

1 ). Now, exact filtering
and smoothing are computable in particular stationary Markov triplet models called ‘‘stationary conditionally Gaussian
observed Markov switching models’’ (SCGOMSMs) (see e.g. Gorynin et al., 2017; Abbassi et al., 2015). Indeed, SCGOMSMs
are particular ‘‘conditionally Markov switchingmodels’’ (CMSHLMs) in which fast filtering is feasible (Pieczynski, 2011). We
show in the paper that fast smoothing is also feasible. The interest of using (2) to approximate the general model (1) has
already been demonstrated for filtering (cf. Derrode and Pieczynski, 2014; Gorynin et al., 2017) and the aim of our paper is
to show its interest for smoothing.

How to find the approximation (2)? The core idea is to sample realizations using (1), consider them as being produced
by a SCGOMSM, and to use an ‘‘expectation–maximization’’ (EM) method to estimate the SCGOMSM’s parameters. Indeed,
considering SCGOMSM as a classic hidden Markov chain, with RN

1 = (R1, . . . , RN) hidden and (XN
1 , YN

1 ) observed, one can
use the sample obtained with (1) to estimate all SCGOMSM parameters with some general method like EM.

Our method was applied to three recent dynamical non-Gaussian systems. Reported experimental results show its
effectiveness.

Organization of the paper is the following. We show in Section 2 that fast exact smoothing is feasible in the general
CMSHLM model. We recall in Section 3 the SCGOMSM model, specifying why it is a particular CMSHLM. SCGOMSM is
then used as an approximation of (1), as specified in Section 4. Some experimental results within the context of stochastic
volatility (Ghysels et al., 1995; Jacquier et al., 1994; Shephard et al., 1998; Nikolaev et al., 2014; Omori andWatanabe, 2008;
Takashi et al., 2009; So et al., 1998; Susmel and Kalimipalli, 2011; Bao et al., 2012) and the dynamic beta regression (Da-Silva
et al., 2011) are presented in Section 5. The last section exposes conclusions and perspectives.

2. Exact smoothing in conditionally Markov switching hidden linear models

This section is devoted to our original framework for filtering and smoothing.

Definition (‘‘Model 1’’). Let XN
1 , R

N
1 and YN

1 be random sequences as specified above. The triplet TN
1 = (XN

1 ,RN
1 , YN

1 ) is said to
be a ‘‘Conditionally Markov switching hidden linear model’’ if it verifies

TN
1 is Markov with p (rn+1, yn+1 |xn, rn, yn ) = p (rn+1, yn+1 |rn, yn ) ;

Xn+1 = Fn+1(Rn+1
n , Yn+1

n )Xn + Gn+1(Rn+1
n , Yn+1

n )Wn+1 + Hn+1(Rn+1
n , Yn+1

n ),
(4)

with Fn+1(Rn+1
n , Yn+1

n ), Gn+1(Rn+1
n , Yn+1

n ) matrices of appropriate dimensions, WN
1 is a white noise and Hn+1(Rn+1

n , Yn+1
n )

vectors of appropriate dimension.

Fig. 1(a) presents the dependency graph of Model 1.
We can state the following result, which is an achievement of our prior works:
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(a) Model 1. (b) Model 2.

Fig. 1. Dependency graphs of Models 1 and 2. XN
1 , R

N
1 and YN

1 are represented by blue, green and gray dots, respectively.

Proposition 1. Let TN
1 = (XN

1 ,RN
1 , YN

1 ) be from Model 1. Then, for each n = 1, . . . ,N,

E

Xn

yN1 
=


rn

p

rn

yN1 
E


Xn

rn, yn1 
; (5)

E

XnXᵀ

n

yN1 
=


rn

p

rn

yN1 
E


XnXᵀ

n

rn, yn1 
, (6)

both expectations being computable with a complexity linear in N.

Proof. Let us show (5) and (6). By hypothesis (4), for all n in {1, . . . ,N − 1}, the variables Xn and Yn+1 are independent
conditionally on (Rn, Yn) = (rn, yn). It follows that the variables Xn and (RN

n+1, Y
N
n+1) are also independent conditionally on

(Rn, Yn) = (rn, yn). Thus, p

xn

rn, yNn 
= p (xn |rn, yn ). Since p


xn

yN1 
=


rn p


rn

yN1 
p

xn

rn, yN1 
, we have (5) and (6).

