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a b s t r a c t

We consider the problem of unsupervised classification of hidden Markov models (HMC) with dependent
noise. Time is discrete, the hidden process takes its values in a finite set of classes, while the observed
process is continuous. We adopt an extended HMC model in which the rich possibilities of different kinds
of dependence in the noise are modelled via copulas. A general model identification algorithm, in which
different noise margins and copulas corresponding to different classes are selected in given families and
estimated in an automated way, from the sole observed process, is proposed. The interest of the whole
procedure is shown via experiments on simulated data and on a real SAR image.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The paper deals with the problem of unsupervised estimation
of a hidden discrete process = ( … )X X X, ,N

N1 1 from an observed
continuous one = ( … )Y Y Y, ,N

N1 1 . Hidden Markov models (HMMs)
are very widely used to deal with the problem. Indeed, they allow
recursive computations of different quantities used in optimal
Bayesian processing in linear time. There are many papers fol-
lowing the pioneering ones [1,2], dealing with various application
areas. Let us mention some recent general papers or books about
general setting [3–5], signal and image processing [3], economy
and finance [6,7], or biology [8,9]. Besides, copulas [10,11] are also
of interest in numerous situations, due to their ability of modelling
dependent non-Gaussian data [12–15]. Their use goes increasing in
different areas. Mainly applied in economy and finance [16–21],
they are becoming increasingly used in other fields, such as in
signal or image processing [22–25] or in ecology [26–28].

However, despite their great benefit when used separately,
there is very little research and applications that combines them.
First papers on the subject date from about ten years: copulas use
has been introduced at temporal level in hidden Markov chains
with dependent noise (HMC-DN) in [29], at vectorial level in
hidden Markov chains in [30], and in hidden Markov trees in [31].
Some applications using vectorial-level copulas have been
proposed in the context of hidden Markov chains [32], hidden
Markov trees [33], hidden Markov fields [34,35], or general
Bayesian networks [36]. They were showed to be especially useful
in multi-sensor image processing where sensors are dependent
and not Gaussian [34,35]. Temporal-level copulas remain, for their
part, very little used. This is certainly due to the fact that the ob-
servations in HMMs are usually assumed to be independent con-
ditionally on the hidden data, and thus there is no dependency to
model. However, taking into account the noise dependence is of
interest, and using the right copulas can have strong influence on
the efficiency of Bayesian processing methods in HMMs with
correlated noise [37].

Our paper deals with the problem of unsupervised classifica-
tion of hidden Markov chains with copulas used at temporal level.
The novelty of the work is to propose a general method allowing
one to search the best copulas in a finite set of admissible copulas,
as well as the best margins in a finite set of admissible margins. In
addition, the admissible sets of copulas and margins can vary with
the hidden discrete data. This allows one to select, from the only
observed data, the best model in a quite rich set of possible
models. Therefore we simultaneously extend, first, the method
presented in [37] where the copulas where searched while the
forms of margins were assumed known and, second, the method
presented in [38,39] where the margins were searched while as-
suming independence.

Let us notice that the presented results can be almost directly
applied to more complex models than the HMC-DNs considered.
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Indeed, when parameter estimation is concerned, dealing with
“pairwise Markov models” (PMMs) [40,41] or even “triplet Markov
models” (TMMs), which includes non stationary PMMs [42], hid-
den semi-Markov models [43], or still hidden bivariate Markov
models [44], is a quite similar problem [42,43].

The organization of the paper is the following. In next Section
we recall the basics about HMM and how a dependent noise can
be modelled using a copula representation. The general model
identification method we propose is then specified in Section
three. Section four is devoted to recall the classic computations in
HMM-DN for different quantities of interest. Fifth section contains
some systematic experiments and the segmentation result of a real
SAR image. The last Section draws conclusions and proposes a few
perspectives.
2. HMM with dependent noise and copulas

Let us consider two random sequences = ( … )X X X, ,N
N1 1 and

= ( … )Y Y Y, ,N
N1 1 , taking their values in Ω = { … }K1, , and  re-

spectively. XN
1 is hidden, while YN

1 is observed, and the problem is
to estimate XN

1 from YN
1 . Optimal Bayesian methods can be used for

the classic hidden Markov models (HMMs), whose distribution is
defined with

( ) = ( ) ( | ) ( | ) ( | )… ( | ) ( | ) ( )−x yp p x p y x p x x p y x p x x p y x, . 1
N N

N N N N1 1 1 1 1 2 1 2 2 1

HMMs can also be defined as verifying two hypotheses:

( )X is Markov; 2N
1

∏( | ) = ( | )
( )=

y xp p y x .
3

N N

n

N

n n1 1
1

Let us notice that (3) means that the random variables …Y Y, , N1 are
independent conditionally on XN

1 ; for this reason we will call the
classic HMM (2) and (3) “HMM with independent noise” (HMM-
IN).

It is possible to consider more general models in which both
processes ( )X Y,N N

1 1 and XN
1 are Markov and in which the same

Bayesian processing as in HMM-IN remains possible. The dis-
tribution of such models is written

( | ) = ( | ) ( | ) ( )+ + + + +p x y x y p x x p y x y x, , , , . 4n n n n n n n n n n1 1 1 1 1

In these kind of models, called HMM with dependent noise
(HMM-DN) Y1,…,YN are (possibly) dependent conditionally on XN

1 .
Thus an HMM-IN is an HMM-DN for which

( | ) = ( | )+ + + +p y x y x p y x, ,n n n n n n1 1 1 1 .

Remark 2.1. It has been shown in [41,40] that the Markovianity of
XN

1 is not even required, and the following model called “pairwise
Markov model” (PMM):

( )( )( ) ∑= |
( )=

−

+ +x yp p x y p x y x y, , , ,
5

N N

n

N

n n n n1 1 1 1
1

1

1 1

allows the same processing than HMM-DNs.

In this paper we will deal with the stationary reversible case,
which means that ( )+ +p x y x y, , ,n n n n1 1 does not depend on

= … −n N1, , 1, and the distributions ( | )+ +p x y x y, ,n n n n1 1 and
( | )+ +p x y x y, ,n n n n1 1 are equal. In that case, an HMM-DN is a parti-

cular case of PMM for which we have

( | ) = ( | ) ( )+ + + +p y x x p y x, , 6n n n n n1 1 1 1

for all ∈ [ − ]n N1, 1 , see [41]. Thus in the model considered in this
paper we have simultaneously (4) and (6). Let us notice that (6)
does not imply that ( | )+ +p y x y x, ,n n n n1 1 can be reduced to a simpler
expression: the distribution of +Yn 1 conditional on +X Y X, ,n n n 1 can
depend on the three variables.

The distribution of such a stationary reversible HMM-DN
⎛
⎝⎜

⎞
⎠⎟X Y,N N

1 1 is defined by

( ) = ( ) ( | ) ( )p x y x y p x x p y y x x, , , , , , . 71 1 2 2 1 2 1 2 1 2

The aim of this paper is to consider ( | )p y y x x, ,1 2 1 2 in (7) under very
general form and to propose a way for its estimation, together
with ( )p x x,1 2 , from the observed sequence YN

1 . More precisely, for
given ( )x x,1 2 , ( | )p y y x x, ,1 2 1 2 is defined by

� two margins ( | ) = ( | ) = ( )p y x x p y x f y, x
l

1 1 2 1 1 11
and ( | )p y x x,2 1 2

= ( | ) = ( )p y x f yx
r

2 2 22
, according to (6) (l and r stand for ‘left’ and

‘right’ to distinguish between the left and right variables, see
below);

� a copula C with pdf ( ) ( )| = ( ) ( )⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟c F y F y x x c F y F y, , ,x

l
x
r

x x x
l

x
r

1 2 1 2 , 1 21 2 1 2 1 2
,

where F is the cumulative distribution function (cdf) corre-
sponding to f.

