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Unsupervised Segmentation of SAR Images Using
Gaussian Mixture-Hidden Evidential Markov Fields

Mohamed El Yazid Boudaren, Lin An, and Wojciech Pieczynski

Abstract— Hidden Markov fields have been extensively applied
in the field of synthetic aperture radar (SAR) image processing,
mainly for segmentation and change detection. In such models,
the hidden process of interest X is assumed to be a Markov field
that is to be searched from an observable process Y . The pos-
sibility of such estimation lies, however, on several assumptions
that turn out to be unsuitable for many natural systems. These
models have then been extended in many directions, leading
to triplet Markov fields among other extensions. A link has
then been established between these models and the theory
of evidence, opening new possibilities of uncertainty modeling
and information fusion. The aim of this letter is to further
generalize the hidden evidential Markov field (EMF) to consider
more general forms of noise with application to unsupervised
segmentation of SAR images. For parameters estimation, we
use iterative conditional estimation, whereas maximization is
performed through iterative conditional mode. The performance
of the proposed model is assessed against the original EMF on
real SAR images.

Index Terms— Hidden Markov fields (HMFs), non-Gaussian
noise, triplet Markov fields (TMFs), unsupervised segmentation.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) may be the only useful
data in some circumstances, covering emergency rescue

management, due to their ability to function by night and under
cloudy conditions. In spite of the existence of higher resolution
sensors, associated images may prove unhandy in very large
areas monitoring given their computational burden and the
unnecessary details they catch. In this context, many statistical
approaches have been proposed for classification of SAR and
remote sensing imagery [1]. In particular, hidden Markov
fields (HMFs) [2]–[4] have been extensively used in this
area [5]–[8]. Their notoriety stems mainly from their ability
to find optimal Bayesian solutions within reasonable time [9].
Let S be the set of image pixels, with |S| = N , and let (Ys)s∈S

and (Xs)s∈S be two random fields, where Y is observable
with each Ys taking its values in R, whereas X is hidden
with each Xs taking its values from a finite set of “classes”
� = {ω1, . . . , ωK }. Realizations of such fields will be denoted
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by lowercase letters. The problem is then to estimate X = x
from Y = y. This estimation subsumes the distribution of
(X, Y ) to be known in advance. The most common way to
do so is to define: 1) the distribution of X , called “prior”
distribution and 2) the distribution of Y conditional on X ,
called “noise” distribution.

HMFs have been generalized in many ways. One particular
extension that will be useful for the sake of this letter is the
one leading to “triplet Markov fields” (TMFs), in which a
third finite discrete valued random field (Us)s∈S is introduced
and the triplet (U, X, Y ) is assumed Markov [10], [11]. While
TMFs generalize HMFs, Bayesian processing can still be per-
formed using the same techniques, and hence, with comparable
computational complexity. The “auxiliary” field U has been
assigned two main meanings.

1) To model the nonstationary aspect of the hidden field X ,
either in the Bayesian context by considering the real-
izations of Us as the different stationarities of X
as in [11]; or by using U to model the uncertainty
attached to the prior knowledge of X in accordance with
Dempster–Shafer (DS) theory of evidence as in [12].

2) To approximate the noise distributions, whose form is
not necessarily known, by a Gaussian mixture [10].

Considering both interpretations simultaneously, we propose a
Markov field model called Gaussian mixture-hidden evidential
Markov field (GM-HEMF) which integrates, on the one hand,
an auxiliary field U defined in the evidential domain related
to the prior field X to model its unreliability, and on the other
hand, a second auxiliary field U ′, modeling the unknown form
of noise distributions p(ys|xs). The aim of this letter is to show
that such a model improves the segmentation results obtained
by the “simple” HEMF proposed in [12] on real SAR images.