Let us show that the complexity is linear in N . Since for all n in {1, . . . ,N − 1},

E

Xn+1

rn+1, yn+1
1


=


rn

p

rn

rn+1, yn+1
1

 
Fn+1(rn+1

n , yn+1
n )E


Xn

rn, yn1 
+ Hn+1(rn+1

n , yn+1
n )


(7)

and

E

Xn+1X

ᵀ
n+1

rn+1, yn+1
1


=


rn

p

rn

rn+1, yn+1
1

 
Fn+1(rn+1

n , yn+1
n )E


XnXᵀ

n

rn, yn1 
Fᵀ
n+1(r

n+1
n , yn+1

n )

+ Fn+1(rn+1
n , yn+1

n )E

Xn

rn, yn1 
Hᵀ

n+1(r
n+1
n , yn+1

n ) + Hn+1(rn+1
n , yn+1

n )E

Xᵀ

n

rn, yn1 
Fᵀ
n+1(r

n+1
n , yn+1

n )

+Gn+1(rn+1
n , yn+1

n )Gᵀ
n+1(r

n+1
n , yn+1

n ) + Hn+1(rn+1
n , yn+1

n )Hᵀ
n+1(r

n+1
n , yn+1

n )

, (8)

E

Xn

rn, yn1 
in (5) and E


XnX

ᵀ
n
rn, yn1 

in (6) can be computed recursively.
Besides, it follows from hypothesis (4) that VN

1 = (RN
1 , YN

1 ) is Markovian. We can therefore calculate the needed

probabilities p

rn

rn+1, yn+1
1


=

p(rn+1,yn+1|rn,yn )p(rn|yn1 )
r∗n

p(rn+1,yn+1|r∗n ,yn )p(r∗n |yn1 )
since p (rn+1, yn+1 |rn, yn ) are known and p


rn

yn1 
, p


rn

yN1 
can be computed by using the classical ‘‘forward’’ and ‘‘backward’’ probabilities αn(rn) = p


rn, yn1


, βn(rn) = p


yNn+1 |vn


.

More precisely, we have

α1(r1) = p (v1) ;

αn+1(rn+1) =


rn∈Ω

αn(rn)p (vn+1 |vn ) ; (9)

βN(rN) = 1;

βn(rn) =


rn+1∈Ω

βn+1(rn+1)p (vn+1 |vn ) . (10)

Then,

p

rn

yn1 
=

αn(rn)
r∗n∈Ω

αn(r∗
n )

, (11)

and

p

rn

yN1 
=

αn(rn)βn(rn)
r∗n∈Ω

αn(r∗
n )βn(r∗

n )
. (12)
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Remark 1. There is no particular assumption on the marginal distribution of WN
1 . Besides, matrices Gn+1(Rn+1

n , Yn+1
n ) are

not necessary to compute the smoother; they are only necessary to compute its variance.

Remark 2. The fact that the variables Xn and (RN
n+1, Y

N
n+1) are independent given (Rn, Yn) = (rn, yn) could appear as

somewhat limiting. However, this kind of assumptions is widespread. For example, in the very classic hidden Markov chain
(RN

1 , YN
1 ) the variables Rn and Yn+1 are independent conditionally on Rn+1 = rn+1, but they are not independent without this

conditioning and it is well known that YN
n+1 can bring a large deal of information about Rn.

Remark 3. Let us consider a general stationaryMarkov triplet TN
1 = (XN

1 ,RN
1 , YN

1 ). Its distribution is defined by p(x21, r
2
1, y

2
1),

which is defined by the distribution p(r21, y
2
1) and the distributions p(x21|r

2
1, y

2
1). In Model 1, the distribution p(r21, y

2
1) can be

of any kind; in particular, it can be defined in a very general framework by using copulas (Derrode and Pieczynski, 2013). In
such a general context, one may obtain a Model 1 by taking p(x21|r

2
1, y

2
1) Gaussian such that p(x1|r21, y

2
1) = p(x1|r1, y1).