We recall that a copula C is defined as a cumulative distribution

function on [ ]0, 1 2 such that the corresponding marginal cumula-
tive functions are identity, which also means that the corre-
sponding marginal distributions on [ ]0, 1 are uniform distribu-

tions, see e.g. [10]. Let ( )h y y,1 2 be a probability distribution on 2,

which will be assumed continuous in this paper. Let ( )H y y,1 2 be

the corresponding cumulative function, ( )h yl
1 and ( )h yr

2 the

corresponding marginal densities, and ( )H yl
1 , ( )H yr

2 the associated
cumulative functions. According to Sklar's theorem [11] there
exists an unique copula C such that

( )( ) = ( ) ( ) ( )H y y C H y H y, , . 8
l r

1 2 1 2

Setting ( ) = ∂∂ ( )
∂ ∂

c u v
C u v
u v

,
,

and deriving (8) with respect to y1, y2

gives

( ) = ( ) ( ) ( ( ) ( )) ( )h y y h y h y c H y H y, , . 9
l r l r

1 2 1 2 1 2

Thus any continuous probability distribution ( )h y y,1 2 is given by

a triplet hl, hr, and a probability distribution c on [ ]0, 1 2 with
uniform margins. Conversely, such a triplet defines a probability
distribution on [ ]0, 1 2 with (9). Such a representation of ( )h y y,1 2 is
of interest as every distribution among hl, hr, c can be modified
independently from the two others. For example, a Gaussian co-
pula ( )h y y,1 2 is given by Gaussian margins hl, hr, and a Gaussian
copula c. Replacing in (8) cwith another non Gaussian copula ′c we
obtain a non Gaussian distribution ′( )H y y,1 2 with Gaussian mar-
gins. We can also keep the Gaussian copula c and replace the
Gaussian margins by any other ones. This offers a very rich set of
possibilities easy to handle with.

We will assume that for each Ω( ) ∈x x,1 2
2, each fx

l
1
and each f x

r
2

belongs to a parametric set of distributions, which themselves
belongs to a finite family of parametric sets of distributions. For
example, imagine that f l1 can be Gaussian or Gamma, f r1 can be
Beta, Gamma or Rayleigh, f l2 can be Beta or Gamma, f r2 can be
exponential and so on for = …x K3, ,1 , = …x K3, ,2 . Thus, for each
( = = )x i x j,1 2 , we have to find what is the general form of the
distributions f li and f rj , and we have to find the parameters, which
precisely define the distribution of the determined shape. Simi-
larly, for each ( = = )x i x j,1 2 we have to find general form of copula
ci j, and estimate the parameters, which set the copula in the set of
copulas having the same form. For example, c1,1 can be Gumbel or
Gaussian, c1,2 can be Gaussian or Clayton, c2,1 can be Student,
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product or Cubic Section, c1,3 can be A14 or Clayton, and so on for
= …x K3, ,1 , = …x K3, ,2 .
As mentioned above, such problems have been partly dealt

with in [37]. Margins have been considered as known, and copulas
have been searched – for each ( )x x,1 2 – in finite sets of possible
copulas. In particular, it has been showed that the right form of
copula – for each ( )x x,1 2 – was of importance for the efficiency of
classification. Besides, automatic choice of the form of margins

( | )p y x1 1 for each x1 – in the HMM-INs case – have been studied in
[38,39] and it has also been showed that the use of right forms of
margins was of importance. Thus in this paper we address these
two problems simultaneously, which results in a very general
method of model identification from the only observations

=Y yN N
1 1 .
3. Shapes and parameters estimation

So, the distribution of a stationary reversible PMM is defined by
( )p x x,1 2 and ( | ) = ( )p y y x x f y y, , ,x x1 2 1 2 , 1 21 2

, the latter being defined by

margins fx
l
1
, f x

r
2
, such that when =x x1 2 we have =f fx

l
x
r

1 2
, and a

copula cx x,1 2
, such that =c cx x x x, ,1 2 2 1

, for each x1, x2 inΩ. The problem
we deal with is to find ( )p x x,1 2 and ( | )p y y x x, ,1 2 1 2 (for each

( ) = ( )x x i j, ,1 2 ), using the sole observation =Y yN N
1 1 .

Let us concentrate on the search of ( )f y y,i j, 1 2 , which is thus
defined by fli, frj , and ci j, . The problem is twofold:

1. What forms these three functions are of?
2. Once the form known, what are the related parameters?

We are going to deal with these two problems simultaneously in a
very wide-ranging setting.

As ( )X Y,N N
1 1 is stationary reversible, only K different margins fi

are required to define an HMM-DN model (as for HMM-IN). For
each Ω∈ = { … }i K1, , the form of fi is not know, but it belongs to a
known set of possible shapes = { … }( )F , , Fi i i K i,1 , . Besides, each
form Fi k, is a parametric set of probability distributions

= { }θ θ Θ( ) ( )∈ ( )fFi k i k i k i k, , , , . Similarly, for each Ω∈i j, , ci j, is not known,
but it belongs to a known set of possible forms

= { … }( )G , , Gi j i j i j M i j, , ,1 , , , , and each of them is a parametric set Gi j m, ,

of copulas = { }α α( ) ( )∈ ( )cGi j m i j k i j m A i j m, , , , , , , , . Finally, for each Ω∈i j, , the

problem is to find from =Y yN N
1 1 :

1. the right forms Fi k, and Gi j m, , ;
2. the right parameters θ( )i k, and α( )i j m, , .

Besides, we assume to have two families of estimators. First, for
each Ω∈i and each ∈ { … ( )}k K i1, , , there exists an estimator

θ̂ ( )( )⋆yi k, N
1 giving θ( )i k, from ⋆Y N

1 whose distribution is such that
the marginal distributions ( )⋆p yn are equal and belong to Fi k, . Second,
for each Ω∈i j, and each ∈ { … ( )}m M i j1, , , there exists an esti-
mator α̂( )( )⋆yi j m, , N

1 giving α( )i j m, , from ⋆Y N
1 whose distribution is

such that the distributions ( )⋆
+

⋆p y y,n n 1 are equal and belong to Gi j m, , .
Let us notice that these conditions are not strong. Indeed, the pro-
blem is to find right shapes and right parameters without knowing
realizations of =X xN N

1 1 , and thus assuming that we can solve the
problem by knowing them is the least we should assume.

We will also assume, for each Ω∈i j, , to have two “decision
rules” 1 and 2 allowing to perform, from realizations =Y yN N

1 1 ,
the following decisions:

� For any ∈ … ∈θ θ( ) ( ( )) ( )f f FF , ,i i i K i i K i,1 ,1 , , , 1 makes correspond to
=Y yN N

1 1 an unique element in { … }θ θ( ) ( ( ))f f, ,i i K i,1 , .
� For any ∈ … ∈α α( ) ( ( )) ( )c G c G, ,i j i j i j M i j i j M i j, ,1 , ,1 , , , , , , , 2 makes
correspond to =Y yN N
1 1 an unique element in

{ … }α α( ) ( ( ))c c, ,i j i j M i j, ,1 , , , .