Let us point out that the use of theory of
evidence [13], [14] within Markov models in general,
and fields in particular, is recent. It stems from the fact
that DS fusion can be perceived as an extension of the
probabilistic computation of the “a posteriori” distribution
required for statistical inference of the hidden field X ,
and hence, this computation can still be achieved in more
general contexts dealing with more general measures than
probabilistic masses. The interest of combining DS theory
and HMFs has been established in [5], [12], and [15]–[18].
Tupin et al. [16] use DS fusion of several structure detectors
for automatic interpretation of SAR images. Note that the
theory of evidence has also been used in the Markov chains
context for image modeling problems [19]–[22].

The remainder of this letter is organized as follows.
Section II recalls the theory of evidence, and its use
within HMFs. The proposed GM-HEMF is described in
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Section III. Section IV provides the experimental results
obtained on real SAR images. The concluding remarks and
future directions end this letter.

II. MARKOV FIELDS AND THEORY OF EVIDENCE

In this section, we briefly recall the theory of evidence and
discuss its applicability to generalize Markov field models.

A. Theory of Evidence

Let � = {ω1, . . . , ωK } be a frame of discernment, and
let P(�) = {A1, . . . , Aq} be its associated powerset, with
q = 2K . A “basic belief assignment” (bba) is a func-
tion M from P(�) to [0, 1] verifying M(∅) = 0 and∑

A∈P(�) M(A) = 1. A bba M defines then a “plausibility”
function Pl from P(�) to [0, 1] by Pl(A) = ∑

A∩B �=∅ M(B),
and a “credibility” function Cr from P(�) to [0, 1] by
Cr(A) = ∑

B⊂A M(B). For a given bba M , the corresponding
plausibility function Pl and credibility function Cr are linked
by Pl(A) + Cr(Ac) = 1. A probability function p can
then be seen as a particular case in which Pl = Cr = p.
Furthermore, when two bbas M1 and M2 represent two pieces
of evidence, we can combine, or fuse, them using the so-called
“DS fusion” (DS fusion), which gives M = M1 ⊕ M2 defined
as M(A) = (M1 ⊕ M2)(A) ∝ ∑

B1∩B2=A �=∅ M1(B1)M2(B2)
for any A �= ∅. Finally, we will say that a bba is “probabilistic”
or “Bayesian” when it is null outside singletons, and we will
say that it is “evidential” otherwise.

B. Hidden Markov Fields

In the HMFs context, the field X is assumed Markovian
with respect to the system of cliques C , associated with a
neighborhood system N = (N)s∈S, X is then called a Markov
random field (MRF) defined as

p(x) ∝ exp

[

−
∑

c∈C

φc(xc)

]

(1)

where φc is a potential function associated with clique c.
To define the distribution of Y conditional on X , two

assumptions are usually set: 1) the random variables (Ys)s∈S

are independent conditional on X and 2) the distribution of
each Ys conditional on X is equal to its distribution conditional
on Xs . The noise distribution is then fully defined through
K distributions ( fi )1≤i≤K on R, where fi denotes the density
of the distribution of Ys conditional on Xs = ωi . Since
p(x, y) = p(x)p(y|x), we obtain

p(x, y) ∝ exp −
[
∑

c∈C

φc(xc) −
∑

s∈S

log fxs (ys)

]

. (2)

Hence, according to (2), the couple (X, Y ) is a Markov
field and is also the distribution of X conditional on Y = y.
This allows to sample a realization of X according to its
posterior distribution p(x |y) and hence, to apply Bayesian
techniques like maximum posterior marginal and maximum
a posteriori (MAP). HMFs have then been extended in
many directions. One interesting extension is that leading
to TMFs [10], [11]. Extending HMFs to TMFs consists in

introducing a third process U = (Us)s∈S , where each Us takes
its values in a finite set � = {λ1, . . . , λJ }, and considering that
T = (U, X, Y ) is a Markov field

p(t) = γ exp

[

−
∑

c∈C

φc(tc)

]

(3)

where γ is a normalizing constant.
The conventional processing methods to estimate X from

Y = y remain workable. As specified in [10], the auxiliary
random field U can have different meanings and its estima-
tion, which is also possible, may be of interest. As stated
in Section I, U can model the fact that the field X may
be nonstationary, which may be of interest, particularly in
textured image segmentation [11].