3. Stationary conditionally Gaussian observed Markov switching models

Let us consider a stationary Model 1 TN
1 = (XN

1 ,RN
1 , YN

1 ) such that p(x21, y
2
1|r

2
1) (which is equal to p(xn+1

n , yn+1
n |rn+1

n ) for
all n in {1, . . . ,N − 1} by the stationarity assumption) is Gaussian. Let Zn = (Xᵀ

n, Y
ᵀ
n)

ᵀ. Let us assume that the mean vectors
and the covariance matrices of multivariate normal distributions

p(x21, y
2
1|r

2
1) = N


(z1, z2) ; ϒ(r21), 4(r21)


(13)

have a particular structure:

ϒ(r21) =


E [Z1 |r1 ]
E [Z2 |r2 ]


=


M(r1)
M(r2)


(14)

4(r21) =


S(r1) 6(r21)

6ᵀ(r21) S(r2)


. (15)

Remark 4. According to (13)–(15) wemay state that for all n in {1, . . . ,N − 1}, p (xn, yn |rn, rn+1 ) = p (xn, yn |rn ), and thus
p (rn+1 |xn, rn, yn ) = p (rn+1 |rn ). This ensures that in the subcase of Model 1 we consider the chain RN

1 is Markovian.

Definition (‘‘Model 2’’). A stationary Model 1 TN
1 = (XN

1 ,RN
1 , YN

1 ) will be said ‘‘stationary conditionally Gaussian observed
Markov switching model’’ (SCGOMSMs, or Model 2) if it verifies (13)–(15), and if it has the following property:

p

y2

x1, r21, y1 
= p


y2

r21, y1 
. (16)

Fig. 1(b) presents the dependency graph of Model 2. In contrast with the dependency graph of Model 1, we have
p (rn+1 |rn, yn ) = p (rn+1 |rn ), what removes the line between Yn and Rn+1.

To apply the exact smoothing algorithm previously described to Model 2 defined by (13)–(15), let us remind the link
among the matrices from Eq. (4), i.e. Fn+1(rn+1

n , yn+1
n ), Gn+1(rn+1

n , yn+1
n ), Hn+1(rn+1

n , yn+1
n ), the Model 2 matrices 4(rn+1

n ),
ϒ(rn+1

n ), and the observed variables yN1 . For each n in {1, . . . ,N − 1} and rn+1
n in {1, . . . , K}

2, let

A(rn+1
n ) = 6ᵀ(rn+1

n ) S−1(rn), (17)

Q(rn+1
n ) = S(rn+1) − 6ᵀ(rn+1

n )S−1(rn)6(rn+1
n ). (18)

Let us set

Q(rn+1
n ) =


Q1(rn+1

n ) Q2(rn+1
n )

Q3(rn+1
n ) Q4(rn+1

n )


.

Since Q(rn+1
n ) is a positive-definite matrix, Q(rn+1

n ) = B(rn+1
n )Bᵀ(rn+1

n ), for some matrix B(rn+1
n ). Thus, the discrete time

process ZN
1 satisfies the following recursion equation

Zn+1 = A(Rn+1
n )(Zn − M(Rn)) + B(Rn+1

n )Wn+1 + M(rn+1),

whereW1, . . . ,WN are independent standard Gaussian vectors. Condition (16) implies that thematrixA(rn+1
n ) is of the form

A(rn+1
n ) =


A1(rn+1

n ) A2(rn+1
n )

0 A4(rn+1
n )


, (19)
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with matrices A1(rn+1
n ) ∈ Ra×a, A2(rn+1

n ) ∈ Ra×b and A4(rn+1
n ) ∈ Rb×b. The distribution

p

xn+1, yn+1

xn, rn+1
n , yn


is then a multivariate normal probability density function with covariance matrix Q(rn+1

n ) and mean vector

A(rn+1
n )


xn
yn


+


N1(rn+1

n )

N2(rn+1
n )


=


A1(rn+1

n )xn + A2(rn+1
n )yn + N1(rn+1

n )

A4(rn+1
n )yn + N2(rn+1

n )


,

where we set N1(rn+1
n ) = M1(rn+1) − A1(rn+1

n )M1(rn) − A2(rn+1
n )M2(rn) and N2(rn+1

n ) = M2(rn+1) − A4(rn+1
n )M2(rn) with

M1(rn) = E [Xn |rn ] andM2(rn) = E [Yn |rn ].
Using the classic Gaussian conditioning rule, the distribution p


xn+1, yn+1

xn, rn+1
n , yn


gives then the distribution

p

xn+1

xn, rn+1
n , yn+1

n


, which is a normal distribution with mean vector

Q2(rn+1
n )Q−1

4 (rn+1
n )(yn+1 − A4(rn+1

n )yn − N2(rn+1
n )) + A1(rn+1

n )xn + A2(rn+1
n )yn + N1(rn+1

n ),

and covariance matrix

Q1(rn+1
n ) − Q2(rn+1

n )Q−1
4 (rn+1

n )Q3(rn+1
n ). (20)

