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Dempster—Shafer Fusion of Evidential Pairwise
Markov Chains

Mohamed El Yazid Boudaren and Wojciech Pieczynski

Abstract—Hidden Markov models have been extended in many
directions, leading to pairwise Markov models, triplet Markov
models, or discriminative random fields, all of which have been
successfully applied in many fields covering signal and image pro-
cessing. The Dempster—Shafer theory of evidence has also shown its
interest in a wide range of situations involving reasoning under un-
certainty and/or information fusion. There are, however, only few
works dealing with both of these modeling tools simultaneously.
The aim of this paper, which falls under this category of works,
is to propose a general evidential Markov model offering wide
modeling and processing possibilities regarding information im-
precision, sensor unreliability, and data fusion. The main interest
of the proposed model relies in the possibility of achieving, easily,
the Dempster—Shafer fusion without destroying the Markovianity.

Index Terms—Dempster—Shafer (DS) fusion, hidden Markov
chains (HMCs), theory of evidence, triplet Markov chains (TMCs).

NOMENCLATURE
Acronym Designation
bba Basic belief assignment
CEMMC Conditional evidential marginal Markov chain
CEPMC Conditional evidential pairwise Markov chain
DS Dempster-Shafer
EM Expectation-Maximization
EMC Evidential Markov chain
EMM Evidential marginal Markov
EMMC  Evidential marginal Markov chain
EPMC Evidential pairwise Markov chain
HEMC  Hidden evidential Markov chain
HMC Hidden Markov chain
HMM Hidden Markov model
MPM Marginal posterior mode
PMC Pairwise Markov chain
TMC Triplet Markov chain

I. INTRODUCTION

ET us consider two random sequences X{' =
L (X1,...,Xn)and YV = (Yi,...,Yy), where Xi" takes
its values in Q = {wy, ... ,wy }, whereas Y;" takes its values in
R. The sequence X" is hidden, while Y;" is observed. The aim
then is to recover X{' from Y;". Realizations of such processes
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will be denoted by lowercase letters. Probabilistic links between
X and Y/ are given by the distribution p(z), ') of the cou-
ple (X{V,Y;"), and the problem is to define p(z" , y{" ) in such
a way that the search of X{' = 2} would be workable for large
N. The estimator of X = z{ from Y} = y{ considered in
this paper will be the classic MPM [1] estimator defined by

N

21 = (21,...,2n) = 8(51")]

< Vne{l,...,N} &, = argmaé(p(x" = w|y{\)]
we
(D

One possible choice for p(z],yl), which makes the com-
putation of p(z,, |yi" ) feasible with a linear complexity in NV, is
the classic HMC model. HMCs turn out to be very robust and
have been extensively used to solve various inverse problems
occurring in a wide range of fields including signal and image
processing [2], pattern recognition [3], time series [4], finance
[51, [6], and biology [7], [8]. Let us also mention the pioneering
papers [1], [9], [10] and the general books [11], [12].

In HMC, the distribution p(x2’, i) is given by

N
p()yY) = p(e)p(ulen) [ plealen)plynle). @)
n=2

The MPM estimation can then be achieved thanks to the

possibility of recursive computations of forward probabilities
oy (w) = p(xp=w,y}) and backward probabilities (3, (w) =
p(Ynsiltn=w), where yi' = (y1,...,y,) and yy ;=
(Yn+1,---,yn). Then, p(z, = O~)|yl\/ ) o< oy (w) By (w)-

Among other extensions, the classic HMC has been general-

ized into the following directions.

1) The possibility of fast computation of p(x, |yi’) in HMC
is due to the fact that p(z |yi' ) is a Markov distribution
with computable transitions. The latter property remains
valid once the couple (21, 41" ) is Markov, and thus, HMC
can be extended. In fact, in HMC, both X;¥ and (X7" |yV)
are Markov, and thus, the Markovianity of X {v is not
necessary and can be relaxed. Doing so, we arrive at PMCs
proposed in [13] and being able, as shown in [14], to
noticeably improve the results obtained with HMCs;

2) When the transitions p(z;, |z, 1) in the HMC of (2) are
unknown and strongly vary with n, their estimation poses
problem. It is then possible to manage it by extending the
Markov chain X}V to a so-called EMC, which gives a sta-
tionary model with possibilities of parameter estimation.
As shown in [15], such an extension can improve results
obtained with the classic HMC.

3) The theory of evidence has also been used to extend the
Markov observation information. Indeed, when different
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sources of information are available, even if the result of
their fusion is no longer a Markov distribution, the compu-
tation of posterior margins p(z, |y)" ) remains workable.
Such a result has been applied in [16] and [17].

The aim of this paper is to propose a family of general models
supporting all the extensions mentioned above, and being able to
easily take into account new information, even partial (available
only at some space/time points). Such models also generalize
[18], [19] which proposed to integrate “partial knowledge” or
“soft labels” on latent variables. For this purpose, the proposed
formalism should support the fusion operator as an internal
function to easily include new evidence when available. More
precisely, the extension with respect to the previous evidential
noisy models [15], [17] is the following. In previous models,
one considers a sequence of masses M = (M,..., My),
each M, taking thus its values in the power set P(2), a
sequence of observations Y;¥ = (Y7,...,Yy), and the cou-
ple (M} Y}N) is assumed Markov. Here, we introduce a fi-
nite set A = {A;,..., Ay}, an additional latent random chain
UYN = (Uy,...,Uy), each U, taking its values in A, and the
triplet (MY, U, Y{V) is assumed Markov. In both classic and
new cases, the sequence of YlN can be continuous or discrete:
one important thing is that the distribution of M;¥ —in the clas-
sic case—or the distribution of (M;¥,U{ )—in the proposed
extension—is Markov conditionally on observations. Thus, in
the new case, the distribution of UlN (conditional on observa-
tions) is a marginal distribution of the Markov distribution of
(MY ,UY) (conditional on observations). For this reason, the
new model is called the EMM model. As specified in the fol-
lowing, the interest of EMMs is that they are stable with respect
to the DS fusion (see Proposition 4.1). More precisely, for two
EMMs (MY, U, Y1) and (M?,U?,Y?), there exists U® such
that (M* @ M?,U3, (Y, Y?)) is an EMM. In particular, this
allows an easy integration of new pieces of information in the
Markov context.

Let us also mention some works that dealt with theory of
evidence within the framework of HMMs. In [16], DS fusion
is used to fuse multisensor data in nonstationary Markovian
context. Ramasso and Denoeux use belief functions to intro-
duce partial knowledge about hidden states of an HMM [18].
In [20], the authors use evidential reasoning to relax Bayesian
decisions given by a Markovian classification. The approach is
applied to noisy images classification. In [21], a method is de-
veloped to prevent hazardous accidents due to operators’ action
slip in their use of a skill-assist. Other applications of eviden-
tial Markov models include data fusion and image classification
[22], [23], power quality disturbance classification [24], particle
filtering [25], prognostics [26], dynamical system analysis [27],
and human action recognition [28]. Let us notice that theory of
evidence has also been applied in the Markov random field con-
text for image-related modeling problems [29]-[32]. Let us also
underline the fact that the evidential Markov models considered
in this paper are based on Markov masses, and thus, the associ-
ated computations strongly resemble to the classic computations
in classic probabilistic HMCs. This is different from the model
proposed in [28], where Markovianity is proposed through ev-
idential conditioning of credibilities. However, both methods
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allow exact recursive computation of the final credibility (or,
equivalently, the final bba) of interest.

