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Abstract. This paper deals with unsupervised Bayesian image segmentation and we focuse on the
following two issues. First we introduce a new global method where the segmentation step is performed
by MAP or MPM whereas at the parameter estimation step we apply the recently published ICE. We
also show, in the case of hidden Markov fields, that ICE can be applied in a quite general frame. Then we
compare the global unsupervised segmentation method so obtained with a contextual one, whose prin-
ciple is radically different. A simulation study shows that the behaviour of the two methods considered
strongly depends on the homogeneity of the images and the spatial correlation of the noise. Moreover,
their efficiency is good in complementary situations. This leads us to propose a generalised unsupervised
segmentation method containing a “choice algorithm” where the choice of the better suited method is
automatically performed based on parameters estimated from the single image to be segmented. The
unsupervised segmentation is then performed by the method chosen in the first step. Such a generalisa-
tion allows us to avoid the worst case segmentations and can be integrated in more complex automatical
image processing systems.

1. Introduction

The aim of this article is two-fold: to present a new algorithm of unsupervised Bayesian
image segmentation and to compare the efficiency of this new method with the efficiency
of a fundamentally different method when some specific properties of the images change.
In fact, the two methods are different in that the segmentation phases are respectively
global (Maximum a Posteriori Probability — MAP, or Maximizer of Posterior Marginals
~MPM) and local (contextual). The novelty of our algorithm lies at the parameter
estimation level where Iterative Conditional Estimation (ICE), [17, 18], is applied. Our
key result is that parameters such as image homogeneity or noise correlation can strongly
alter the efficiency of a given unsupervised Bayesian segmentation method. We precise
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this dependency and propose an “unsupervised choice algorithm” which aim is to choose
automatically, i.e. from the single image to be segmented, the better suited unsupervised
segmentation method.

An analogous comparative study between global and local methods has been proposed
by J.F. Yao, [9]. The important difference in comparison to our work is that the [9] does’
not tackle the parameter estimation problem and is only interested in the behaviour of
the segmentation step. However, he proposes a study of the evolution of the efficiency
of different methods when the value of the parameters used move from the true ones.
The current study clearifies the importance of the estimation step and can be seen as
an important step in the understanding of the behaviour of unsupervised segmentation
methods.

The paper starts with a short description of the statistical modelling of images by
random fields and the difference between the two segmentation methods considered is
pointed out. Our method, ICE, is fairly unknown due to the fact that it has just appeared
in a paper [17, 18] and was briefly presented at the GRETSI conference, [15], and we
therefore present its description in the third section of this paper with appropriate detail.
In particular we underline the frame of applicability of the ICE and show that it is much
more general than the frame of applicability of the EM based estimation methods. ICE
needs an estimator of priors from the unobserved field. The ICE based method we
propose makes use of the method described by Derin et al., [7], which is exposed in
the fourth section. We have chosen the Stochastic Estimation Maximisation (SEM),
which is a stochastic variant of the EM algorithm, [2], for the treatment of the parameter
estimation step in the second, contextual, unsupervised segmentation method. Our choice
is intentional, in fact, some previous studies show the good behaviour of the SEM in this
context, [14, 20]. A short description of the SEM makes up the fifth section. The
numerical results take place in the sixth section whereas the seventh section is devoted
to the concluding remarks, the principle of the new “unsupervised choice algorithm” that
we propose and the corresponding “generalised unsupervised segmentation”.

2. Random fields and statistical segmentation

We will consider a couple of random fields (€, X) = (&, Xij), ij € I where I is the
set of pixels. Each &;; takes its values in a finite set Q = {wm},m = 1,2 and Xj; in
R, and we will assume that the distribution of (¢, X) is defined by, firstly, P(£), the
distribution of £ and, secondly, the family P(X | €) of distributions of X conditioned
on £ = ¢, and we assume that the distributions are of known form. The field X is the
only observable and the problem is that of estimating two parameters (a, B) which define
P(€) and P(X | €) respectively, and, when these parameters have been estimated, that of
segmenting the image based on these estimates. This segmentation will be an estimate
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of the unobservable variable £ based on the observable X. Using a Bayesian model with
a 0 — 1 loss function, and by letting {4 and X be restrictions of respectively £ and
X, AC I, BCI,¢&, is estimated by £4 whose “a posteriori”, i.e. conditional to Xpg,
probability is maximal. There are several possible methods of solving the problem. They
may be summarised as follows:

e MAP. A=B=1,

e MPM: A = {ij}, B=1,

¢ Blind: A = {ij}, B = {ij},

e Contextual: A = {ij}, B = N(ij),
where N denotes some neighborhood of pixel ij. We may say that the two first methods
are global, while the two latter are local. The field £ is supposed stationary and Markovian
with P[€ = €] # 0 for each ¢ and, thus, the distribution P(§) is Gibbsian,