Thus, the corresponding matrices Fn+1(rn+1
n , yn+1

n ), Hn+1(rn+1
n , yn+1

n ) and Gn+1(rn+1
n , yn+1

n ), are

Fn+1(rn+1
n , yn+1

n ) = A1(rn+1
n ); (21)

Hn+1(rn+1
n , yn+1

n ) = N1(rn+1
n ) + A2(rn+1

n )yn + Q2(rn+1
n )Q−1

4 (rn+1
n )(yn+1 − A4(rn+1

n )yn − N2(rn+1
n )), (22)

Gn+1(rn+1
n , yn+1

n )GT
n+1(r

n+1
n , yn+1

n ) = Q1(rn+1
n ) − Q2(rn+1

n )Q−1
4 (rn+1

n )Q3(rn+1
n ). (23)

They do not depend on n due to the stationarity assumption.
We can therefore make use of Proposition 1 to set up a fast exact smoother for Model 2.

Remark 5. One can use Model 2 as an alternative to the classic ‘‘conditionally Gaussian linear state-space models’’
(CGLSSMs), in which fast Bayesian smoothing is not computationally feasible (Petetin and Desbouvries, 2014). More
precisely, any stationary CGLSSM is given by p(r21), p(x

2
1|r

2
1) and p(y1|r1). If these distributions are the only information about

some physical system, thenModel 2 can capture themaswell Derrode (2013). Specifically, p(r21), p(x
2
1|r

2
1) and p(y21|r

2
1)would

be the same in CGLSSM and Model 2, and only p(x2, y1|r21) would differ. Of course, by the stationarity assumption, the last
statement remains valid if we replace, for all n in {1, . . . ,N − 1}, 1 by n and 2 by n + 1.

4. Approximating non-linear non-Gaussian models

Since we have shown the computational interest of approximating the process (1) by Model 2 in order to run an efficient
smoothing procedure, we should now explain how to obtain an approximation (2). In other words, how can we find the
parameters


cij, ϒij, 4ij


1≤i,j≤K , for a given K . To this end, ourmethod requires to be able to simulate realizations of the PMM

process (1) in order to generate a training sample (x′M
1 , y′M

1 ) to learn the parameters of Model 2. In practice, the feasibility
of a random sampling within the PMM framework is not a restrictive assumption, e.g. in the case of (1), it would be enough
to be able to sampleWN

1 .
Regarding the time consumed during parameters’ inference, the number of parameters of the Gaussianmixture increases

quadratically with K . Specifically, we have K mean vectorsM(i) ∈ R(a+b), K variance matrices S(i) ∈ R(a+b)×(a+b), K 2 cross-
covariance matrices 6(i, j) ∈ R(a+b)×(a+b) and


K 2

− 1

mixture weight scalars cij.

The complexity of the smoothing procedure is also quadratic in K . Hence, the value of K trades off between quality and
time burden. However, we show in the next section that a good smoothing performance is achievable with low values of K ,
namely four or five.

We suggest to use a variant of the EM algorithm described in Gorynin et al. (2017) to achieve the inference. The EM
algorithm usually performs well in conditionally Gaussian switching models. The idea proposed in Derrode and Pieczynski
(2014) is to consider an artificial sample (x′M

1 , y′M
1 ) generated by the model (1) and then to consider it as a sample issued

fromModel 2

XN

1 ,RN
1 , YN

1


, which is then considered as a hidden Markov chain with latent RN

1 . The EM algorithm is a great
way to estimate the parameters of interest


cij, ϒij, 4ij


1≤i,j≤K , however any alternative parameter estimation scheme may

be used instead. Besides, for practical purposes, our original EM implementation proposed in Gorynin et al. (2017) estimates
directly A(rn+1

n ), Q(rn+1
n ), F(rn+1

n ), H(rn+1
n ) and G(rn+1

n ) for each value of pair rn+1
n instead of


cij, ϒij, 4ij


1≤i,j≤K .