C. Hidden Evidential Markov Fields

Let us consider the random fields X = (Xs)s∈S ,
Y = (Ys)s∈S and let

p1(x) ∝ exp

[

−
∑

c∈C

φc(xc)

]

and

py(x) =
∏

s∈S fxs (ys)
∑

x
∏

s∈S fxs (ys)
.

Then the posterior distribution p(x |y) associated with the
HMF given by (2) can be seen as the DS fusion of p1 and
py : p(x |y) = (p1 ⊕ py)(x). That is of importance as it opens
the way to different possibilities of extensions [12]. More
precisely, if either p1 or py is extended in p1 ⊕ py to an
evidential bba, the fusion result remains a probability distrib-
ution, which can then be seen as an extension of the classic
posterior probability p(x |y). Furthermore, if the “evidential”
extension of p1 or py is of a similar Markovian form, in spite
of the fact that the fusion result is no longer necessarily a
Markov field, the computation of posterior margins p(xs |y)
remains feasible.

For instance, if p1 is replaced by a Markov bba M , called
evidential Markov field (EMF [12]) defined on P(�)N by

M(u) ∝ exp

[

−
∑

c∈C

φc(uc)

]

(4)

then, the DS fusion M⊕ py is the posterior distribution p(x |y)
associated with p(x, y), which is itself a marginal distribution
of a TMF T = (U, X, Y ) and hence X can still be estimated
from Y = y [12].

The usefulness of such extensions has already been estab-
lished in hidden nonstationary Markov fields with application
to image segmentation [12]. Indeed, when the prior distribution
p1 is nonstationary, replacing it with a stationary EMF M
of (4) form can provide better performance, in unsupervised
segmentation, than replacing it with any other stationary
classic HMF. This is particularly of interest in the unsupervised
context, where all the parameters have to be estimated from
the observation Y = y. Using some estimation method
leads, when keeping the classic model given by (2), to a
stationary p̂1. When using a stationary extension of (4) form,
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the model parameters can still be estimated from Y = y and it
turns out that M̂-based segmentation can provide significantly
better results. Such models are called HEMFs.

III. GAUSSIAN MIXTURE-HIDDEN EVIDENTIAL

MARKOV FIELDS

In this section, we describe the proposed GM-HEMF model
that generalizes the HEMF proposed in [12]. For this purpose,
let us consider the fields X = (Xs)s∈S and Y = (Ys)s∈S

of Section II-C. As stated above, if we define p1 from the
MRF p(x) ∝ exp[− ∑

c∈C φc(xc)] and py from the simple
p(y|x) = ∏

s∈S fxs (ys), then the DS fusion (p1 ⊕ py)(x) is
itself the posterior distribution p(x |y). Extending p1 to the
EMF M defined on P(�)N by M(u) ∝ exp[− ∑

c∈C φc(uc)]
leads to HEMFs. If further, the distributions fxs (ys) are
Gaussian, the model is then called “Gaussian noise-HEMF.”
In this section, we propose to generalize this latter by con-
sidering some more general noise forms. To this end, let us
extend fxs (ys) to a Gaussian mixture. Hence we have

p(ys|xs) =
J∑

j=1

αxs , j fxs , j (ys) (5)

where αxs , j is the weight of the j th component associated
with class xs .

Let U ′ = (U ′
s)s∈S be an auxiliary field with each U ′

s taking
its values in � = {λ1, . . . , λJ }. Then (5) can be written as

p(ys|xs) =
∑

u′
s∈�

αxs ,u′
s

fxs ,u′
s
(ys) =

∑

u′
s∈�

p
(
ys, u′

s |xs
)
. (6)

Then, py can be extended to the probabilistic bba Qy given
by

Qy(x, u′) ∝
∏

s∈S

αxs ,u′
s

fxs ,u′
s
(ys). (7)

Proposition 1: The DS fusion (M ⊕ Qy)(x) defines a
Markov field given by

p(u, x, u′, y) ∝ exp

[

−
∑

c∈C

ϕc
(
uc, xc, u′

c, yc
)
]

where

ϕc(uc, xc, u′
c, yc) = φc(uc) −

∑

s∈c

log(αxs ,u′
s
)

−
∑

s∈c

log( fxs ,u′
s
(ys)).