Finally, we observe a sample =Y yN N
1 1 of a stationary reversible

HMC ( )X Y,N N
1 1 and the problem is to estimate its distribution in the

frame described above. Thus we have to find, for each Ω∈i j, :

1. = ( = = )p p x i x j,i j, 1 2 ;
2. ∈ { … ( )}k K i1, , – which gives Fi k, in = { … }( )F , , Fi i i K i,1 , –, and

θ( )i k, in Θ( )i k, , which gives = θ( )f fi i k, in Fi k, ;
3. ∈ { … ( )}m M i j1, , , – which gives Gi j m, , in = { … }( )G , , Gi j i j i j M i j, , ,1 , , ,

–, and α( )i j k, , in ( )A i j k, , , which gives = α( )c ci j i j m, , , in Gi j m, , .

The general idea of the iterative GICE, drawn from the idea of
the simple ICE, is the following. At a given iteration one uses the
current shapes and parameters to sample a sequence x N

1 according
to the distribution of XN

1 conditional on =Y yN N
1 1 , and this sequence

is dealt with as if it were a true realization of XN
1 . Then for each

possible shape one uses the sampled sequence (with =Y yN N
1 1 ) to

estimate the corresponding parameters, which fix the possible
shapes. Finally, the decision rules 1 and 2 allow one to de-
termine, from x N

1 and yN
1 , the shapes (with the corresponding

parameters just fixed by estimators) which will be kept for the
next iteration.

We will need the following definition. Let ( )x y,N N
1 1 be a reali-

zation of a stationary reversible HMC-DN ( )X Y,N N
1 1 . We will denote

by ( )y xi j
N

, 1 the sequence of all couples ( )+y y,n n 1 in yN
1 such that

( ) = ( )+x x i j, ,n n 1 , and by ( )y xi N
1 the sequence of yn in yN

1 such that
=x in . In other words

( ) { }
( ) { }

= ( ) ⊂ |( ) = ( )

= ⊂ | =

+ +y x y

y x y

y y x x i j

y x i

, , , ,

.

i j
N

n n
N

n n

i N
n

N
n

, 1 1 1 1

1 1

The “generalized iterative conditional estimation” (GICE) we
propose to search ( )p f c, ,i j i i j, , , for each Ω∈i j, , is the following
iterative method:

1. Initialize GICE with ( )p f c, ,i j i i j,
0 0

,
0 found with a simple method;

2. For each Ω∈i j, , to find ( )+ + +p f c, ,i j
q

i
q

i j
q

,
1 1

,
1 from ( )p f c, ,i j

q
i
q

i j
q

, , and
yN

1 :
(a) set =

−
∑ ( | )+

=
−

+ yp
N

p x x
1

1
,i j

q
n
N q

n n
N

,
1

1
1

1 1 , where ( | )+ yp x x,q
n n

N
1 1 are

based on ( )p f c, ,i j
q

i
q

i j
q

, , , see Section 4.2 for their computation;

(b) sample ( ) +x N q
1

1 according to ( | )x yp N N
1 1 based on ( )p f c, ,i j

q
i
q

i j
q

, , , see
Section 4.1 for the sampling method;

(c) for each Ω∈i j, , each ∈ { … ( )}k K i1, , , and each
∈ { … ( )}m M i j1, , , , consider θ θ( ) = ^( )( (( ) ))+ +y xi k i k, ,q i N q1

1
1 and

α α( ) = ^( )( (( ) ))+ +y xi j m i j m, , , ,q
i j

N q1
, 1

1 ;
(d) use 1 and (( ) ))+y xi N q

1
1 to determine the unique element +fi

q 1

in { … }θ θ( ) ( ( ))+ +f f, ,i i K i,1 ,q q1 1 , and use 2 and (( ) )+y xi j
N q

, 1
1 to de-

termine the unique element +ci j
q
,

1 in { … }α α( ) ( ( ))+ +c c, ,i j i j M i j, ,1 , , ,q q1 1 .
3. Stop according to some criterion.

Such a general method offers rich possibilities of particular
algorithms. In fact, there exist, in general, different estimators
θ̂ ( )i k, , α̂( )i j m, , . Similarly, there exists a great deal of different
decision rules 1 and 2.

Remark 3.1. GICE is an extension, containing margin's and copu-
la's automated selection, of the classical ICE method [38–40,45].
Let us briefly recall how the latter runs and what are its differences
with the well-known “expectation-maximization” (EM) method
[1,46,2]. Let us consider two random processes ( )V Y, whose dis-
tribution depends on a vector of parameters θ θ θ= { … }, , m1 . The
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problem is to estimate θ from Y . The ICE method is an iterative
method based on the following principle. Let θ̂( )v y, be an esti-
mator of θ from complete data ( ) = ( )V Y v y, , and let us assume
that we can sample realizations of V according to ( | )v yp . The ICE
sequence is obtained as follows:

1. Initialize θ0;
2. Compute θ θ θ= [^( )| = ]+ V Y Y yE , ,q q1 . In practice,

θθ θ= [ ^( )| = ]+ V Y Y yE , ,i
q

i
q1 is computed for the components θi

for which this computation can be carried on explicitly and for
the remaining components one simulates …v v, ,q

l
q

1 according to
θ( | )v yp , q and one sets θ θ θ= [ ^( ) + ⋯ + ^( )]+ v y v y l, , /i

q
i

q
i l

q1
1 , which

approximates the expectation.

In practise one takes often l¼1, which is done in GICE. We see that
ICE is applicable under two very mild hypotheses: existence of an
estimator θ̂( )v y, from the complete data, and the ability of si-
mulating V according to ( | )v yp .

The principle of EM is

1. Initialize θ0;
2. Compute – or approximate – θ = [ ( ( ))|θ θ

+ V Y YE parg max ln ,q 1

θ= ]y, q , where θp is a likelihood.

One can see that ICE is simpler to use than EM as there is no
maximization step. When θ̂( )v y, used in ICE is the Maximum
Likelihood estimator we have θ = [ ( (θ θ

+ VE parg max ln ,q 1

θ))| = ]Y Y y, q ; ICE and EM can give the same sequence when
“expectation” and “maximization” commute, which occurs, roughly
speaking, in exponential models [46].

Example 3.1. One possible rule 1 for choosing among K densities
…f f, , K1 from =Y yr r

1 1 , successfully used in [39] to search the

margins forms in classic multisensor HMM-IN, is the minimization
of the Kolmogorov distance d between these distributions and the
empirical distribution. Let …F F, , K1 be the related cumulative dis-

tribution functions and ( ) = ∑ = [ < ]F y
r
1

1e n
r

y y1 n
the empirical cdf. We

have

( ) = [ ( )]
( )∈{ … }

y d F Farg inf , ,
10

r

F F F
k e

1
1

, ,k
K1

with the Kolmogorov distance d between two cdfs F and ′F given
by ( ′) = | ( ) − ′( )|∈

d F F F y F y, supy . We may notice that this distance is
quite easy to compute, as the sup has to be searched only on

…y y, , r1 .

Example 3.2. In some situations in which there exist estimators
θ̂ ( )i such that the estimated parameter θ̂ ( )( )yi N

1 also gives the form
Fi k, in = { … }( )F , , Fi i i K i,1 , . This is the case when i j, belongs to the
Pearson's system of distributions [47]. In such case, which has
been successfully used in the context of independent noise and
hidden multi-sensor Markov fields in [38], there is no rule 1 to
use as the choice of the shape and the estimation of its parameters
are performed simultaneously, cf. Section 5.