Let us sum up our new smoothing method by the following algorithm, which thus contains two stages: parameter
estimation (or identification of Model 2) stage, and smoothing stage. Let us insist on the fact that Model 2 identification
stage is independent from the data to be smoothed and depends only on the general model (1).
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Algorithm 1. Model 2 smoothing algorithm

• Given model (1), Model 2 identification stage:
1. Simulate a training sample (x′M

1 , y′M
1 ) within the PMM (1) framework;

2. Apply the EM algorithm to (x′M
1 , y′M

1 ) in order to estimate parameters A(rn+1
n ), Q(rn+1

n ), F(rn+1
n ), H(rn+1

n ) and G(rn+1
n )

for each value of pair rn+1
n ;

• Given input data yN1 , smoothing stage:
1. Compute recursively p


rn

yn1 
, E


Xn

rn, yn1 
, and E


XnXT

n

rn, yn1 
using (11), (7), (8);

2. Compute ∀n ∈ {1, . . . ,N}, p

rn

yN1 
using (12);

3. Compute the smoothed output using (5) and (6).

Remark 6. FromSection 3 (see also Gorynin et al., 2017), we know thatModel 2may be alternatively represented as follows:

Yn+1 = D(rn+1
n )Yn + H(rn+1

n ) + 3(rn+1
n )Vn+1;

Xn+1 = A(rn+1
n )Xn + B(rn+1

n )Yn + C(rn+1
n )Yn+1 + F(rn+1

n ) + 5(rn+1
n )Un+1,

for some parameters D(rn+1
n ), H(rn+1

n ), 3(rn+1
n ), A(rn+1

n ), B(rn+1
n ), C(rn+1

n ), F(rn+1
n ), 5(rn+1

n ) and standard Gaussian vectors
U1,V1, . . . ,UN ,VN . In fact, the EM algorithm in Gorynin et al. (2017) estimates a particular autoregression coefficients for
the pair (XN

1 , YN
1 ) in theMarkov-switching context. Thus, the structure imposed byModel 2 does not result in any difficulties

in the M-step of the algorithm, and we still obtain updates in closed form.

Remark 7. Model 2 identification stage is the most time-consuming one since the number of elementary operations is
proportional toM × Q × K 2 where Q is the number of iterations of EM. However, these operations do not require the real-
world flow yN1 and they can be accomplished in advance. The smoothing stage has a complexity linear in N and thus is very
fast.

AMatlab implementation of our smoothing algorithm is downloadable at (http://www-public.it-sudparis.eu/∼igorynin/
SCGOMSMs). An implementation of the corresponding EM algorithm is also available.

5. Experiments

In this section, we consider three sets of experiments related to the smoothing in various non-linear non-Gaussian
systems.

5.1. Dynamic beta models

The dynamic beta regression allows modeling monthly unemployment rate (Da-Silva et al., 2011). More precisely, let Yn
be the unemployment rate at time n, the dynamic beta model for Yn is (cf. Lopes and Tsay, 2011):

Yn ∼ Beta


1
c(1 + exp(Xn))

,
exp(Xn)

c(1 + exp(Xn))


;

Xn+1 = µ + φ(Xn − µ) + σUn+1,

(24)

where µ, φ, σ and c are fixed and U1, . . . ,UN are independent standard Gaussian vectors. We recall that for two positives
reals α and β , Beta(α, β) denotes the beta distribution:

Beta(x; α, β) =

xα−1(1 − x)β−1Γ (α + β)

Γ (α)Γ (β)
if x ∈ [0, 1]

0 otherwise
, (25)

where Γ denotes the Gamma function Γ (x) =


∞

0 tx−1 exp(−t)dt .

If |φ| < 1 and X1 ∼ N (µ, σ 2

1−φ2 ), then the autoregressive process of X1, . . . ,XN is stationary cf.Dickey and Fuller (1979),
as well as (X1Y1), . . . , (XN , YN). Therefore, we define σ0 =

σ√
1−φ2

.

The conditional distribution of Yn is generally skewed. Besides, we have

E [Yn |Xn ] =
1

1 + exp(Xn)
; (26)

Var [Yn |Xn ] =
exp(Xn)

(1 + exp(Xn))2


1 −

1
c + 1


, (27)

http://www-public.it-sudparis.eu/~igorynin/SCGOMSMs
http://www-public.it-sudparis.eu/~igorynin/SCGOMSMs
http://www-public.it-sudparis.eu/~igorynin/SCGOMSMs
http://www-public.it-sudparis.eu/~igorynin/SCGOMSMs
http://www-public.it-sudparis.eu/~igorynin/SCGOMSMs
http://www-public.it-sudparis.eu/~igorynin/SCGOMSMs
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Fig. 2. Distribution of Yn given xn = −2.82, for different values of the ‘‘noise level’’ c . The vertical red line locates the commonmean of both distributions.