Since the experiments considered at the end of this paper deal
with nonstationary data modeling, it is worth pointing out that
other Markov approaches have been successfully used to han-
dle nonstationary or imprecise data. In [33], switching HMCs
are introduced. For such models, the signal is considered sta-
tionary “per part,” and an HMC model with a different set of
parameters is devoted to each part. The same formalism is used
in [34] to consider noise switches. Another family of models
called “hidden semi-Markov models” [35] has also been used to
model nonstationary data [36]. In [37], De Bock and De Cooman
introduce an exact algorithm to estimate state sequences from
outputs or observations in “imprecise” HMMs. The uncertainty
linking one state to the next, and that linking a state to its
observed output, is represented by a set of probability mass
functions instead of a single such mass function. Other related
works are presented in [38] and [39].

The paper is organized as follows. Section II summarizes
PMCs and TMCs. In Section III, HEMCs are briefly recalled
and commented. Section IV describes the proposed model. The
application of such a model to unsupervised segmentation of
nonstationary signals and the associated experiments are pre-
sented in Sections V and VI, respectively. Finally, a conclusion
ends the paper.

II. PAIRWISE AND TRIPLET MARKOV CHAINS

The link between the classic HMCs and the HEMCs is made
through the so-called TMCs. TMCs are extension of PMCs,
which are themselves extensions of HMCs. This section is de-
voted to briefly recall what PMCs and TMCs are. Both models
being probabilistic, there is no theory of evidence in this section.

A. Paiwise Markov Chains and Unsupervised Segmentation

Let us consider two random sequences X{¥ = (X1,..., Xy)
and Y{¥ = (Y1,...,Yy) defined as above, and let Z¥ =
(Zy,...,Zn),with Z,, = (X,,,Y;,) foreachn = 1,..., N.The
couple Z{¥ , which will also be denoted by Z{¥ = (X{V,Y{"V),
is a classic HMC if its distribution is written:

N

p(a,91) = p(z1)p(y |21) H p(@n|@n-1)pYnlzn).  (3)

n=2
The couple Z}" is said to be a “PMC” if it is a Markov chain:

N

p(le\f’y{\f) :p(fﬁ,yl) Hp(xnvyn‘xnflaynfl) (4)
n=2

which will also be equivalently written as

N
pa u) =p(z1) [ ] p(znlzn-1). Q)

n=2

As the transitions in (4) can be written as

p($71, » Yn |xn71 ; ynfl)
:p(xn|‘rn717ynfl)p(yn|xn7xn717yn71) (6)
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we see that HMCs can be seen as particular PMCs in which
p(xn |xn71 3 ynfl) = p(xn |xn71) and p(yn |xn y Lpn—1, ynfl) =
2(Yn |2, ), which show locally how more general PMCs are with
respect to HMCs. This greater generality can also be seen at the
global level, through the following result. For stationary and
invertible (which means that p(22|21) and p(z1]22) are equal)
PMCs, the chain X i‘V is Markov if and only if for each n =
1,2,...,N, p(yn|2Y) = p(y, |z, ): See the proof in [33]. Thus,
the Markovianity of X:" is not only useless, but it can even be
inappropriate, as it imposes constraints on the noise distribution

Pyt |=1)-

Then, forward probabilities denoted «, (w) = p(y}, x, =
w) and backward probabilities denoted 3, (w) = p(yl, |z, =
w, Yy ) are computable recursively, as in HMCs:

a1 (z1) = p(1,9);
@ip1(Tis1) = Z @i (x:)p(Tis1, Yie1|Ti, vi) (7
z; €9
Bi(zn) =1
Bi(wi) = Y B (@is)p(@ii1, vic1lwi vi). (8
Tiy1€Q

‘We have the following results, which extend those used in the
classic HMCs:

p(xiv1lziyy ) = @H(x";il()i()ziﬂbz‘) ©
plaily) = —alzbi() 00

ZL cn @ ( )ﬁl( )

o (2:)p(zis1|20) Biv1 (xit1)

S 1o (@) B (@)

plxi, zis1lyy ) = (11)

Remark 2.1: Let Z)N = (Zy,...,Zy) be a PMC. As
p(z1,91) = p(x1)p(y1]|71) and the transitions p(z,|z,-1) in
(5) can be written as

p(2n71 9 Zn)
p(znfl )
p(xnfl , T )p(ynfl > Un ‘xnfl ; T )
p(l‘n71 )p(yn*l |$n,71 )

p(Zn |Zn71) -
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(5) can be written as

N N
p('j’l » Y1 )
N
p(7n 1, pyn 17yn|1n 17341)
p(z1) p(yr]z1) .
n=2 pxn 1 n—2 yn l‘ln 1)
a(e)) b uy)

12)

In a(x)), p(z,_1,,) is the distribution of (X, 1,X,),
(1) is the distn'bution of X,,_1,buta(xd) is not necessarily
the distribution of X{V. In fact, a(x? ) is Markovian, and p(a:1 )
is not necessarily Markovian. As a consequence, b(z] , i) is
not necessarily the distribution of p(yi" |#1").

B. Parameter Estimation in the Gaussian Case

Parameters estimation is identical in PMCs and TMCs, and
thus, the method below is applicable to TMCs. More generally, it
is applicable in some particular models among the new CEPMCs
we propose. Hence, this paragraph is of importance for the un-
supervised MPM segmentation with some of the proposed mod-
els. Let us consider a stationary PMC defined by p(z1,22) =
p(x1,y1, 29, y2) = p(a1,22)p(y1, y2|21, 2). Let us consider
the Gaussian case, which means that p(y;, y2 |21, 22) are Gaus-
sian. However, let us notice that, according to (12), p(y1¥ |z)
is not necessarily Gaussian. The problem we deal with is
to estimate model parameters from Y;¥ = yi'. In the classic
Gaussian HMC, the most known and used method is the EM
algorithm [40], [41], and we will use in this paper its extension
to PMC. For K classes, we have, thus, to estimate /2 parame-
ters pij = p(r1 = w;, T2 = w;), and all parameters of K> Gaus-
sian distributions fij(y1,y2) = p(y1, y2|21 = w;, x2 = wj) in
R? denoted with N (;j,1j). Denoting by png), ,ui(jq>, and Fi(jq)
the current parameters, the next ones are given with (13)—(15), as
shown at the bottom of the page, where z/z,flqjl (1,7) = plxp_ =
wi, T, = w;|ylY) is computed with (11) and the current param-
eters.

Finally, the EM runs as follows.

1) Find an initial value 6(°) of the parameters.

2) Compute §(¢*1) from #(4) and y¥ as follows:

i) Step E: Use (7), (8), and (11) with the current pa-
rameters 0(9) to compute 1/),(21 (4, 7).
ii) Step M: Use (13)—(15) to compute §(7+1)
until an end criterion is reached.

pi(jq+1 - Z ¢77q)1 (13)
n=1
M((H‘l) 25:2 (yrl—lyyn)t/lz[}fzqf)l (Zv.]) (14)
! Saa 9y (i)
7 1 1 ..
ﬂﬁD:zLﬁm%h%%wﬁ”mwlym 1 ) s)

! Zn 211[}77 1(Z ])
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Let us notice that we use EM because it is well known that it
is quite efficient in the Gaussian case considered in this paper. In
a more complex situation, with non-Gaussian correlated noise,
the “Iterative Conditional Estimation” method can be used, as
proposed in [42].