Example 3.3. One possible rule 2 for choosing among M copulas
…c c, , M1 from ( )y y,1 2 , ( ) … ( )−y y y y, , , ,r r2 3 1 that we will call “pseudo-

likelihood maximization” (PLM) method and which will be used in
experiments below, is the following:

∏(( ) ( ) … ( )) = ( )
( )−

∈{ … } =
−y y y y y y c y y, , , , , , arg sup , .

11r r
c c c i

r

m i i
2

1 2 2 3 1
, , 2

1
m M1

We also tested the “Bayesian copula selection method” proposed in
[48] and considered in [37], and the latter turns out to be less
efficient than PLM in the context of the experiments considered in
Section 5.
4. Sampling and classification of HMM-DNs

We recall in this section the classic computations needed in
GICE and in Bayesian MPM classification. Let us consider a re-
versible stationary HMM-DN ( )X Y,N N

1 1 , with the distribution de-
fined by ( )p x y,1 1 and ( | )p x y x y, ,2 2 1 1 .

4.1. Sampling HMM-DNs

To sample realizations of ( )X Y,N N
1 1 , we need ( )p x y,1 1 and

( | )p x y x y, ,2 2 1 1 (equal to ( | )+ +p x y x y, ,n n n n1 1 for each = … −n N2, , 1).
Adopting the notations of previous section, for each Ω∈i j, ,
let = ( = = )p p x i x j,i j, 1 2 and ( | = = ) = (p y y x i x j f y, , ,i j1 2 1 2 , 1

) = ( ) ( ) ( ( ) ( ))y f y f y c F y F y,i
l

j
r

i j i
l

j
r

2 1 2 , 1 2 . In addition, let

= ( = ) = ∑ =p p x i pi j
K

i j1 1 , and = ( = | = )|p p x j x ij i 2 1 . Then
( ) = ( ) ( | )p x y p x p y x,1 1 1 1 1 and ( | ) = ( | ) ( | )p x y x y p x x p y x y x, , , ,2 2 1 1 2 1 2 1 1 2 , see Eq.

(4), are given by

( = ) = ( | = ) = ( ) ( = | = ) = |p x i p p y x i f y p x j x i p, , ,i i
l

j i1 1 1 1 2 1

and

( | = = ) =
( | = = )

( | = )

= ( ) ( ( ) ( ))

p y x i y x j
p y y x i x j

p y x i

f y c F y F y

, ,
, ,

, ,j
r

i j i
l

j
r

2 1 1 2
1 2 1 2

1 1

2 , 1 2

So that we finally get

( = | = ) = ( ) ( ( ) ( )) ( )|p x j y x i y p f y c F y F y, , , . 12j i j
r

i j i
l

j
r

2 2 1 1 2 , 1 2

There are different methods for sampling =Y y1 1 and =Y y2 2
according to (8) and (9); in particular, acceptance–rejection
method [49] may be used.

4.2. Estimation XN
1 in HMM-DN ( )X Y,N N

1 1

Let us recall how the distributions ( | )yp xn
N

1 , ( | )+ yp x x,n n
N

1 1 , and

( | )+ yp x x ,n n
N

1 1 are computed in an HMM-DN ( )X Y,N N
1 1 . The first one

is used in Bayesian Maximum Posterior Mode (MPM) classifica-
tion, which consists of estimating = ( … ) = ( … )X X X x x, , , ,N

N N1 1 1 by
^ = (^ … ^ )x x x, ,

N
N1 1 such that each x̂n maximizes ( | )yp xn

N
1 , and which

minimizes the mean rate of errors. The second and third ones are
used in points (a) and (b) of GICE algorithm, respectively.

Classically, we have

( ) ( ) ( ) α β= | = ( ) ( ) ( )+y y yp x p x p x y x x, , , , 13n
N

n
n

n
N

n n n n n n1 1 1

where αn and βn are called “forward” and “backward” probabilities.
They can be computed with the following “forward” and “back-
ward” recursions:

α ( ) = ( ) ( )x p x y, ; 141 1 1 1

∑α α( ) = ( | ) ( )

= … − ( )

+ + + +x p x y x y x

n N

, , ,

for 1, , 1; 15

n n
x

n n n n n n1 1 1 1
n

β ( ) = ( )x 1; 16N N



Fig. 1. Density of margins used in experiments in Sections 5.1 and 5.2 (f1: Gamma;
f2: second kind Beta). Parameters are specified in Table 1, with = =m m 01

1
2
1 .
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∑β β( ) = ( | ) ( )

= − … ( )

+ + + +
+

x p x y x y x

n N

, , ,

for 1, , 1. 17

n n
x

n n n n n n1 1 1 1
n 1

So that we can write

α β

α β

( | ) ∝ ( ) ( )

( | ) ∝ ( ) ( ) ( | )

( | ) =
( | )

( | )

+ + + + +

+
+

y

y

y
y

y

p x x x

p x x x x p x y x y

p x x
p x x

p x

,

, , , ,

,
,

.

n
N

n n n n

n n
N

n n n n n n n n

n n
N n n

N

n
N

1

1 1 1 1 1 1

1 1
1 1

1

5. GICE algorithm evaluation

This Section aims to evaluate particular GICE algorithms in the
context of data classification with two classes Ω( = { })1, 2 . In a first
series of experiments, we consider an HMM-DN and experiment
the margin and copula recovering performances of GICE with re-
spect to the distance between margins’ mean. The experiment
makes use of the Pearson's system of distributions, summarized in
Appendix A. In a second series of experiments, we study in what
situations the use of HMM-DN can improve the results obtained
with classical HMM-INs. Finally, in last subsection, we provide a
series of comparative results regarding the segmentation of a SAR
image showing burn plots in Rondonia, Brazil.

5.1. HMM-DNs estimation and restoration

In this experimental setting, we consider fixed values for
= =p p 0.451,1 2,2 and for = =p p 0.051,2 2,1 , variations of them being

considered in Section 5.2.
A two-classes HMM-DN is defined with 2 margins and 4 co-

pulas. The margins f1 and f2 considered here are specified in

Table 1, where mi
1 denotes the mean, mi

2 the variance, βi
1 the

skewness and β2
i the kurtosis. Other parameters refer to the de-

scription of type-III and type-VI distributions according to Pear-
son's system (see Appendix A). The density of margins used in
experiments are drawn in Fig. 1. The three copulas c1,1, =c c1,2 2,1
and c2,2 involved in the model were set to be respectively of
Gumbel, Gaussian and Clayton types, with Kendall's tau given by
τ = 0.11,1 , τ τ= = 0.31,2 2,1 and τ = 0.72,2 . Table 2 gives the details
about the one-parameter families of copulas considered in this
paper.

Data =X xN N
1 1 and =Y yN N

1 1 were sampled as specified in Sec-

tion 4.1, and the model was identified from =Y yN N
1 1 with GICE

according to the algorithm described in Section 3. The sets of
possible shapes for the margins was fixed to

= = { }Gamma, Inverse Gamma, Second kind Beta1 2 . These
Table 1
Parameters characterizing precisely f1 and f2, which are of type-III and type-VI
according to Pearson's system of distributions (see Appendix A). Means m1

1 and
m2

1 are not specified here since experiments will be conducted according to

variations of δ = −m m1
1

2
1 . Parameters b0, b1, ξ, λ, a1, a2, p1 and p2 are defined in

Appendix A.