P(¢ = ¢) = Kexp™e(9),

and the distribution P(X | ), that in fact describes the noise added, will be supposed
Gaussian, so marginal conditional distributions are

P(Xij = 2ij | &ij =wm) =

exp [(2ij — pm)?/207,] ,
2x02,
where p = (p1, p2) and o = (01, 03) are the parameter 5. When considering contextual
methods 8 also includes spatial correlations. The function U,(€) is a sum over the
potentials associated with the cliques, [5, 7], in the neighbourhood system. We will
consider noise of two different kinds that will profoundly influence the performance of
the methods considered. The observed field X will be regarded as a sum of two fields,
Xij = f(&j)+ Nij where the function f serves solely to distingush the two classes in the
treatment and the random variables Nj; are respectively independent and correlated.

3. Iterative conditional estimation

The use of MAP or MPM, which constitutes the segmentation phase in our method,
suppose the independence, conditional to &, of the random variables X;;. So 8 defined
above defines all distributions P(X | £). Finally, knowing (o, 3) is sufficient to apply
MAP or MPM. We can estimate them using ICE which necessitates that we have at
our disposal two estimators, namely & = &(£) and 8 = §(¢, X), defined from § and X.
The direct use of & and 3 being impossible since we ignore realizations of ¢, the idea
of ICE consists of approaching them by a function of X, the only observable. The best
approximation, as far as the least square error is concerned, is the conditional expectation.
Let u(X) be any function of X. Then it is well known that the least square error

S(X) = El(a - u(X))?]
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is minimized by choosing u(X) = E[&| X], [3]. This implies, in fact, that we will have to
condition & by X. In doing this we loose the quality of & as an estimator. Although &
is independent of the parameters a and 8, we have that E[a| X], which for each X = =
is the expectation of & according to the distribution of ¢ conditioned by X = z, depends
on the parameters a and 8. The same goes for E[3| X].
Hence, if we want to compute E[&| X] and E[| X] we are obliged to make use of
two previously obtained parameters a,, and G,.
Iterative Conditional Estimation (ICE) is defined as follows, [17, 18]:
e ap and fy, i.e. initial values of o and § are chosen,
® apy41 and fBn4y are computed from o, and B, and X = z according to

anpr = Eafd|X=3], M
Pay1 = En[B]X =12, (2)
with E, denoting the expectation at iteration n using a, and §,. Let P,(£| X) be the

distribution of ¢ conditioned by X computed from o, and f§,, then 1 and 2 may be
written:

anp1 = D 6()Pa(c| X =2), (3)
Bosyr = D_B(e,x)Pale| X =z). (4)

The computation of these ecjuations may be impossible in practice, but we can approach
3 and 4, in accordance with the law of large numbers by:

1 X
nt1 = Z&(fk): (5
k=1
1 <
ﬂn+1 = 'Ekglﬁ(fkvz)i (6)
where ¢, k = 1,..., K are independent realizations of £ according to the distribution

Pa(¢] 2).
Finally, we conclude this section by noting that the use of the ICE depends on the

availability of the following:

1. two estimators, & = &(£) of a and 8= B(E,.’c) of B3,

2. two initial values ag and Gy, not “too far” from the true parameters o and g,

3. the obtainability of En(& | X) and E,(3| X) or simulated realizations of £ according
to the posterior distribution P,(§| X).

The principle of ICE is quite different from the well-known EM-algorithm— in particular,

the notion of likelihood is not used and Dirac distributions can be considered. To be

more precise let us denote by ., , pu, the distribution densities of each X;; conditional
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to &ij = w1, ws, respectively. The sampling of ¢ according to the posterior distribution
Pn[€1X], and thus the application of formulae 5 and 6, are possible for every Puy s Puwge
In fact, the energy of the posterior distribution is '

UX=2(e) =U(e) + Zlnsofu(zij) )
ij

and the Gibbs sampler can be used as soon as the ¥e;(xij) are known. In particular,
Puwy ) Pw, can be of different kinds and one of them, or both, can be of a more limited kind.
This kind of situations may occur in the practical segmentation problems, in particular,
the distribution of the speckle in radar images is not known exactly and may vary with
the class.

Thus the use of ICE is not limited by the form of the conditional distribution of the
noise and the EM principle, based on the maximisation of the likelihood, turns out to be
powerless in such a general context.