C. Triplet Markov Chains

Let us recall the TMC, which will be used to achieve DS fu-
sion in the Markovian context. Let us consider three random
sequences XV = (Xi,...,Xn), YV =(V1,...,Yy), and
UN = (Uy,...,Uy), taking their valuesin Q = {wy,...,wx },
R,and ¥ = {0y, ..., 0 }, respectively. Considering the triplet
N = (UN, XN, YY), Markovian allows one to search X;' =
(X1,...,Xn)and UN = (Uy,...,Uy). In fact, setting V;N =
(UN, X)), Markovianity of T}V means that T} = (V{¥, YY)
is a PMC, and thus, VIN can be searched from YlN , as spec-
ified above. Let us notice that TMC is strictly more general
than PMC; in fact, (X;¥,Y/") is not necessarily Markov in
a TMC T} = (UN, XY, YN). More precisely, none of the
chains (U, X)), (UN, YY), (X, VN), UN, XN, or YV is
necessarily Markov in a TMC. The auxiliary process U{" may
have many meaning according to the application [15], [33], [36],
[43].

To summarize, we can say that in HMC, p(z1" ) is Markov, the
noise distribution p(yi¥ |z]) is simple, p(z},y]) is Markov,
and p(x1 |y}) is Markov, the latter property being important in
MPM application. In PMC, p(z?" ) is not necessarily Markov, the
noise distribution p(y:¥ |z}) is Markov and, thus, more com-
plete than in HMC, p(z,vi") is Markov, and p(z |y]) is
Markov, the latter property allowing the use of MPM in a sim-
ilar way as in HMC. In TMC, none of the distributions p(z%'),
p(yi¥|z¥), p(zY, y), and p(z) |yi¥) is necessarily Markov;
however, as p(u,, z, |y’ ) are computable with complexity lin-
ear in N, p(z, |y ) = 32, p(un, x|yl ) also are, and thus,
the use of MPM is possible, with comparable computational
complexity as in PMC and HMC [17].

III. HIDDEN EVIDENTIAL MARKOV CHAINS

A. Theory of Evidence

Let us briefly recall some basic notions of the theory of
evidence [44]-[47]. Let Q = {w1,...,wk }, and let P(Q) =
{A1,...,Aqg} be its power set, with @ =25, A function
M from P(Q) to [0,1] is called a bba if M()) =0 and
> acp(o) M(A) = 1. A bba M defines, then, a “plausibility”
function Pl from P(2) to [0,1] by PI(A) = ZAQB#) M(B),
and a “credibility” function C'r from P(£2) to [0, 1] by Cr(A) =
> pca M(B). For a given bba M, the corresponding plau-
sibility function Pl and credibility function C'r are linked
by PI(A) + Cr(A°) =1 so that each of them defines the
other. Conversely, Pl and Cr can be defined by some ax-
ioms, and each of them defines then a unique correspond-
ing bba M. More precisely, Cr is a function from P() to
[0, 1] verifying Cr(0) =0, Cr(Q) =1, and Cr(U;c; 4)) >
D 0zicy (—1)‘I‘+1Cr(ﬂj€] A;), and Pl is a function from
P() to [0,1] verifying analogous conditions, with < instead
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of > in the third one. A credibility function C'r verifying such
conditions also is the credibility function defined by the bba
M(A) = Y4 (~)A=EICr(B).

Finally, each of the three functions M, PI, and Cr can be
defined in an axiomatic way, and each of them defines the two
others. Furthermore, a probability function p can be seen as a
particular case in which Pl = Cr = p.

When two bbas M, and M, represent two pieces of evidence,
we can combine—or fuse—them using the so-called DS fusion,
which gives M = M; @& M defined by

M(A) = (My & Mp)(A) o Y My(B1)My(By).

BiNBy=A
(16)
We will say that a bba is “Bayesian” or “probabilistic” when,
being null outside singletons, it defines a probability, and we
will say that it is “evidential” otherwise. One can then see that
when either M, or M, is probabilistic, the fusion result M is
also probabilistic.

B. Dempster—Shafer Fusion and Posterior Distribution

The main link between classical Bayesian computations and
the theory of evidence is that the computation of the poste-
rior distribution can be seen as a DS fusion of two probabili-
ties. Thus, extending the latter to belief functions, one extends
the posterior probabilities, and thus, one extends the frames of
Bayesian computation. This is the crux point, and the novelty
of this paper is to propose using it in a wide Markov context,
extending the different recent results.

Let us consider some examples showing the interest of ex-
tending classic posterior probabilities calculation to DS fusion.
As a first step, we limit the frame to a simple context without
Markovianity, but we will show in the next section that each
of the examples below can be extended to the general Markov
context introduced in this paper. Let us mention that similar
examples may be found in [48] and [49]. In addition, it should
be noticed that Example 3.1 uses the so-called linear-vacuous
mixture, while Example 3.2 uses what is commonly known as
“inner-measure” [48], [49].

Let us also mention that since Zadeh’s criticism [50], many
research works have discussed the consistency of theory of
evidence [51], some of which concluded that DS theory re-
mains quite limited when modeling probability sets or unknown
probabilities [48], [49]. Furthermore, while Dempster’s rule
generalizes Bayes rule, it does not comply with a subjective
interpretation of probability [52]. In addition, let us point out
that while this paper employs theory of evidence, imprecise
probabilities can also deal easily with such situations [52].

Example 3.1: Let Q ={wi,...,wx}, and let us sup-
pose that our knowledge about the distribution p(z) is
pr=plx=w))>el,..., pk =p(x =wg) > ex with € =
€1+ - - +ex <1. We see that € measures the degree of knowl-
edge of p(z) in a “continuous” manner: For ¢ = 1, the distribu-
tion p(x) is perfectly known, and for £ = 0, nothing is known
about p(x). Assume that p(y|z = w1),..., p(ylr = wk) are
known, and let us consider the distribution ¢V = (¢f, ..., q%)
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defined with
v plylr =w1) y _ plylr=wk)
ql - . 7qK -

Zfi1p(y|x:‘di) Zf(:1p(y|x:‘d7)

Using Bayesian classification to estimate X=z from Y = y
requires the knowledge of p(x|y) o« p(x)p(y|z), which is thus
only partly known. How could one use this partial knowledge
to perform Bayesian classification? This is made possible by
introducing the following bba A on P(2): A is null outside
{{wl}, oany {u)[(}, Q} and A[{wl}] = Ey ey A[{wg}] = €K,
AlQ] =1—(e1+---+ex) = 1—e. The DS fusion of A with

¢’ = (q{,...,q% ) gives a probability p* defined on 2 by
. (ei +1—¢e)gf
p (wl) = =K

Zj:l (e +1- 5)9?

Then, using p* to perform the classification allows one to use
the partial knowledge of p(z) in a “continuous” manner: Perfect
knowledge of p(x) corresponds to ¢ = 1, and indeed, when
e = 1, we have p*(z) = p(z|y). The case e = 0 corresponds to
the case where p(z) is not known at all, and indeed, this case
implies p*(x) = ¢¥(x), and the corresponding classification rule
is the maximum likelihood classification.

Example 3.2: Let us consider the following example [44].
LetQ = {wy,...,wk } with the distribution p(x) known. There
is a partition of €2 into L < K subsets )y, ..., {2, such that the
elements of each subset 2; produce a same ¢/. For example, in
image processing, we can have three classes “river,” “field,”
“houses,” and an infrared sensor. As such sensor measures
the temperature, it cannot make a difference between “field”
and “river.”” Hence, there are only two subsets {river, field}
and {houses}. Then, we can consider a bba B null outside

{Q,...,Qr} and defined for each §; by
BY(Q) - Lp(y|$ = w;)
Z]‘:l p(ylz = wj)
where wy, . ..,wy, are arbitrary elements such thatw; € €y, ...,

wy, € Qp. The DS fusion of p(x) with BY gives a probability
p* defined on ) by

. p(w;)BY ()
pi(wi) = (o) B )I/Q'
D (w0 )l e, PW;)BY ()
As in Example 3.1, when BY isitself ¢ = (qi, ..., ¢} ) from
Example 3.1, p* is the classic posterior distribution.
Example 3.3: As in Example 3.2, let Q = {wy,...,wk }

with the distribution p(x) known. Assume that p(y|z =
w1), ..., p(y|lr = wg ) are known; however, there exists an addi-
tional class wx ;1 which “hides” the classes of interest forming
Q, and which produces p(y|x = wk ;1). For example, in optical
satellite image processing, there may be three classes of inter-
est “forest,” “water,” and “houses,” while a fourth class “clouds”
can be of no interest. According to Yager’s rule, one can transfer
the mass associated with such an “additional” class to 2. Then,
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one can consider BY is null outside {{w },...,{wx }, 2} and

plylz = wi)
S pyle = wj)
pylr = wr+1)
Syl = wy)

B'[{wi}] = Jfori e {1,..., K} and

BY[Q) =

The DS fusion of p(x) with BY gives a probability p* defined
on () by

p(wi)[BY({wi}) + BY ()]

) = @B (s ) + B @)

This fusion is mathematically similar to that used in Example
3.1; however, it models a quite different situation. Such models
have been successfully used in cloudy images segmentation in
[32].