Table 1
The RMSE of smoothing in model (24) with µ = −2.82, σ0 = 0.17 and four different values of lag-one autocorrelation φ and noise level c coefficients. The
RMSE values for asymptotically optimal particle filter (PF) and particle smoother (PS) are present as a reference.

φ c K PS PF
2 3 5 7

1 0.95 0.005 0.38 0.32 0.31 0.29 0.29 0.41
2 0.95 0.01 0.54 0.43 0.39 0.38 0.38 0.50
3 0.99 0.005 0.40 0.21 0.16 0.16 0.16 0.22
4 0.99 0.01 0.42 0.37 0.31 0.24 0.23 0.28

whichmeans that one can see c as a ‘‘noise level’’ of the observation ofXn made throughYn.When c = 0,Yn is a deterministic
bijective function of Xn, and when c tends to infinity, the conditional variance of Yn tends to its maximum. See Fig. 2 for an
illustration.

The parameter φ is the lag-one autocorrelation of the latent process.
The dynamic beta regression is a particular case of the dynamic generalized linear model (Lopes and Tsay, 2011;

West et al., 1985), where the latent process is Gaussian autoregressive and the observational distribution belongs to the
exponential family.

The state estimation in model (24) is an established part of econometric and social analyses. We calibrated this model to
a real-world data.1 The rounded values of the parameters are µ = −2.82, φ = 0.95, σ0 = 0.17 and c = 0.005. In order
to test the robustness of Model 2 smoothing algorithm in the case of model (24), we consider estimating X1, . . . ,XN from
Y1, . . . , YN when observed variables arise from (24) for various values of c and φ.

We use our method with different number of states K to estimate the latent variables from the N = 1000 observable
ones, andwe report our results in terms of relativemean square error (RMSE) for themean of 100 independent experiments.
The RMSE is relative to the variance of the marginal distribution of Xn which is σ 2

0 . The results are in Table 1.
The dimensions of the latent variables and the observable ones are a = b = 1, the training sample size is M = 20 000,

and Q = 100 is the number of EM iterations. For comparison purpose, a similar outcome using a particle smoother (PS) and
particle filter (PF) withm = 1500 particles (cf. Duffie et al., 2000; Eraker, 2004; Kim and Nelson, 1999) is also given. We use
a fixed-lag particle smoother (Briers et al., 2010), which computes E


Xn

Yn+T
1


for T = 5. We find out that using greater

values of T needs more particles to cope with the degeneracy phenomenon, but does not change the RMSE value. We thus
consider that E


Xn

Yn+T
1


is a good approximation of E


Xn

YN
1


.

We observe that for moderate values of K (e.g., K = 5), the accuracy of the Model 2 smoother is satisfactory. When the
latent process is highly persistent (φ close to 1) and when the ‘‘noise level’’ c is significant, one needs a greater number of
states to estimate the latent process accurately.

1 United States monthly unemployment rate from March 2002 to December 2015, available from the Bureau of Labor Statistics at
http://data.bls.gov/timeseries/LNS14000000.

http://data.bls.gov/timeseries/LNS14000000
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Table 2
The MSE of smoothing in the ASV model with µ = 0.5, β = 0.5, φ = 0.5 and five different values of λ2 and ρ such that λ2

+ ρ2
= 1 for a unitary

unconditional variance of x.
ρ λ2 K PS

2 3 5 7

1 −0.90 0.19 0.23 0.21 0.20 0.20 0.19
2 −0.80 0.36 0.36 0.34 0.32 0.32 0.32
3 −0.50 0.75 0.57 0.55 0.55 0.55 0.54
4 −0.30 0.91 0.65 0.63 0.62 0.62 0.62
5 −0.00 1.00 0.70 0.67 0.66 0.66 0.66

Remark 8. The complexity of the particle smoother is N ×m× T while the complexity of our method is N ×K 2. In practice,
the computation time of ourmethod is quite the same as the one consumed by a particle smoother using K 2 particles, which
is rather a small number of particles. As a consequence, one may use a large value of K if needed.