Proof:

(M ⊕ Qy)(x)

∝
∑

u�x,u′
exp

[

−
∑

c∈C

φc(uc)

]
∏

s∈S

αxs ,u′
s

fxs ,u′
s
(ys)

∝
∑

u�x,u′
exp

[

−
∑

c∈C

φc(uc) +
∑

s∈S

log[αxs,u′
s

fxs ,u′
s
(ys)]

]

∝
∑

u�x,u′
exp

[

−
∑

c∈C

ϕc
(
uc, xc, u′

s , yc
)
]

.

�

Definition 1: Let us consider the following:

1) � = {ω1, . . . , ωK } a set of classes, and P(�) its
associated powerset;

2) � = {λ1, . . . , λJ } a finite set;
3) S a set of pixels with |S| = N , and V = (Vs)s∈S =

(U, X, U ′, Y ) = (Us, Xs , U ′
s , Ys)s∈S a random field,

each (Us, Xs , U ′
s , Ys) taking its values in 
 × � × R

where 
 = {(A, ω) ∈ P(�) × �|ω ∈ A}.
Then V is called GM-HEMF if its distribution is given on
[
 × � × R]N by

p(v) ∝ exp

[

−
∑

c∈C

φc(uc) −
∑

s∈S

ηs
(
xs, u′

s

)

+
∑

s∈S

log
(

p
(
ys |xs, u′

s

))
]

where C is the set of cliques related to some neighborhood
system and ηs is a potential function associated with site s.

Let us show how the proposed GM-HEMF generalizes some
classic Markov fields. Reducing � to a singleton leads to the
former HEMF introduced in [12]. If further, U = X one finds
again the classic HMF.

In practice, there is no theoretical difficulty to estimate the
model’s parameters from the sole observation y once the form
of potentials are chosen, which makes the model unsupervised.
For instance, one can apply “iterative conditional estimation”
as in [10], [11], and [23]. Let Z = (X, U, U ′). Given a
set of parameters θq , Gibbs sampler is used to produce a
classification zq+1, from which a new set of parameters θq+1 is
estimated. The same process is then repeated until a certain cri-
terion is satisfied, such as ||zq − zq−1|| < ε for a certain fixed
value of ε (here ε = 50). Then, the Bayesian MAP method
is approximated by the classic “iterative conditional mode”
algorithm [2]. The initial set of parameters θ0 required to start
this iterative procedure can be obtained as follows: the image
y is first segmented through an automatic histogram thresh-
olding. Then, likelihood parameters are estimated via classic
estimators. Finally, prior parameters are estimated through
least square fitting. Please refer to the flowchart in Fig. 1.

IV. EXPERIMENTS

In this section, we assess the performance of the proposed
GM-HEMF against both HMF and HEMF models. To this end,
we consider two real SAR images. Image 1 is a moderately
noisy 256×256 image taken by the Jet Propulsion Laboratory
on L band [24] [see Fig. 2(a)]. Image 2 is a JERS1 SAR
image of Rondonia, Brazil, a heavily noisy 330 × 512 image
[see Fig. 2(b)]. Let S be the set of image pixels. Then, we
have an observed image Y = (Ys)s∈S with |S| = 65 536 for
Image 1 and |S| = 168 960 for Image 2. The ground-truth
images associated with Images 1 and 2 are also provided in
Fig. 2(a).2 and (b).2, respectively. Let X = (Xs)s∈S where
each Xs ∈ � = {ω1, . . . , ωK } with K = 2 for Image 1
and K = 3 for Image 2; and let U = (Us)s∈S where each
Us ∈ P(�). Finally, let U ′ = (U ′

s)s∈S with each U ′
s taking its

values from the finite set � = {λ1, . . . , λJ } with J being the
number of Gaussian components.
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Fig. 1. Different steps in the proposed approach.