It is worth pointing out that the situation of the presence of an
additional class, considered here from Yager’s rule viewpoint,
can be managed differently. In the transferable belief model [45],
for instance, the associated mass is transferred to the empty set.
For conflict management in general, see [53].

Example 3.4: Let Q = {wy,...,wk }, and let us suppose
that the distributions p(x), p(y|z = wy), ..., p(y|z = wg) are
known. Let us assume, at a first step, that the knowledge of
p(x) is poor. This fact can be taken into account through the
bba A defined on {{w; },...,{wx },Q} by A{w;}) = ep(w;)
fori=1,..., K and A(Q2) = 1 — . Considering the distribu-
tion ¢V = (qf,...,q% ), where ¢/ o p(z = w;) (like in Exam-
ple 3.1), the DS fusion of A with ¢V = (¢f,...,q% ) gives a
probability p* defined on Q by p*(w;) o (A(w;) + A(Q))q! .
Let us now assume that the unreliability is related to the dis-
tributions p(y|z = w1),..., p(y|x = wg) as for the infrared
sensor of Example 3.2. Hence, there is a partition of €2 into
L < K subsets 2q,..., Q7 such that the elements of each
subset §2; produce a same q;/ . Then, we can consider a bba
B null outside {€,...,Q,} and defined for each ; by
BY(Q;) « p(y|r = w;), where w; is an arbitrary element ver-
ifying w; € ;. If p(x) is perfectly known, the DS fusion of
p(x) with BY gives a probability p* defined on €2 by p*(w;)
p(w;)BY(S;). Finally, if p(z) and p(y|lz = w1),..., p(y|lz =
wy ) are all unreliable, the DS fusion A @ BY is a bba de-
finedon {{w; },... ., {wx },Q1,...,Q} by [A® BY]({w;}) x
A({wr})BY ()L, 0, and, [A® BY](2;) o A(Q)BY(2).

Example 3.5: Examples 3.1 and 3.2 can be blended; for
example, let us consider a situation where the distribution
p(z) is not perfectly known, which is modeled with a bba
A on {{wi},...,{wk}, Q} as specified in example 1, and
Y =y defines a bba BY on {Q,..., Q}, as specified in
example 2. Then, the DS fusion A @ BY is then a bba on
{Hwi}, o {wk }, Q1. .., Qp )} defined by

A({wi})BY () Lo, eq,
A B ()

C

[A® B'|({wi}) =

A6 BYS) =
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with the normalizing constant

2

(w;i,9)|w; €9

L
A{wiBY () + Y AQ)BY ().

j=1

Cc =

Remark 3.1: Let us notice that when DS fusion produces an
evidential mass, it can still be used to perform a classification by
means of “maximum of plausibility” by choosing the element
in 2 whose plausibility is maximal.

C. Hidden Evidential Markov Chains

Let us consider the classic HMC with the distribution given

with (2).
Let
N
pl(xlv) :p(xl) Hp(xn|xn—1) (17)
n=2
and let
N
@) = [L—1 P(ynlzn) )

N .
Hn:l Z:r,, p(yn ‘xn)

Then, the posterior distribution p(z) |y¥) can be seen as the
DS fusion of p; and p¥! :

P |y = (m @ p" ) (2)). (19)

That is of importance as it opens way to different extensions
[17], [54]. More precisely, if either p; or pyiw is extended to
an evidential mass, the fusion (19) remains a probability distri-
bution, which can then be seen as an extension of the classic
posterior probability p(z [yl ). In addition, if the “evidential”
extension of p; or pi’/i“v is of a similar Markovian form, in spite of
the fact that the fusion result is no longer a Markov distribution,
the computation of posterior margins p(x, |y" ) remains feasi-
ble. In fact, the core point is to remark that the fusion (16) can
be interpreted as the computation of some marginal distribution,
which leads, in the Markov context we deal with in this paper,
to consider the so-called TMCs [17] recalled in Section II. For
example, if p; is extended to a bba of the form

M(Ay,...,An) = M(A;)M(As|Ay).. M(An|ANn_1)
(20)
where foreachi =2,..., N and A; € P(Q), M(.|A4;) is abba
on P(), then M & p¥' is a workable distribution, in spite of
being not Markovian.

Remark 3.2: Let us recall that (20) is not based on any con-
siderations about evidential conditioning, as it is made in [28].
In this paper, we deal with bbas in a similar way as if they were
probabilities, and this results in similar recursive formulas that
compute different quantities of interest. However, at each step,
bbas define credibilities and plausibilities, and thus, our model
is not probabilistic but evidential.

The interest of such extension has been shown in hidden non-
stationary Markov chain segmentation [15]: When the Marko-
vian p; is nonstationary, it is to say when p; (x,,, x, 1) varies
with n, replacing p; with stationary M of (20) form gives better
results in unsupervised segmentation than replacing it with any

1603

other stationary Markov distribution. This is of interest in un-
supervised context, where all parameters have to be estimated
from . Using some estimation method like EM, leads, when
keeping the classic model given by (2), to a stationary p; . When
using a stationary extension (20), EM can still be used, and the
estimated bba-based segmentation provides better results. Such
a model is called HEMC.

IV. EVIDENTIAL PAIRWISE MARKOV CHAINS

In this section, we introduce two original models, called
EPMC, and CEPMC. The latter simultaneously extends proba-
bilistic HMCs, PMCs, and TMCs recalled in Sections I and 1II,
conditionally Markov models [55], [56], and hidden or pairwise
EMCs recently published [15], [57]. Let us notice that consid-
ering evidential sequences, no temporally independent opens
very rich perspectives, and models we consider are somewhat
particular. For a frame of discernment 2 = {wy,...,wx } anda
sequence of length NV to deal with, the most general case would
be to consider the bbas defined on power set P[] of QY. We
limit our investigations to the bbas defined on (P[$2])", which
is a subset of P[QV]. Then, every A; x --- x Ay € (P[Q))Y
is assimilated to a sequence (A, ..., Ay ), and “Markov” bbas
are defined in a similar way as the classic probabilistic Markov
chains are, which results in “EMCs” [15], [17]. Such models
are particular ones and other possibilities of defining bbas on
sequences, using some kind of Markovianity stemming from
evidential conditioning, exist [19], [27], [28]. Thus, here, we
consider these particular models, and we extend them to new
families, whose originality and interest lie in the introduction of
an auxiliary set A = {Aq,...,4;}, which allows one, roughly
speaking, to keep Markovian form of considered distributions
after DS fusion. In other words, the main idea is to consider
the bbas of interest as marginal distribution of a Markov chain
rather than a Markov chain. Then, we show how the examples
of Section III can be extended, using the proposed model, to
take the spatial information into account.