Let us note that in spite of the fairly corresponding design the ICE method is quite
different from the ICM of J. Besag, [5]. ICE is a parameter estimation algorithm while
ICM occupies itself with segmentation. It is then possible to perform a non-supervised
segmentation by using ICE for the parameter estimation step and ICM, based on the
estimated parameters, for the final segmentation step. »

In the simple case of a Gaussian mixture the EM-reestimating formulae is obtained
from (1) and (2), [17, 18].

4. Gibbs distribution parameter estimation

The problem of estimating the parameters of the Gibbs energy function has recently
received some attention, [11]. The coding method, [1], has been used extensively in the
literature, but requires the solution of a set of non-linear equations. Derin & Elliott, [7],
proposed in 1987 a novel estimator that consists of simple histogramming and stan-
dard, linear, least-squares estimation. See also [13] for an interesting stochastic gradient
method.

We will briefly describe the estimator in terms of our model, up

i.e. the four nearest neighbourhood system, [7]. The figure
to the right shows a pixel belonging to class s with the 4 Yr| s |us
nearest neighbours defined ¢ = {u,, ua, u3, u4}. g

Two indicator functions Z and J are defined,

_J -1 ifyy=---=yy
I(yh---»yM)_{ 1 otherwise

M being the number of classes (=2 in this work)
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and i
- HS§=wg
Ji(s) = { 0 otherwise
Define
2
_ J2(s
90 = | I(s u)+ Z(s,u5) | °
I(s,uz) +Z(s,uq)
and let
ay
Vs, t',a) = ¢T(s,t') gz
Q4

By manipulating the distributions of the different possible configurations we obtain the
following expression for two different values of s but identical neighbourhood #':
e-Vit @ +V(kthe) _ PUE)
P(k,t)’
which leads to

0o a =1 (F237) ¢

where P(s, 1) is the joint distribution of s and ¢. As « is the unknown parameter vector to
be estimated and the RHS of 7 may be estimated using simple histogramming, 7 reduces
to a set of linear equations. As the set of linear equations is overdetermined the problem
of choosing the equations that gives the best estimate poses a problem. In addition,
attention must be payed to the RHS of 7.

We have chosen to make use of all the equations obtained, i.e. the equations that
correspond to configurations that do exist in the field, and use the mean of the estimates
for each parameter and, in accordance with the observatlon in [7], we have had no problem
whatsoever.

5. Stochastic estimation and maximisation

Our method is compared with a contextual method, based on the four nearest neighbours,
in which the useful parameters are estimated by the SEM, [6, 14, 20]. We note that the
contextual method allows taking into account the spatial correlation of the noise, which
is impossible when considering a global method. The SEM algorithm may be regarded
as an EM one with a probabilistic learning stage, and is briefly described, as follows:

Initialization. The number (initial) of components K is set and a threshold ¢
is chosen with value beetween 0 and 1. The initial probabilities for each class k, i.e.
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P%(&;; = wi | Xij = zy;), are randomly chosen satisfying the two conditions

0< Pu(wk I :c.-j) <1,

S P zi)=1.

,‘k

Stage S (stochastic). At each iteration n the chosen sample z is partitioned, based

on P(wg | zi;), into K groups. The number of elements in each partition P} is then the
number of pixels assigned to class k. If, for a certain k and with ¢& = card(Pp), ck is
smaller than ¢ x card(I), the algorithm is re-initialized with K — 1 components.

Stage M (maximisation). The maximum likelihood estimates of the parameters
are computed, in the case of the mean of a distribution we get

1 n
l‘:+1 = .CT Z P ko
n
where the sum goes over all the elements contained in PJ*. Variances and a priori prob-
abilities are eventually estimated in the same manner.

Stage E (estimation). P"+!(w; | z;;) is then computed based on the parameters
obtained in the former stage.

Note that our presentation of the SEM is as it has been presented in the literature,
but it can also be seen as a particular case of the ICE procedure, [17, 18].

6. Experimental results

In order to test the algorithms we have created a range of different images. Of these
the two that in the best way display the differences from method to method have been
chosen together with two “natural” images. We are solely discussing the results of the
segmentation, not the performance of the parameter estimation methods. This is not
less interesting or important, but demands an independent treatment that surpasses the
intention of this work.