Parameters m1 m2 β1 β2 b0 b1 ξ λ

f1 m1
1 1.0 0.25 3.38 1.0 0.25 �9.5 6.37

m1 m2 β1 β2 a1 a2 p1 p2 λ

f2 m2
1 1.0 1.00 4.70 �16.9 �2.34 �50.6 8.13 �0.95
three distributions correspond to a sub-set of Pearson's system of
distributions (see remark below) so that, according to Example
3.2, the choice of the shapes and their parameters are performed
simultaneously. More precisely, to find the margins at next
iteration of GICE algorithm – points (c) and (d) of the GICE pro-
cedure in Section 3 – one uses ( )y xi N

1 (see (10)) to classically
estimate, for i¼1,2, the four first moments = [ | = ]m E Y X ii

1
1 1 , and

= [( − ) | = ]m E Y m X ii
s

i
s

1
1

1 for =s 2, 3, 4, which gives βi
1 and β2

i .
According to the general theory [47], the knowledge of β β( ),i i

1 2

gives the family which fi belongs to (among eight families forming
the Pearson's system of distributions), and the additional knowl-
edge of mi

1 characterizes fi. More precisely, using the rules speci-
fied for each distribution in Appendix A, we first identify the

distribution family of fi from β̂i

1
and β̂i

2
, and then, using m̂i

1
and

formulas for each identified distribution, we precisely identify the
shape of fi.

Besides, we consider for all Ω∈i j, the same set of six possible
shapes for copulas given by = = = =1,1 1,2 2,1 2,2 {Product,
Gaussian, Gumbel, Cubic section, Clayton, Arch14}. All those co-
pula families are detailed in Table 2. Except for the “Product” fa-
mily, reduced to one element, a copula is entirely defined by its
Kendall's tau τ, which can be classically estimated from con-
cordance (c) and discordance (d) rates computed from ( )y x N

ij 1 :

τ̂ = −
( − )
c d

n n
2

1
,i j,

where n is the sample size. Then, for each τ̂i j, , we first compute the

five possible α̂i j, for each of the five considered families by in-
verting the formulas in the last column in Table 2, and then apply
the Pseudo Maximum Likelihood rule (11) to select the best-fitting
one.

The classification error rates presented hereafter are means of
100 independent experiments. An experiment consists in the si-
mulation of N¼3000 data according to the HMC-DN model spe-
cified above, and its restoration according to different algorithms.
Figs. 2–4 present the evolution of error rates of those algorithms
according to the gap δ = | − |m m2

1
2
1 between the means of the two

margins involved (see Table 1). In each figure, the black plot
(diamond marks) reports the error rate obtained with the true
model (i.e. the restoration with the parameters used for simula-
tion), which is thus a reference for all other methods.

Fig. 2 reports the error rates of four algorithms, assuming that
the parameters are the true ones, for ‘Gaussian margins’, ‘Gaussian
copulas’ and ‘Gaussian margins and copulas’, or are estimated from



Table 2
One-parameter copulas α( )c y y, ;p 1 2 used in this work. “Arch” means Archimedean, and “14” in “Arch14” is the order of appearance in [10].

p Name pdf cp Kendall's τ

0 Product ( ) =c y y, 10 1 2 0

1 Gauss
ξ ρ ξ

α
( ) =

−
− ( − )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Ic y y,

1

1
exp

1
2

T
1 1 2 2 π

αa
2

sin

where ξ ϕ= ( )− yi i
1 with ϕ the standard normal distribution, ( )ρ =

α
α1
1

and I are the 2� 2 correlation and identity matrices.

2 Gumbel
α( ) =

( ) ( )
( − + + ) ( + ) −( + )α α α−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟c y y

t
y y

t
y y

t t t t t t,
ln ln

1 exp2 1 2
1

1 1

2

2 2
1 2

1
1 2

1 2
1 2

1
α

−1
1

where = (− ( ))αt yln1 1 and = (− ( ))αt yln2 2 .

3 Cubic section α( ) = + (( − )( − )( − + + + )c y y y y y y y y, 1 2 1 1 8 2 2 13 1 2 1 2 2 1 1 2 α α−2
3

2
75

2

+ ( − )( − − − ) + ( − ) ( − − − )y y y y y y y y y y y y1 4 2 1 1 4 2 11 2 2 1 1 2 1 2 2 1 1 2

+ ( − + + + ))y y y y y y2 11 2 2 1 1 2

4 Clayton
α( ) = ( + ) (− + + )α α α α α− − − − − − − −c y y y y y y, 1 14 1 2 1

1
2

1
1 2

1 2 α
α + 2

5 Arch14
α α

α
( ) = ( + ) ( + ( + ) )

− + ( + )

− −

α α α
α

α α

− − −

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

c y y t t t t t t
t t

y y y y

, 1
1 2

1 1
5 1 2 1 2 1 2

1 2
1 2

1 2
1 2

1

1 2 1

1

2

1

α
α

−
+

2 1
2 1

where = −α
α

−⎛
⎝⎜

⎞
⎠⎟t y 11 1

1
and = −α

α
−⎛

⎝⎜
⎞
⎠⎟t y 12 2

1

Fig. 2. MPM classification error rates of five algorithms (true parameters) accord-
ing to the gap δ between the two margins means (see text for details). (For inter-
pretation of the references to color in this figure, the reader is referred to the web
version of this paper.)

Fig. 3. MPM classification error rate of five algorithms according to δ (see text for

details). The results are means μ̂ of 100 experiments. The shaded envelop asso-

ciated to each curve represents the 95% confidence interval of μ̂: μ σ^ ±
^

1.96
100

.

(For interpretation of the references to color in this figure, the reader is referred to
the web version of this paper.)
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the ground-truth for ‘Gaussian Kernel’ (here GICE is not used):

1. ‘Gaussian margins’ (magenta plot, square marks): the shape of
the margins were assumed Gaussian, with means and variances
given by m1 and m2 in Table 1, whereas the shape and the
parameters of the copulas were the true ones;

2. ‘Gaussian copulas’ (green plot, triangle marks): the shape of the
4 copulas were all assumed Gaussian, with the same Kendall's
tau as the ones used for simulation (τ = 0.11,1 , τ τ= = 0.31,2 2,1 and
τ = 0.72,2 ), whereas the shape and the parameters of the mar-
gins were the true ones;

3. ‘Gaussian margins and copulas’ blue plot (circle marks): Both
margins and copulas were assumed Gaussian, with parameters
set similarly to the two previous plots;
4. ‘Gaussian kernel’ (red plot, diamond marks): the shapes of the

4 class-conditional pdf ( | )p y y x x, ,1 2 1 2 were estimated using ker-
nel density estimation. We used Gaussian kernels with no cor-
relation and the d¼2 bandwidths were estimated using Scott's
rule σ= − ( + )h ni

d
i

1/ 4 , with n the size of the sample and σi the
standard deviation for dimension i.

Regarding the first three plots, assuming the Gaussianity of either
margins or copulas degrades the classification performances. As-
suming full-Gaussianity when data are not Gaussian, which is of-
ten assumed in applications, leads to very poor results (blue plot):



S. Derrode, W. Pieczynski / Signal Processing 128 (2016) 8–1714
Gaussian approximations do not allow to capture the complexity
and richness of the simulated data. At least in this experiment,
when the copulas are the true ones, the margins shape has little
influence on results (magenta plot). Finally, the Gaussian kernel
plot (red) shows similar performances than the ‘Gaussian copulas’
configuration (green).