Definition 4.1: Let us consider the following:

1) Q=A{wy,...,wx} a set of classes (frame of discern-
ment), P(Q) = {A,..., A} its power set, and A =
{M1,..., A} afinite set.

2) V¥ = (M}, U} ) arandom chain, each (M,,, U, ) taking
its values in P(£2) x A.

Let Iy, C P(§)) x A be the image set common for all V,, =

(M,,,U,),n=1,...,N.

Then, V}V is called EPMC if there exist ¢, ..., qy_; func-

tions from Iy, x Iy, to R™ such that its distribution verifies

p(v1) o< g (v1,v9)ga(v2,v3) . qn 1 (Un 1) (21)

Definition 4.2: Let us consider the context of Definition 4.1.
Let Y{¥ = (Y1,...,Yy) be a random chain, each Y,, taking its
valuesin R?. V} is called CEPMC if its distribution conditional
onY{Y =y} is an EPMC.

Let us notice that the meaning of the word “pairwise Markov”
is somewhat different here from the one used in Section II.
Indeed, here, we consider a pair in which one sequence
is evidential and the other is probabilistic latent, while in
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Section II, we consider a pair in which one is probabilistic
hidden and the other is probabilistic observed. Anyway, in both
cases, the related couples are Markov, and it will result from the
context in which case one is.
Remark 4.1: 1t will be of importance to notice that the sup-
port Iy, C P(Q) x A of the law of V;{¥ = (M{¥,U}) is not,
in general, the whole P(€2) x A, but only a part of it. It will be
convenient to consider Iy, as being defined by:
1) Iy, the setof bbas such that there exists A; € A such that
(my,,u, = Aj) € Iy, (the image set of M,);

2) the function that associates with each m,, € Ij;, the set
A(m,,) of elements A; in A such that (m,,u, = A;) €
Iy, .

Definition 4.3: Let VN = (MY ,UN) be an EPMC (a
CEPMC, respectively). The random chain M}" will be said
EMMC (a CEMMC, respectively).

We see how EMMCs and EPMCs (CEMMCs and CEPMCs,
respectively) are linked to each other: MY is an EMMC if there
exists U{¥ such that V)N = (M, U}) is an EPMC ( M{¥
a CEMMC if there exists U;¥ such that VN = (M U} )isa
CEPMC, respectively).

The interest of formulation (21) rather than formulation (20)
will appear in Proposition 4.1. In fact, expressing an EPMC
through such a formulation makes it possible to prove that
EPMCs are stable with respect to DS fusion; it is to say that the
DS fusion result of two EPMC:s is itself an EPMC. On the other
hand, (21) is equivalent to Markovianity of V; = (MY, U),
and this Markovianity allows the computation of p(m,)
(which is p(m,|yY) in the CEMMC case). Indeed, if Vi
is Markov, one can take ¢ (v1,v2) = p(v1,v2),q2(va,v3) =
p(vs|va),...,qv-1(vy-1,vn) = p(uy|vy_1).  Conversely,
(21) implies Markovianity of V;¥ with transitions p(v, |v, 1)
and p(vy) computable by the classical backward recursion.
More precisely, setting

fv(uy) = 1;
Fo1(@a1) = D du1(a1,00) fu(va),
for = ]\;,...,2. (22)
We have
p(vg|vn—1) = q‘VI%T’II(;JZ”)jn (v”), for n=N,...,2
p(vr) = m(”lj;l”af;(”). 23)

Having p(v; ) and p(v,, |v,—1) forn = 2,..., N, we compute
p(v,) foreachn = 2, ..., N, by the classical forward recursion

p(v1) given ;

Zp U’!l

Un

P(Vn41) p(vni1|vn), forn=1,...,

N —1.
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Flnally, having p(v,) = p(m,,u,) gives p(m,) for each
n=1,...,N:
(25

m?l

Zp Un - Zp(mruun)-

Un Unp

Let us now consider the CEMMC case: p(m,,) calculated
aboveis p(m,, |yl ). There are two possibilities: it is a probability
or a bba. In the first case, the classic Bayesian MPM method
can be used to estimate the hidden class. In the second case, one
can compute the plausibility Pl(w;) =3, |, cm, P(Mn M)
and estimate the hidden class by the “maximum of plausibility.”
Finally, one important thing is that in the general CEPMC, the
hidden classes can be searched by a method extending the classic
MPM method, which is merely as simple as the latter.

Remark 4.2: It can be shown that the complexity of a

CEPMC VN = (M} ,UY) is equivalent to the complexity
of a TMC TV = (U'Y, M"Y, v{N) with CardD(U"Y)] =
CardD(UN)] and Card[D(M'Y)] = Card[D(MN)], where

D(A) denotes the domain of sequence A. For more details,
see [17].

We provide different examples, showing how the EPMCs
family includes different models proposed so far. Before, let us
specify how the DS fusion is performed inside EPMCs family.
We can state the following result (the proof is provided in the
Appendix).

Proposition 4.1: Let V! and V? be two EPMCs defined
only: C P(Q) x Al and Ivo C P(Q) x A? with distributions
given by (21), with (¢} ,..., ¢k ;) and (¢},...,q% ), respec-
tively. Then, the DS fusion V' = V! @ V? is an EPMC defined
on Iy, C P(2) x A3, with:

1) A? = P(Q) x P(Q) x A! x A%, Iy, defined by I, =
{AePQ)A=A'NnA> A € Iy, A € Iz} and
A*(my) = {(AY, A%, AN 0%) e A3|AY € Iy, A* €
IMT.: s A e Al (Al), 22 e A? (AQ)}a

2) (¢},...,q% 1), where foreachn=1,...,N —
defined on Iy, x Iy, by

3 .
1, g is

(A3 u An+1’ n+1)

no
_ 3 1 1 2 3
=4y (A (un ’ un ’ An ’ A ) An+1 ’

no
1 2 1 2
(u7L+1 ’ un+l ) An+1 ) An+1))

1 1 2
_qn(An?un7An+17 71+1)qn(A717u717An+17 n+1) (26)

In practice, the DS fusion is performed as follows:
1) one searches for Iy, and A3(m,,), which gives Iy, ;
2) one computes g, (Af’” ud, A% ud ) on Iy, with (26).
Remark 4.3: As stated above, the DS fusion is achieved by
simple multiplication. While such a computation is not heavy
from computational point of view, the complexity of the EPMC
resulting from this fusion is higher than the one of each model
involved in such fusion. Furthermore, when there are many
EPMC:s involved in the fusion, the model complexity increases
quickly at each application of DS operator. This is due to the
quick increase of the cardinality of the domain A® as specified

(24) in Proposition 4.1.
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We have considered until now that there was an unique
set A for all n=1,...,N; let us now assume that it can
depend on n. Thus, the sets I, vary with n. This allows
one to take into account additional “local” information. More
precisely, let us consider a CEPMC with distribution defined by
a1 (v1,v2,91), ... qv—1(vn_1,vn,y] ). Let us imagine that
an additional information on the hidden class w € 2 at point
n, for example, provided by a new observation, has arrived
and this new piece of information is modeled by a bba MN¥.
According to Proposition 4.1, we set I}, = {A € P(Q)|A, =
Al N A2, with A, € Iy, , A2 € Iyyyew }. Then, g1 (vn-1,
Un y{\) =dn-1 (Unfb (An ) An)v y?) (or gy (Un » Un+15 y{V))
is  modified by setting ¢ (v, 1,0, YY) =q
(Vn-1, (An, Ay,), U{V) =qn-1(Vn-1, (Arlw)‘n)a y{V)Mn (A%L)’
where A varies in A} C P(Q) x P(Q) x A,, defined by
(A1, Ay, k) € A;, iff AL N A2 e I, . Thus, this DS fusion
modifies A,,, which becomes A . '

Let us briefly summarize how CEPMCs extend different
known models.