6.1. Image data

The simulations are based on four different images of size 64 x 64 which we will call
IM,,IM,, TM3 and M4 (fig. 1). The two first were created by the method of Ising that
allows us to simulate binary fields (images) with two parameters specified that control
the degree of intra-class and inter-class attraction and repulsion. The following parame-
ters were used: IM; : 8; = 5.0, 0, = —2.5 ¢IMy : 6; = 2.0, 63 = —1.0. The last two
images are “natural”, although binarized in such a way that the number of pixels belong-
ing to the value 0 equals that of the other. Gaussian noise of two different kinds were then
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(a). The two synthetic images (b). The two “natural” images

Fig. 1. The four binary images considered

added to all four images and a total of eight images were obtained. The different binary
images are shown in fig. 1.

We see that M, is an image with rather large grouping of pixels belonging to the
same class whereas M3 has a considerably more spotty appearance.

The means and the variances of the different images are all equal: em;: 1.0 my: 3.0
02: 1.0, and in the case of dependent noise the intra-class correlation is 0.72 and the
inter-class correlation 0.64. Then the images were stretched and digitized with values in
the range [0,255] in order to facilitate the computation. As the images were stretched
based on the minimum and maximum values within the images, the corresponding mean
values and variances differ (see tab.1). Fig. 2 and 3 show the resulting images.

Fig. 2. Independent noise added

The ICE algorithm was used with the classical empirical estimator of mean and
variance and with the estimator of Derin & Elliot, [7], using a 4-neighbourhood system,
and was eventually combined with two different algorithms of segmentation, namely the
MAP, [4], and the MPM, [8], whereas the SEM was applied with a 4-neighbourhood
system.
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Fig. 3. Dependent noise added

6.2. Segmentation results

The MAP which is here approached by the simulated annealing algorithm, was in each
case run with a large number of iterations (800) and the constant ¢ was set to 3.5. The
MPM was run with 80 iterations.

The measure of error used is the simple pixel to pixel error rate (root mean square).
In addition we measured the error by extending the concept of rmstoa 2x2and a3 x 3
window, but the only information of interest supplied by these measures were, as they did
not change the final rating of methods, that the pixels wrongly classified were somewhat
randomly distributed throughout the images or that they occured in (approximately) the
same regions.

We see that the efficiency of both global and local methods strongly depend on two
factors: the homogeneity and the spatial correlation of the noise. This point will be
precised in the next section. Some examples of the resulting images are shown in figs.
4 and 5. The values in the column Init. are the initial segmentation results obtained in
the first blind (not taking the neighbors into account) maximum likelihood classification,
a classification that is performed in order to obtain a starting point for the parameter
estimation. Note that some of the results obtained by the global methods are worse than
this blind segmentation showing that in these cases the global methods fall through.

(a) SEML (b) MPM

Fig. 4. A selection of the results, independent noise case
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(a) SEM. (b) MPMI

Fig. 5. A selection of the results, dependent noise case

7. Conclusion, choice algorithm and generalised unsupervised segmentation

As we noted in the introduction the purpose of this paper is two-fold. We first described
how a new general method of estimation in the case of hidden data, called ICE, [17, 18],
can provide a family of unsupervised statistical image segmentation methods. We showed
its superiority, at the level of the generality of the models treated, over the EM-based ones.
We showed in some previous works, [15], that in the classical case of the conditionally
Gaussian noise the efficiency of our methods is comparable to the efficiency of some
known algorithms, [10, 19]. Thus we adopted this frame here and considered that our
methods are representative of the whole family of global methods. Then we considered
a local unsupervised segmentation method in which the parameter estimation step is
performed by SEM. Once more we considered that this algorithm is representative of the
whole family of local methods. In fact, in the context considered the local methods seem
to be relatively stable with respect to the parameter estimation algorithm used, [16].
Nevertheless, both hypotheses are approximations which stay valid in the case of the
relatively simple images that we considered and undoubtedly the behaviour of different
algorithms within each family is different when the images become more complex, in
particular when the number of classes exceeds two.

However, our simulation study shows that the behaviour of the two methods is very
different and they can give really bad results. This implies that the choice of a suitable
method, even in the case of relatively simple binary images, is of the utmost importance.
To be more precise, we considered four images: ZM;,IM,, IM3 and ZM4. Let us denote
by H; the homogeneity of ZM;. We can say, according to the visual impression: Hg =
H, > H3 > H,. That is to say ZMy is as homogeneous as M, IM; is more homogeneous
than M3 and so on. Let us denote by LOC:; the error rate of the local SEM based method
applied to ZM; and by GLO; the mean of the error rates of our two global ICE based
methods. According to tab. 1 we will then have as shown in tab. 2.
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SEM ICE
4N MAP MPM [Init. LOC GLO
IM; ind. 3.75 3.6 24 155 M4 ind. 3.2 1.7
dep. 134 9.2 11.,5 16.0 dep. 11.6 6.1
M,  ind. 13.7 16.9 14.0 15.5 IM; ind. 3.8 3.0
dep. 10.0 30.4 217 170 dep. 134 104
IM3 ind. 6.3 6.7 54 16.5 IM3 ind. 6.3 6.1
dep. 13.0 15.6 15.1 16.5 dep. 130 154
M4  ind. 3.2 2.0 14 154 IM, ind. 13.7 155
dep. 116 5.4 6.8 139 dep. 10.0 29.1
Tab. 1. Results of the different algorithms Tab. 2. Conclusive results