5.2. Asymmetric stochastic volatility (ASV) model

The Model 2 smoothing algorithm has been successfully applied (cf. Gorynin et al., 2015) in the context of the classic
Stochastic Volatility (SV) model (see Ghysels et al., 1995; Jacquier et al., 1994) which is the root of more advanced models.
The classic SV model assumes that the stock log-return process evolves according to

Yn+1 = β exp(Xn+1/2)Vn+1, (28)

with the log-variance process verifying

Xn+1 = µ + φ(Xn − µ) + σUn+1, (29)

where µ, φ, σ and β are fixed and U1,V1, . . . ,UN ,VN are independent standard Gaussian vectors. The SV model is thus a
hidden Markov model, specified by a state equation and a measurement equation

Xn+1 = g(Xn,Un+1) and Yn+1 = h(Xn+1,Vn+1), (30)
which is a particular case of (1).

In the asymmetric stochastic volatility (ASV) model (see Nikolaev et al., 2014; Omori andWatanabe, 2008; Takashi et al.,
2009), we have

Xn+1 = µ + φ(Xn − µ) + σ (ρVn + λUn+1) ; (31)
Yn+1 = β exp(Xn+1/2)Vn+1, (32)

where µ, φ, σ , λ, ρ and β are fixed and U1,V1, . . . ,UN ,VN are independent standard Gaussian vectors. Since
p (xn+1 |xn, yn ) ≠ p (xn+1 |xn ), the ASV model is not of the form (30) and thus is not a classic HMM. However, (1) is still
verified and it is possible to generate a training samplewhich is required by ourmethod. The results are presented in Table 2,
on the same methodology basis as previously.

5.3. Markov-switching stochastic volatility (MSSV) model

The Markov switching stochastic volatility (MSSV) model (see So et al., 1998; Susmel and Kalimipalli, 2011; Bao et al.,
2012) reads as follows:

Xn+1 = γ1 +

q
j=2

γj1[j;+∞] (Sn+1) + φXn + σUn+1; (33)

Yn+1 = exp(Xn+1/2)Vn+1, (34)

where1A(.) is the indicator function of the setA, SN1 is a stationary discreteMarkov chainwith q states, p

sn+1

xn1, yn1, sn1 
=

p (sn+1 |sn ) and γ1, . . . , γq, φ, σ are fixed andU1,V1, . . . ,UN ,VN are independent standard Gaussian vectors. Following the
simulation study in Bao et al. (2012), we set q = 2, p11 = p (sn+1 = 1 |sn = 1 ) and p22 = p (sn+1 = 2 |sn = 2 ). As a random
sampling is straightforward within the framework of MSSV (So et al., 1998), our smoothing algorithm remains applicable.
Table 3 shows its results for the MSSV parameters given in Bao et al. (2012).

Since PS (for which (33) is approximated by (29) identifying respective ergodic means of Xn) fails for MSSV model,
we propose to compare our method to a switching variant, SPS, of PS which also computes E


Xn

Yn+T
1


for T = 5 with

m = 1500 particles (cf. Bao et al., 2012).
In all cases, we note that if K is large enough, the smoothed output of our method is as good as the statistically optimal

one, produced by the PS (or SPS). Our smoothing procedure is riskless from the weight degeneracy phenomenon frequently
encountered in particle methods (see Cappé et al., 2005; Doucet and Johansen, 2011) and seems to be robust even in the
case of the switching models.
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Table 3
MSE of smoothing in the MSSV model with k = 2, γ1 = −5.0, γ2 = −3.0, σ 2

= 0.1, φ = 0.5 and three different values of p11 and p22 .

p11 p22 K PS SPS
2 3 5 7

1 0.99 0.985 0.02 0.02 0.02 0.02 0.66 0.02
2 0.85 0.25 0.71 0.38 0.38 0.38 0.75 0.38
3 0.5 0.5 0.45 0.42 0.42 0 42 0.82 0.42

6. Conclusion

We presented a new method to estimate the latent variables in non-linear and non-Gaussian systems. Our method is
very general, works under slight conditions and produces an outcome quite close to the optimal one, as illustrated in our
experiments. Once theModel 2 is identified, our smoothing procedure is as fast as the classic Kalman smoothing in Gaussian
systems.

To conclude, let usmention two perspectives. The first one is to consider different andmore complex stochastic volatility
models (Kim and Nelson, 1999; Nikolaev et al., 2014; Omori andWatanabe, 2008; Takashi et al., 2009); the second one is to
consider more advanced families of switching models allowing fast exact smoothing.
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