D Let V¥ =(MYM,UN) be a CEPMC defined on

n?

Ly, y..., Iy, ) CIP(Q) x A] x ... x [P(22) x An],

with YV =4  observed random  sequence.
Thus, its distribution is defined by ¢ (vy,
UQay{v)v"'7qN—1(UN—1aUNayiV)' When Al7"'7AN

are all reduced to singletons, all P({2) x A,, can be seen
as being reduced to P(2). When, in addition, V¥ = M}
so obtained is probabilistic, we find again the famous
“discriminative random fields” (DRF) [58], [59]. When
VN = M} so obtained is not probabilistic, we obtain an
original “evidential” extension of DRFs.
2) Let us return to the general case. If qi(vi,v0,y) =
fiv,v2)g1(vi,91) h (v2,92), -5 qv 1 (v -1, VN,
Y )= fv-1(vv-1,0n8) gv-1(vn-1,yn-1) hn-1(va,
yn) and Ay, ..., Ay are all reduced to singletons, one
finds again some evidential models including the HEMCs
[15]. When, in addition, Ay, ..., Ay are not all reduced
to a singleton, we obtain original “triplet” EMCs with
“independent noise.” This last model becomes the classic
probabilistic TMC “with independent” noise (TMC-IN)
if, in addition, M. IN is probabilistic. Let us recall that such
a TMC-IN is an extension of both “hidden semi-Markov
chains” [35] and “hidden bivariate Markov chains” [60].

3) Let us return to the general case. If ¢ (vi,v9,y) =
Sior,ve,y1,92), - av—1(ov—1,on, YY) = fva
(vy-1,vN,yn-1,yn) and Ay,..., Ay are all reduced
to singletons, we find again the pairwise EMC [17], [57].
If Ay, ..., Ay are not all reduced to singletons, we obtain
an original “triplet” EMC that extends the same model
with “independent noise” of the previous point. On the
other hand, it also extends the pairwise evidential chain
introduced in [17] and [57].

We see that there are three kinds of factors influencing the
degree of generality of different models. The kind of depen-
dence of ¢, (v,,v,:1,y" ) on ¥ gives “independent noise,”
“pairwise” models, or “DRF” models. Probabilistic or eviden-
tial nature of M{ gives “probabilistic” or “evidential” models.
Finally, Ay,..., Ay can all be reduced to singletons or not.
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These factors can be blended, which results in numerous possi-
bilities some of which giving again known models, while some
others providing their original extensions.

Let us resume the examples of Section III, to see what
is modified when using the Markov context proposed in
Proposition 4.1.

Example 4.1: Let us consider Example 3.1. Thus, p(z)
on  is replaced by a Markov distribution p(z}) on
QON. In particular, the latter distribution can be consid-
ered as given by p(al) o< qi (w1, 22)...qv_1 (TN _1,2N),
with  the functions ¢ (z1,22) = p(x1,22), @2 (22, 23) =
p(xs|za), .. .‘{qu,l(xAV,l,x]\r) = p(xj\r|xgyr,1). Let us as-
sume that py = p(r; = wi, 22 = wj) > €}, with >,
6? =¢; <landforeachn=2,....N —1,pll =p(z,,1 =
wjle, = w;) > &), with Y, el =el, <1. This poor
knowledge of p(x)’) can then be modeled by ¢} (v,,v,+1),
with (v, v541) € {w1}, ..., {wk },Q}?,  defined with
q,l,,(v7,,,vn+1) = Eiré it (vp,v001) = ({Wi}a{wj})v and
¢ (Vn, v, 1) defined on {{wi},...,{wr}, Q) —Q? in
some way with the constraints Y, qi(vi,v2) =1 and for
n=2,...,N—=1,%,  q(vs,vp41) =1 Let us then as-
sume, as in Example 3.1, that p(y,, |x,, ) are perfectly known for
eachn=1,...,N and z, € Q. Let ¢V" ¥V (x1,...,2y) X
p(y1]z1)...p(yn|zy) be the corresponding probability
on QY. This probability can be considered as a particular
Markov chain defined by ¢?(z1,22) = p(y1|71)p(ya|z2),
@ (22, 23) = p(ys|x3), - ,q% 1 (xn—1,28) = plyn 2N
Thus, we have an EMC given with ¢!, ..., ¢} | (which is an
EPMC with no A'), and a probabilistic “Markov chain” (which
is a product of margins and that can be seen as a particular
EPMC with no A?). According to Proposition 4.1, the DS
fusion, which extends the well-known HMC, is an EPMC with
A? = Q (¢¥*YY being a probability, simplifications within
the operations specified in the proof of Proposition 4.1 lead to
A3 = Q). The functions ¢ are then null when A3, ..., A3 are
not equal to A%,. .., A% . For simplicity sake, we can write

a1 (Af, Al, Ay, A3)
= Luzear Lazearqi (A1, A3)p(y1 | AD)p(y2| A3);

Q§V71(A}V717A%\’717A}\77A?\’)

=14z cay, ay_1 (A _1, Ay)p(yn|AY).

It is worth pointing out that the EPMC resulting from the
above DS fusion is the “HEMC” described in Section III-C.
Furthermore, setting K = 2, one finds the experimental exam-
ples considered in [15], where the EMC defined by q1 , . . ., ¢,
has been used to model priors nonstationarity. Indeed, the core
idea was to interpret this nonstationarity as a poor knowledge of
priors. This same idea is adopted in the experiments conducted
in this paper but in a more general context (the DS fusion result
is more general than a HEMC since q%, R q%hl are no longer
expressed simply as a product of margins).
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Example 4.2: Let Q = {w1,...,wx } with the Markov dis-
tribution given by p(z)) = p(z1)p(xa|z1) ... plry|ry 1)
known. There is a partition of ) into L<K subsets Q,...,

Q1 , such that for each subset (2; and foreachn = 1,..., N, the
distributions p(y,, |, ) are all equal when x,, varies in §2;. Thus,
we have foreachn = 1,..., N, adistributionon {Qy,...,Q}

defined by p(y.|),...,p(y.|Qz). Accordingly, we can
set Q%(xlaxQ) = p(ﬂcl)p(lex1),q§(x2,m3) = p(a3|r2),. ..,
ay 1 (zy-1,2n5) = plan |z 1) and ¢f (A1, A2) = p(y1|Ar)
p(y2lA2), ¢5(A2, A3) = p(ys|As),.. ., ¢k 1 (An-1,AN) =
p(yN|AN)- Then

i (z1, A1, 22, As)
= 1ayeay Layen, @1 (21, 2)p(y1 | A1 )p(y2] As);
@ (T2, Ao, a3, A3) = Ly, ea, Luyeas @ (22, 73)p(ys| A3);

g 1(zn_1, Av_1, 2N, AN)
= 19&\'71 €AN 1 19€N cAN q}Vfl (fol y TN )p(yN ‘AN)

Example 4.3: Let Q={wy,...,wx}, and let us
consider that the Markov distribution p(xd) =
p(x1)p(az|zr)...p(ay|zy-1) is known. Let us assume
that there exists an additional class wg.i. As in Exam-
ple 4.2, we set qi(x1,22) = p(z1)p(walar), g3 (w2, 23) =
p(aslee),..yay o (@n-1,2n) = pleylzy-1) and ¢
can be defined by the same formulas as in the previous
example, knowing that the sets Aj,..., Ay here vary in

{{wl}""7{wK}aQ}'

Example 4.4: Let Q={wy,...,wx}, and let us
suppose  that the Markov distribution p(z)) =
p(z1)p(z2|z1) .. .pley|ery-1) and  the  distributions
p(yn|xn =w1),...,p(Yn|x, =wk) are known; however,

the reliability of this knowledge is poor. The poor knowledge
of p(x) can be modeled by ¢' as in Example 4.1, and ¢* can
be defined by the same formulas knowing that sets vary in
{{wl}, ey {wK}, Q}

Example 4.5: To extend Example 3.5, let us con-
sider a situation where the Markov distribution p(z]) =
p(x1)p(a2|z1) ... p(xy|zy-1) is not perfectly known, which
can be modeled with ¢! as in Example 4.1. Besides, there exists
a partition 0y, ..., Qy of Q as specified in Example 4.2, which
can be modeled by ¢? of the latter example. Then, the DS fusion
is obtained by the general formula (26).