The results in the tabs.1 and 2 leads us to the following conclusions:

1) Independent noise. The efficiency of both local and global methods is degraded when
the homogeneity decreases. In fact we have LOCy > LOC: > LOC3 > LOC,,
GLO4 > GLO; > GLO3 > GLO32, where > means “is more efficient than”. Further-
more, GLO4 > LOC4 but GLOy < LOC,: global methods are more semnsitive to the
homogeneity of the images.

2) Dependent noise. The same hierarchy is respected when the global methods are con-
cerned: GLO4 > GLO, > GLO3 > GLO;. Furthermore, when the image is slightly
homogeneous and the noise strongly correlated we conclude that global methods are
io be avoided absolutely. The behaviour of local methods is somewhat surprising and
could turn out to be very interesting in practical applications. The degradation in
efficiency, when the homogeneity decreases, is stopped and the tendency is even in-
versed. In fact, we have LOCy4 > LOC, < LOC3 < LOC,. This is surprising because
the local method considered contains a parameter estimation step and, in a general
manner, the efficiency of estimation procedures is degraded when the correlation of
data increases. Now, as we pointed out in [20], SEM seems to be robust with respect
to the noise correlation and the loss at the parameter estimation level is here less
important than the benefit due to the better efficiency of the segmentation step.

3) With the exception the interesting case LOC,, the correlation of the noise always
degrades the efficiency of the methods considered.

This leads us to propose the following “choice algorithm”:

i) if the image is homogeneous, use a global method, whatever the correlation of the
noise,

ii) if the image is very little homogeneous, use a local method, whatever the correlation
of the noise,
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iii) if the image is moderately homogeneous use a local method if the noise is strongly
correlated and a global one if it is next to independence.

Our choice algorithm is not very precise and in real situations it may be difficult to
decide if a given noisy image is homogeneous or not. Now, the distribution of (¢, &, X,
X3) for s,t neighbours, contains some objective information about the homogeneity and
noise correlation. In fact, if an image is homogeneous the distribution of (¢,, £;) charges
{(0,0),(1,1)}, and if not, it charges {(0,1),(1,0)}. The noise correlations are given by
the distributions of (X,, X;) conditional to (¢,, &). The distribution of (¢,, &, X, X;)
can be estimated from X by the SEM, which can constitute an early step in order to
make the choice algorithm above unsupervised.

We propose the following:

a) estimate the distribution of (§,, &, X, X;), for s,t neighbours by the SEM,
b) decide in what case 1), i), iii) of the choice algorithm you are,
c) perform the corresponding unsupervised segmentation.

This unsupervised choice algorithm would be entirely automatic if the decision b)
is taken automatically from the data X = z. We can imagine that the homogeneity is
given by the parameter h = P[(&,,&) = (0,0)] + P[(&5,&:) = (1,1)] and the degree of
noise correlation by the coefficient of correlation p, both parameters h, p being estimated
in step a). h and p take their values in [0,1], thus make the step automatic means to
know two regions GLO, LOC in [0,1]% if (h, p) € GLO we use a global method and if
(h, p) € LOC we use a local one.

Our choice algorithm allows us to have a general idea about the curve C defining the
two regions as in fig. 6a.

1 1

LocC

(C)

GLO

b)

LOC

(C)

GLO

h 1 h 1
Fig.6. Curve C defining two regions

The empirical knowledge of C with better precision should demand more complete
simulations which we hope to perform in our future works. At this stage we can propose
the shape of the curve C as in fig. 6b.
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As a general conclusion we can say that the choice between a global and a local unsu-
pervised statistical segmentation method can turn out to be crucial. When integrating
the segmentation step in more complex automatical image processing systems the au-
tomatical nature, i.e. by only using X = z, of this choice is important. The processes
we propose, based on C of a simple shape above, should allow to avoid the really bad
segmentations.
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