It is now interesting to measure the GICE performance for se-
lecting shapes and estimating their parameters with respect to the
classification error rates. To get the results reported in Fig. 3, the
GICE was initialized from the parameters obtained with a Kmeans
Fig. 4. MPM classification error rate of two algorithms (‘Variation distance’ and
‘Kmeans algorithm’) according to δ (see text for details). (For interpretation of the
references to color in this figure, the reader is referred to the web version of this
paper.)

Fig. 5. Classification error rate according to the joint a priori probability
ϵ = ( = = ) = ( = = )p x x p x x1, 1 2, 21 2 1 2 for 3 different models with decreasing gen-
erality: HMM-DN, HMM-IN, BLIND (means of 10 experiments of N¼3000 data).

Fig. 6. (a) 3-look JERS1 im
algorithm, and stopped after 100 iterations, assuming con-
vergence. Fig. 3 reports the performance of three algorithms:

� ‘GICE’ (green plot, triangle marks): all shapes were auto-
matically selected within the set of possible shapes by the GICE
algorithm;

� ‘GICE with Gaussian copulas and margins’ (magenta plot, square
marks): the shapes of the margins and copulas were all as-
sumed Gaussian, ICE algorithm only performing parameters
estimation;

� ‘GICE with Gaussian Kernel’ (blue plot, circle marks): the shapes
of the 2D class-conditional densities were estimated by ICE
using a simple Kernel density estimation algorithm (Gaussian
Kernel, no correlation). The bandwidths were estimated using
Scott's rule at each ICE iteration.

The performance of the ‘GICE’ algorithm (green plot) is almost
optimal since it is able to reach the performances of the reference,
except when δ < 1.5 in which case the mixture becomes too
complex to be retrieved. Nevertheless, it gives very interesting
results compared to the two other unsupervised algorithms (ma-
genta and blue plots), allowing to divide the error rate up to 5 for
δ = 1.5. Hence, at least in this experiment, the automatic selection
of the right copulas and the right margins are required to reach
optimal performances. It is interesting to note that the config-
urations represented by the magenta and blue plots give similar
performances than the Kmeans and the “variation distance” clas-
sification algorithms, the last one being obtained without Marko-
vianity, estimating each Xn from each Yn by a suited ICE algorithm
(simple mixture model), see Fig. 4.

As a conclusion for this experiment, we may state that the GICE
algorithm we propose gives very satisfying results in HMM-DNs,
even when the mixture to be restored is very difficult. This nice
behaviour is confirmed by other similar experiments not reported
in the paper. Let us note that the computational burden of the
algorithm depends on the number of copula shapes which are
evaluated at each iteration of the GICE algorithm. The selection
based on PLM criterion (11) can be time-consuming, but the al-
gorithm remains about ten times less time consuming that the
kernel-based estimation method, whereas being much more per-
forming. Otherwise, the selection of margins based on Pearson’
system is done at nearly no supplementary cost.

5.2. Comparison with HMM-INs

The aim of this second experiment is to evaluate the interest of
using HMM-DNs, which are not HMM-INs, i.e. in which

( | ) ≠ ( | )p y x y x p y x, ,2 2 1 1 2 2 . We provide a study detailing the
age. (b) Ground truth.



Table 3
Confusion matrices (in %) (a) for the HMC-DN model using GICE, and (b) for a fully
Gaussian HMD-DN model using classical ICE.

(a) Overall error rate: 26.0% (b) Overall error rate: 41.9%
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

68.2
77.1

81.9

15.1 16.7
8.2 14.6
8.1 10.0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

41.9
79.5

76.7

42.6 15.5
4.1 16.3
2.4 20.9
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comparison w.r.t. ( )p x x,1 2 in a simple two-classes case. The para-
meters are here assumed to be known.

Let us still consider the HMM-DN specified by the four copulas
and the two margins in previous sub-section. Parametrizing the
joint a priori probability of XN

1 according to = = ϵp p1,1 2,2 and
= = − ϵp p 11,2 2,1 , we study the influence of ϵ value on the re-

storation of N¼3000 simulated data using the following algo-
rithms, with decreasing modelling capabilities:

� HMM-DN (red plot, diamond marks): the HMM-DN model gi-
ven by the four copulas, the two margins and matrix pi j, ;� HMM-IN (magenta plot, square marks): the classic HMM model
defined with margins f1 and f2 and matrix pi j, ;� BLIND (green plot, triangle marks): the observations are as-
sumed independent; the model is parametrized by margins f1
and f2 and the weights of the mixture (0.5 and 0.5).

According to results reported in Fig. 5, we can state the
following:

� Using HMM-DNs is always of interest, i.e. whatever the value of
ϵ. The best gain is obtained for ϵ = 0.40, the HMM-DN error
being of 14% while the HMM-IN one is of 29%.

� The classic HMM-INs are quite inefficient, except for ϵ, i.e. in-
ferior to 0.05. As HMM-INs are very simple, this could be of
interest in such particular cases;

� The case ϵ = 0.25 is of special interest as it is very different from
the usual models. Indeed, the hidden variables …X X X, , , N1 2 are
independent but, as observations …Y Y Y, , , N1 2 are dependent
conditionally on XN

1 in HMM-DNs, …X X X, , , N1 2 are dependent
conditionally on YN

1 and thus the Markovianity of the couple
( )X Y,N N

1 1 allows to improve blind and HMM-INs classifications.
This is not the case in HMM-INs and we see here a particular
aspect of the interest of HMM-DNs with respect to HMM-INs.

5.3. Unsupervised image segmentation

This section is intended to illustrate the use of automatic co-
pulas and margins selection in HMC-DN for unsupervised image
segmentation. We focus on the JERS1 Synthetic Aperture Radar
(SAR) image of Rondonia, Brazil, in Fig. 6a. The image is a 3 looks
amplitude image with 256�256 pixels, and ×25 m 25 m soil re-
solution. SAR images are known to be very challenging due to the
speckle that degrades the image with non-Gaussian noises. The
image was manually segmented by an expert into 3 classes (burn
plot, cultivation, and dense forest), cf. Fig. 6b.

To segment the image in 3 classes, we
Fig. 7. HMC-DN segmentation (a) within GICE framework with automatic margins and
copulas.
� apply the Hilbert–Peano scan [39] to get a 1D vector of data;
� apply the GICE algorithm and performed MPM-classification to

get a 1D vector of class data, assuming
○ = = = { }Gamma, Inverse Gamma, Second kind Beta1 2 3

for margins, and
○ = … = =1,1 3,3 {Product, Gaussian, Gumbel, Cubic section,

Clayton, Arch14} for copulas.
� transform the segmented 1D data into a 2D image using inverse

scanning.

The result of segmentation with 3 classes is shown in Fig. 7a,
with a confusion matrix reported in Table 3(a). The segmentation
with 3 classes leads to

� 9 different copulas …c c, ,1,1 3,3, all of them being of Gumbel-type,
and

� 3 margins f1, f2, and f3, all of them being of Pearson's Type-VI.