V. NONSTATIONARY SIGNALS SEGMENTATION USING
CONDITIONAL EVIDENTIAL PAIRWISE MARKOV CHAINS

To demonstrate the interest of the proposed EPMC, we choose
unsupervised segmentation of nonstationary signals (with pa-
rameters estimated by EM) as an illustrative application. For this
purpose, let X = (Xi,..., Xx) be a hidden random chain
taking its values in = {wy,...,wx } and which is to be es-
timated from an observable random chain YV = (Y1,...,Yy)
taking its values in R. Let us assume that the distributions
p(x,,x,4+1) depend on n. This fact can be interpreted as
an unreliability of the knowledge of p(z,,,,+1), as done in
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Example 4.1. Considering the random chain U} =
(Uy,...,Uy) taking its values in P(€2), let M; be an EMC
defined on P(Q)N by (20), and let M> be the Bayesian distri-
bution defined by the observation 31" and given by

Py, y2lzi, @2) . p(yv—1,yn [zN -1, 2x)

p(y2|2) . p(yy <1y 1) '
According to Definition 4.1, M, is a particular EPMC
defined on P(2) with no A (or by considering A! as a
singleton) by ¢ (u1,u2) = p(ui,uz) and g} ;(u,_1,u,) =
P(Up |ty 1) for n=3,...,N. On the other hand, M, is a
particular EPMC defined on Q with no A? by ¢} (x1,22) =

P(y1,y2|T1,22) and g (2n-1,2,) = p—wp(;lil \;:)J) for
n =3,..., N.Inaccordance with Remark 2.1, when M, is null
outside Q, the DS fusion M; @ M, defines a classic PMC.
On the other hand, when M, is replaced by My (x1, ..., xy)
p(y1|z1) ... p(yn|zN ), one finds the HEMC. This shows again
how EPMCs generalize both PMCs and HEMCs.

According to Proposition 4.1 and Definition 4.2, the
DS fusion M = [M; @ M,] defines then a CEPMC V{"¥ =
(X, UN) taking its values in Q x A3 with A> = P(Q) x €,
and the result of such a fusion is a probability. Accordingly, the
CEPMC V¥ = (X}, UN) is given by

]\/Iz(zl,...

71:]\") X

p(ol) o< ¢ (w1, ur, 29, u9) .. Xy (2N 1, un 1, 2N, uN)

(27)

where

@ (21,01, T2, u2) = Lo, cuy Loy ey ma (ur, u2)p(y1, |1, 22),

and for3 <n <N

(J?H (Tp—1,Vn—1,Tn, Un)
PYn—1,Yn|Tn-1,2n)
P(Yn—1|Tn-1)

Hence, the distributions p(z,,, v, |y} ) are workable, and the
complexity of their computation is linear in the size of the
data N.

= ]-.'zc,, cu, M1 (unfl 5 Un)

A. Marginal Posterior Mode Restoration of Evidential
Pairwise Markov Chains

Let us consider the CEPMC V;¥ = (X{¥,U}") of (27). In
the following, we use ¢ instead of ¢°. One can, then, define the
backward functions as follows:

By (vx) = 1,and By 1 (v 1) = Y Gu1(Vn—1,0n) B0 (vn)-

Up

(28)
Hence
Ny _ 0(v1,v2)B2(va)
plorlyr) = Br(on)
Ny _ 4N-1 (Un—lavn)ﬂn (Un) o
p(U7L|Un—17y1 ) - ﬁnfl(’l}nfl) y n—N,...,2.
(29)

p(oily) and p(vn|va-1,y) for n=2,...,N being
known, one can compute p(v, |yl ) for each n =2,..., N, in
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the following classical way:

Zp Un |y1

Un

p Un+1|y1 U7L+1|Urmyiv)- (30)

The distributions p(v,,, v, 1|yl ) required for the parameter

estimation can also be computed as follows:
P, v [91) = (a9 )p(Wnsa [on, ). GD

Finally, since p(v, |y) = p(x,,u, |y’ ), one can evaluate
p(w, |y) foreachn = 1,..., N in the following simple man-

ner:
ZP Un |7J1 = Zp(mnvun |y1\/)

Un Un

p(alyr) (32)

B. Parameter Estimation in the Gaussian Case

Let us consider the Gaussian case where the distributions
p(Yi, Yiv1|xi, x;11) are Gaussian densities (as in Section II-B).
For K classes, we have, thus, to estimate 22 parameters
M = p(u; = Aj,us = A,,), and all parameters of K? Gaus-
sian distributions fij (yl,yg) = p(yl,y2|$1 = Wi, Ty = Wj) in
R? denoted with N (yj,Ty;). Denoting by m\?), ,ui(jq), and
'@

ij
algorithm, and setting wf,q)(i,j,l,m) =p(Tn = Wi, Tni1 =
Wi, Uy = A up i1 = Ay [yl ) computed with (31), the next set
of parameters is given by (33)—(35), as shown at the bottom of
the page.
Accordingly, the EM runs as follows.
1) Find an initial value 6(°) of the parameters.
2) Compute 67+ from §(¢) and y¥ with
a) Step E: use (28)— (31) with the current parameters
(%) to compute wn 1(uj,l,m);
b) Step M: use (33)—(35) to compute gla+1)
until and end criterion is reached.

the current parameters during the execution of EM

VI. EXPERIMENTS

In this section, we present two series of experiments. In the
first one, we deal with synthetic data sampled according to a
nonstationary PMC. The aim is to compare the optimal results
given by the true nonstationary model (called “TNS-PMC”)
using the true parameters with those obtained with the four fol-
lowing methods: HMC, PMC, HEMC, and the proposed EPMC,
all of them being based on stationary models with parameters
estimated by EM. The main goal is to see whether EPMC gives
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TABLE I
DENSITIES PARAMETERS OF SAMPLED DATA

Densities 111 m f] o ilj o f] pij
fi1 -5 -5 4 4 P11
fi2 -3 3 4 4 P12
f21 3 -3 4 4 P21
fa2 5 5 4 4 p22

good results with respect to the optimal ones provided by TNS-
PMC. However, comparing EPMC with PMC, on one hand, and
with HEMC, on the other hand, also is of importance to show
the interest of the proposed method. In the second series, we
consider a real two-class image that we corrupt in some random
manner with a correlated noise. Then, the noisy image is seg-
mented, itis to say X;* = z}" is searched from Y = 41", inan
unsupervised manner through the four methods HMC, HEMC,
PMC, and EPMC. The main interest is to study what happens
when the data have complex distribution and follow none of the
four models considered.