Fig. 2. Unsupervised segmentation of noisy SAR images. 1—real
data; 2—ground truth; 3—HMF-based result; 4—HEMF-based result; and
5—GM-HEMF-based result of (a) Image 1 and (b) Image 2.

Then, unsupervised segmentation is conducted according
to the following three models: the HMF (X, Y ), the HEMF
(U, X, Y ), and the GN-HMF (U, X, U ′, Y ), with J = 5.

TABLE I

PERFORMANCE EVALUATION OF DIFFERENT MODELS ON SAR IMAGE

SEGMENTATION [τ : OVERALL ACCURACY (%), κ : KAPPA METRIC]

The results obtained are illustrated in Fig. 2. In Table I, the
segmentation quality of different models is always assessed
quantitatively in terms of the overall accuracy (τ ) and the
comprehensive Kappa metric (κ).

A visual assessment of the segmentation results, pro-
vided in Fig. 2, establishes the superiority of the proposed
GM-HEMF over both the former HMF and HEMF models.
For Image 1, the obtained segmentation is very close to
the ground truth. For Image 2, which is much noisier, the
proposed model furnishes the best segmentation in terms of
homogeneity and edge preserving. The quantitative evaluation
of the models’ performance, provided in Table I, confirms the
interest of the proposed GM-HEMF with respect to HMF and
HEMF. Indeed, in terms of both the overall accuracy and
Kappa metrics, the proposed model yields the best result.
For Image 1, the difference is even striking (τGM-HEMF =
96.75% against τHEMF = 85.11% and τHMF = 81.45%).
Derrode and Pieczynski [25] also considered Image 2 using
copulas with pairwise Markov chains. The overall accu-
racy obtained was τ = 62.40%, whereas our model yields
τGM-HEMF = 65.76%. Let us underline that when data are too
noisy (as for Image 2), there may be no way to obtain satisfy-
ing performance. To overcome such drawbacks, hyperspectral/
multisensor data are generally used to weaken the impact of
noise.

To better understand these results, Fig. 3 (respectively,
Fig. 4) depicts for each class of Image 1 (resp. Image 2):
the histogram of the actual image intensity, the estimated
Gaussian distribution, and the estimation of the Gaussian
mixture distribution with J = 5. As can be checked visually,
the Gaussian mixture distribution is better suited to fit the
actual noise density, especially for ω2 of Image 1 for which,
both HMF and HEMF perform poorly when characterizing
pixels that have approximate distances to both the classes.
Increasing the number of Gaussian components makes it
possible to fit these pixels appropriately. In real circumstances,
it is difficult to know the genuine form of noise densities.
Gaussian distributions are thus often adopted to model the
data histogram. However, when the actual noise distribution
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Fig. 3. Actual intensity histogram (blue line), the estimated Gaussian
distribution (black dashed line), and mixture Gaussian distribution with J = 5
(red solid line) in Image 1. (a) Class ω1. (b) Class ω2.

Fig. 4. Actual intensity histogram (blue line), the estimated Gaussian
distribution (black dashed line) and mixture Gaussian distribution with J = 5
(red solid line) in Image 2. (a) Class ω1. (b) Class ω2. (c) Class ω3.

is not Gaussian, which occurs with many natural systems,
such an assumption turns out to be inappropriate, and for this
reason, the GM-HEMF is better suited than the former HEMF.
In theory, mixture Gaussian distribution can fit any type of
noise as long as there are enough Gaussian models within it.

V. CONCLUSION

In this letter, we have proposed a new approach for unsu-
pervised segmentation of SAR images based on GM-HEMF,
which generalizes, in particular, the HEMF. The interest of
the proposed model relies in its ability to fit some general
forms of noise that the former HEMF fails to support. This
property has been checked through experiments carried out on
real SAR images. A promising future direction would be to
consider more complicated noise forms by extending the noise
energies to cliques rather than defining them on single pixels.
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