The good performances of the algorithm can be compared w.r.t.
the segmentation obtained with a fully-Gaussian HMC-DN model
with a parameters estimation performed using a classical ICE al-
gorithm, see Fig. 7b and the corresponding confusion matrix
reported in Table 3(b).
6. Conclusion

Classic Hidden Markov models are widely used in a number of
situations. Considering dependent noise brings additional effi-
ciency; however, it is not easy to handle with in non-Gaussian
cases. Introducing copulas allows to consider large possibilities of
different hidden Markov models. Extending works in
[29,38,37,39], we proposed here a general model's identification
method from the only observed data. Experiments presented show
the interest of copulas-based Markov models with respect to the
classic ones, and the efficiency of the model's identification
method proposed. In particular, at least in the experimental set-
ting considered here, the automatic selection of both copulas and
copulas selection, (b) within classical ICE framework with Gaussian margins and
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margins outperforms the results obtained using a Gaussian kernel
representation for data-driven densities. It might be interesting to
pursue the comparison with “Bayesian non parametric methods”,
such as Dirichlet Processes [50]. Nevertheless, in unsupervised
context considered, it appears that Hidden Markov models with
dependent non-Gaussian noise based methods clearly improve
those based on the classic HMMs, as illustrated with a real SAR
image.

In this paper, we considered mono-sensor cases and copulas
were used at the temporal level. They may also be used, in hidden
Markov context, at vectorial level, modelling dependencies among
sensors at a given time [31,33–35]. As perspective, one may con-
sider to use copulas in hidden Markov models on both temporal
and vectorial levels simultaneously. Another perspective is to
consider extensions of the discrete hidden or pairwise Markov
models considered to fuzzy ones, as introduced in [51,52]. Finally,
ICE has been successfully extended to long memory hidden Mar-
kov models [45], and thus considering copulas and GICE in such
models would possibly be an interesting perspective.
Appendix A. Brief recall on Pearson’ system of distributions

A pdf f on  belongs to Pearson's system if it satisfies
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∂
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The variation of the parameters a, λ, b0, b1 and b2 provides
distributions of eight different shapes and, for each shape, defines
the parameters fixing a given distribution. The pdf used in ex-
periments constitute a subset of Pearson's system made of 3 den-
sities that are detailed in the following.

Pearson type-III distribution: A distribution is said to be of
type-III if β β= ( + )22 3

2
1 . Hence, denoting,
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the random variate λ+ ( − − )b b x m0 1
1 is Gamma ξ θ( ), -distributed

with θ = b1
2.
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the random variate λ− −x m1 is distributed according to an in-

verse Gamma distribution IG α β( ), with parameters α = −
b
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and β =
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b
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2
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Pearson type-VI distribution: A distribution is said to be of
type-V if values of β1 and β2 belong to the restriction of Pearson

β β( ),1 2 -plane delimited by type-III and type-V distributions.
Hence, denoting,
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is distributed according to a
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References

[1] L.E. Baum, T. Petrie, G. Soules, N. Weiss, A maximization technique occurring in
the statistical analysis of probabilistic functions of Markov chains, Ann. Math.
Stat. 41 (1) (1970) 164–171.

[2] L.R. Rabiner, A tutorial on hidden Markov models and selected applications in
speech recognition, Proc. IEEE 77 (2) (1989) 257–286.

[3] O. Cappé, E. Moulines, T. Rydén, Inference in Hidden Markov Models, Springer-
Verlag, New York, 2005.

[4] Y. Ephraim, N. Merhav, Hidden Markov processes, IEEE Trans. Inf. Theory 48
(6) (2002) 1518–1569.

[5] I.L. MacDonald, W. Zucchini, Hidden Markov and Other Models for Discrete-
Valued Time Series, Monographs on Statistics and Applied Probability, Chap-
man & Hall London, New York, 1997.

[6] R. Bhar, S. Hamori, Hidden Markov Models: Applications to Financial Eco-
nomics, Advanced Studies in Theoretical and Applied Econometrics Series,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004.

[7] R.S. Mamon, R.J. Elliott, Hidden Markov Models in Finance, Springer, New York,
2007.

[8] T. Koski, Hidden Markov Models for Bioinformatics, Computational Biology,
Kluwer Academic Publishers, Norwell, MA, Dordrecht, The Netherlands, 2001.

[9] M. Vidyasagar, Hidden Markov Processes: Theory and Applications to Biology,
Princeton Series in Applied Mathematics, Princeton University Press, Prince-
ton, NJ, 2014.

[10] R. Nelsen, An Introduction to Copulas, Springer, Springer Series in Statistics,
Second edition, New York, USA, 2005.

[11] A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publications
de l'Institut de Statistique de l'Université de Paris 8 (1959) 229–231.

[12] S. Demarta, A.J. McNeil, The t copula and related copulas, Int. Stat. Rev. 73
(2005) 111–129.

[13] C. Genest, J. Mackay, Copules archimédiennes et familles de lois bidi-
mensionnelles dont les marges sont données, Can. J. Stat. 14 (2) (1986)
145–159.

[14] A.K. Nikoloulopoulos, D. Karlis, Copula model evaluation based on parametric
bootstrap, Comput. Stat. Data Anal. 52 (7) (2008) 3342–3353.

[15] Y. Noh, K. Choi, I. Lee, Identification of marginal and joint CDFs using Bayesian
method for RBDO, Struct. Multidiscip. Optim. 40 (2010) 35–51.

[16] X. Chen, Y. Fan, Estimation of copula-based semiparametric time series
models, J. Econom. 130 (2) (2006) 307–335.

[17] O.C. da Silva Filho, F.A. Ziegelmann, M.J. Dueker, Modeling dependence dy-
namics through copulas with regime switching, Insur.: Math. Econ. 50 (3)
(2012) 346–356.

[18] C. Genest, B. Rémillard, D. Beaudoin, Goodness-of-fit tests for copulas: a re-
view and a power study, Insur.: Math. Econ. 44 (2009) 199–213.

[19] C. Genest, E. Masiello, K. Tribouley, Estimating copula densities through wa-
velets, Insur.: Math. Econ. 44 (2009) 170–181.

[20] E. Jondeau, M. Rockinger, The copula-GARCH model of conditional de-
pendencies: an international stock market application, J. Int. Money Finance
25 (5) (2006) 827–853.

[21] Q. Xiaomei, Z. Jie, S. Xiaojing, Archimedean copula estimation and model se-
lection via l1-norm symmetric distribution, Insur.: Math. Econ. 46 (2010)
406–414.

[22] S. Iyengar, P. Varshney, T. Damarla, A parametric copula-based framework for
hypothesis testing using heterogeneous data, IEEE Trans. Signal Process. 59 (5)
(2011) 2308–2319.

[23] G. Mercier, G. Moser, S. Serpico, Conditional copula for change detection on
heterogeneous SAR data, IEEE Trans. Geosci. Remote Sens. 46 (5) (2008)
1428–1441.

[24] Y. Stitou, N. Lasmar, Y. Berthoumieu, Copulas based multivariate gamma
modeling for texture classification, In: IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP'09), 2009, pp. 1045–1048.

[25] A. Sundaresan, P. Varshney, Location estimation of a random signal source
based on correlated sensor observations, IEEE Trans. Signal Process. 59 (2)
(2011) 787–799.