A. Unsupervised Segmentation of Nonstationary Pairwise
Markov Chain

Let us consider a nonstationary PMC Z¥ = (Xi¥, V") with
Q = {wy,ws} and N = 4096. The realization of X; is sampled
uniformly from €2. Let us assume that the nonstationary distri-
butions p,, (i, j) are governed by two different matrices Q and
L alternately each s sites (X{, X3¢, ... are sampled using Q,
while X?2%,, X35, |, ... are sampled using L):

0.49 0.01 L 0.25 0.25
0.01 049 )’ 0.25 0.25)°

The data are sampled considering different values for s. For
Gaussian noise densities, ;¢ and o are provided in Table I,
whereas the correlation coefficients p are given in Table II (four
sets of p are considered).

MPM restoration is then achieved on one hand according to
TNS-PMC with real parameters 6 (used as a reference) and on
the other hand according to HMC, PMC, HEMC, and the pro-
posed EPMC using parameters estimated with EM (initialized
by K-means). Average results obtained on 100 simulations are
summarized in Table III.

(g+1)

N
mn = ﬁ Z Z 1/1£qu1 (imjv la m)

(33)
n=1w;,w;
/1'<q+1) _ 25:2 ZA;,A,,,, (yn 1vyn)t¢£;q>1(i j7l,m) (34)
! ZrY:Q ZA,,A,,, wn l(l j,l,m)
F(qul) _ ErY:Z ZA[,Am [(ynfhyn)t B Miqurl)][(ynflvyn) B u’f]qJﬁl)]t’(/}quf)l (i)ja l>m) (35)

ij N .
Zn:? ZA;.Am waqf)l(lvja l7m)
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TABLE II
CORRELATION COEFFICIENTS OF GAUSSIAN DENSITIES

Set  pi1 P12 P21 P22
A 0.5 0.5 0.5 0.5
B 0.9 0.5 0.5 0.9
C 0.5 0.9 0.9 0.5
D 0.9 0.9 0.9 0.9

TABLE III
SEGMENTATION ERROR RATIOS (%) OF SYNTHETIC DATA

Set s TNS-PMC HMC PMC HEMC EPMC
16 8.7 16 15.4 15.9 13.5
Set A 64 7.4 15.9 16 15 8.9
256 8.3 16.2 17.4 14.5 8.9
1024 7.5 15.8 15.9 14.3 7.6
16 7.4 21.2 235 21.1 9.2
Set B 64 5.8 19.8 329 19.2 59
256 5.5 19.9 30.8 18.5 59
1024 5.6 19.7 37.4 18.7 5.7
16 5.6 17.7 14 17.7 10.9
Set C 64 5.4 17.3 12.8 17.1 72
256 5.5 17.9 14.2 17.3 59
1024 5.7 17.4 13.9 17.3 5.8
16 2.8 22.3 6.8 22.1 4
SetD 64 1.4 22.1 27.7 20.9 2.1
256 2.7 21.3 44.6 20.8 29
1024 3 222 44 21.7 3.1

The misclassification rates establish that the proposed EPMC
outperforms the classic models. Moreover, the segmentation
results based on the EPMC, with parameters estimated by EM,
are comparable with those obtained with the TNS-PMC based
on real parameters, especially for high values of s. It is worth
pointing out that the proposed model, not only takes into account
the data correlation, but rather benefits from the correlation as
a feature to distinguish between the classes. In fact, for both
TNS-PMC and EPMC, the best performance is observed for
high values of p, whereas other models seem quite insensitive
to such a parameter. Finally, notice that the HEMC, taking into
account the nonstationary aspect of data, performs better than
HMC and PMC in most cases.

B. Unsupervised Segmentation of Nonstationary Images
Corrupted With Correlated Noise

Let us consider the 128 x 128 “Nazca” nonstationary class
image (see Fig. 1). We have then a realization of the hidden
process X with Q = {w;,ws}, where wy and ws correspond
to black pixels and white ones, respectively. Then, the image
is corrupted with a correlated noise. The observed process is
Y, = 0, Wy + pte, + (X0, 00, Wy + pia, ), where W is a
white Gaussian noise with variance 1 and 51, ..., S84 denote
the four neighbors of pixel s. The bidimensional set of pixels
is transformed into a mono-dimensional sequence via Hilbert—
Peano scan, as done in [14]. The distribution of the random

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 24, NO. 6, DECEMBER 2016

Fig. 1. Unsupervised segmentation of “Nazca” image. (a) Class image
X = x.(b) Noised image Y = y. (c) K-means clustering, error ratio 7 = 28%.
(d) HMC-based segmentation, error ratio 7 = 13.8%. (e) PMC-based seg-
mentation, error ratio 7 = 13.5%. (f) HEMC-based segmentation, error ratio
7 = 9.9%. (g) HEMC-based estimate of U. (h) EPMC-based segmentation,
error ratio 7 = 6%. (i) EPMC-based estimate of U'.

TABLE IV
SEGMENTATION ERROR RATIOS (%) OF NOISED “NAZCA” IMAGE

a K-means HMC PMC HEMC EPMC Gain
0 35 8.2 8.2 5.8 5.8 0
0.1 32.1 9.4 8.8 6.1 55 10
0.25 28 13.8 13.5 9.9 6 40
0.5 26.7 144 15.2 13.2 9.1 31
0.75 26.3 15.2 15.6 14.4 11.1 23

pairwise chain (X{', Y") so obtained is very complex. In par-
ticular, it probably could not be considered as stationary.

Setting i, =0, pw, =3, 0, =1, and 0, = 2, and con-
sidering different values for a, we have performed numerous
experiments. MPM restoration has been performed using the
EM procedure according to standard HMC, PMC, HEMC, and
EPMC. Average results computed on 100 simulations per each
value of a are reported in Table IV. Restoration results for
a = 0.25 are also illustrated in Fig. 1.

As we can see in Fig. 1, the HMC-based segmentation is un-
satisfactory. This is mainly due to the overregularization, while
considering the prior distribution stationary. Indeed, the details
within the bird wings and tail are blurred. Another difficulty re-
lies in the noise correlation that cannot be handled through the
conventional HMC. The repercussion of such a drawback can
be checked through the salt and pepper effect in the image back-
ground. The PMC, on the other hand, takes the noise correlation
into account and makes it possible to isolate the image back-
ground. However, assuming the data stationary, the details inside
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the image foreground are also blended due to the overregulariza-
tion. The HEMC overcomes the problem of fluctuating a priori
distribution but not the noise correlation one. The segmentation
result is better, but the pepper and salt effect remains. Finally,
the EPMC provides the best segmentation. In fact, the pro-
posed model considers both noise correlation and nonstationary
aspect of data. The image details are then preserved, and the
background is “clean.” In addition, the estimate of the auxiliary
process U shows clearly that the EPMC is able to distinguish
between image background and foreground. The HEMC, on the
other hand, cannot make such a differentiation because it does
not take advantage of correlation information. Quantitatively,
the proposed EPMC yields the best segmentation in all simula-
tions, while the HEMC always performs better than both HMC
and PMC. The gain in misclassification rate of the EPMC with
respect to the HEMC reaches 40% for a = 0.25.

VII. CONCLUSION

In this paper, we have introduced a general family of Markov
models allowing, on one hand, to model information imprecision
or unreliability and, on the other hand, to fuse such information
when different sources are available. The main property of the
proposed family of models was that it is closed with respect to
the DS fusion. We have shown how different known models,
purely probabilistic like HMCs, TMCs and DRFs, or evidential
like EMCs, belong to this general family. Experimental results
demonstrate the interest of the proposed extensions. For fu-
ture work, it would be interesting to consider the same kind of
extensions in the frame of general Bayesian networks [61]. An-
other promising direction would be to consider models based on
Markovianity related to some “evidential conditioning,” which
would open new horizons. In particular, theoretical comparisons
of the proposed family of models with evidential models based
on Markov credibilities [28] seem to be an important topic for
further studies.

APPENDIX
PROOF OF PROPOSITION 4.1
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