[26] M.A. Ben Alaya, F. Chebana, T.B.M.J. Ouarda, Probabilistic Gaussian copula

http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref1
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref1
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref1
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref1
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref2
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref2
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref2
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref3
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref3
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref4
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref4
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref4
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref5
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref5
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref5
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref5
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref6
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref6
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref6
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref7
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref7
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref8
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref8
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref9
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref9
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref9
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref11
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref11
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref11
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref11
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref12
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref12
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref12
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref13
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref13
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref13
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref13
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref14
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref14
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref14
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref15
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref15
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref15
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref16
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref16
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref16
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref17
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref17
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref17
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref17
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref18
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref18
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref18
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref19
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref19
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref19
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref20
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref20
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref20
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref20
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref21
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref21
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref21
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref21
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref22
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref22
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref22
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref22
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref23
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref23
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref23
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref23
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref25
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref25
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref25
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref25
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref26


S. Derrode, W. Pieczynski / Signal Processing 128 (2016) 8–17 17
regression model for multisite and multivariable downscaling, J. Clim. 27 (9)
(2014) 3331–3347.

[27] A.-C. Favre, S. El_Adlouni, L. Perreault, N. Thiémonge, B. Bobée, Multivariate
hydrological frequency analysis using copulas, Water Resour. Res. 40 (1)
(2004) /http://dx.doi.org/10.1029/2003WR002456S.

[28] S. Grimaldi, F. Serinaldi, Asymmetric copula in multivariate flood frequency
analysis, Adv. Water Resour. 29 (2006) 1155–1167.

[29] N. Brunel, W. Pieczynski, Unsupervised signal restoration using hidden Mar-
kov chains with copulas, Signal Process. 85 (12) (2005) 2304–2315.

[30] N. Brunel, J. Lapuyade-Lahorgue, W. Pieczynski, Modeling and unsupervised
classification of multivariate hidden Markov chains with copulas, IEEE Trans.
Autom. Control 55 (2) (2010) 338–349.

[31] F. Flitti, C. Collet, A. Joannic-Chardin, Unsupervised multiband image seg-
mentation using hidden Markov quadtree and copulas, In: IEEE International
Conference on Image Processing (ICIP'05), Genova, Italy, 2005, pp. 634–637.

[32] W. Wang, O. Okhrin, W.K. Hrdle, Hidden Markov structures for dynamic co-
pulae, Econom. Theory (2016), forthcoming.

[33] F. Flitti, C. Collet, E. Slezak, Image fusion based on pyramidal multiband
multiresolution Markovian analysis, Signal Image Video Process. 3 (3) (2009)
275–289.

[34] A. Voisin, V. Krylov, G. Moser, S.B. Serpico, J. Zerubia, Classification of very high
resolution SAR images of urban areas using copulas and texture in a hier-
archical Markov random field model, IEEE Geosci. Remote Sens. Lett. 10 (1)
(2013) 96–100.

[35] A. Voisin, V. Krylov, G. Moser, S.B. Serpico, J. Zerubia, Supervised classification
of multi-sensor and multi-resolution remote sensing images with a hier-
archical copula-based approach, IEEE Trans. Geosci. Remote Sens. 52 (6)
(2014) 3346–3358.

[36] A. Ekin, A.M. Tekalp, Automatic soccer video analysis and summarization, IEEE
Trans. Image Process. 12 (2003) 796–807.

[37] S. Derrode, W. Pieczynski, Unsupervised data classification using pairwise
Markov chains with automatic copulas selection, Comput. Stat. Data Anal. 63
(2013) 81–98.

[38] Y. Delignon, A. Marzouki, W. Pieczynski, Estimation of generalized mixture
and its application in image segmentation, IEEE Trans. Image Process. 6 (10)
(1997) 1364–1375.
[39] N. Giordana, W. Pieczynski, Estimation of generalized multisensor hidden

Markov chains and unsupervised image segmentation, IEEE Trans. Pattern
Anal. Mach. Intell. 19 (5) (1997) 465–475.

[40] S. Derrode, W. Pieczynski, Signal and image segmentation using pairwise
Markov chain, IEEE Trans. Signal Process. 52 (9) (2004) 2477–2489.

[41] W. Pieczynski, Pairwise Markov chains, IEEE Trans. Pattern Anal. Mach. Intell.
25 (2003) 634–639.

[42] P. Lanchantin, J. Lapuyade-Lahorgue, W. Pieczynski, Unsupervised segmenta-
tion of randomly switching data hidden with non-Gaussian correlated noise,
Signal Process. 91 (2) (2011) 163–175.

[43] J. Lapuyade-Lahorgue, W. Pieczynski, Unsupervised segmentation of hidden
semi-Markov non stationary chains, Signal Process. 92 (1) (2012) 29–52.

[44] Y. Ephraim, B.L. Mark, Bivariate markov processes and their estimation, Found.
Trends Signal Process. 6 (1) (2013) 1–95.

[45] P. Lanchantin, J. Lapuyade-Lahorgue, W. Pieczynski, Unsupervised segmenta-
tion of triplet Markov chains hidden with long-memory noise, Signal Process.
88 (5) (2008) 1134–1151.

[46] J. Delmas, An equivalence of the EM and ICE algorithms for exponential family,
IEEE Trans. Signal Process. 45 (10) (1997) 2613–2615.

[47] N. Johnson, S. Kotz, Continuous univariate distribution, Tome I and II, second
edition, Wiley-interscience, 1994.

[48] D. Huard, G. Évin, A. Favre, Bayesian copula selection, Comput. Stat. Data Anal.
51 (2006) 809–822.

[49] L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New
York, New York, USA, 1986.

[50] F. Caron, M. Davy, A. Doucet, E. Duflos, P. Vanheeghe, Bayesian inference for
linear dynamic models with Dirichlet process mixtures, IEEE Trans. Signal
Process. 56 (1) (2008) 71–84.

[51] C. Carincotte, S. Derrode, S. Bourennane, Unsupervised change detection on
SAR images using fuzzy hidden Markov chains, IEEE Trans. Geosci. Remote
Sens. 44 (2) (2006) 432–441.

[52] F. Salzenstein, C. Collet, S. Le Cam, M. Hatt, Nonstationary fuzzy Markov chain,
Pattern Recognit. Lett. 28 (16) (2007) 2201–2208.

http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref26
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref26
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref26
http://dx.doi.org/10.1029/2003WR002456
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref28
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref28
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref28
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref29
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref29
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref29
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref30
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref30
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref30
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref30
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref33
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref33
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref33
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref33
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref34
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref34
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref34
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref34
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref34
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref35
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref35
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref35
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref35
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref35
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref36
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref36
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref36
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref37
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref37
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref37
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref37
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref38
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref38
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref38
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref38
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref39
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref39
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref39
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref39
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref40
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref40
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref40
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref41
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref41
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref41
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref42
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref42
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref42
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref42
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref43
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref43
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref43
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref44
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref44
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref44
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref45
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref45
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref45
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref45
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref46
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref46
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref46
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref47
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref47
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref48
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref48
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref48
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref49
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref49
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref50
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref50
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref50
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref50
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref51
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref51
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref51
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref51
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref52
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref52
http://refhub.elsevier.com/S0165-1684(16)30005-6/sbref52

	Unsupervised classification using hidden Markov chain with unknown noise copulas and margins
	Introduction
	HMM with dependent noise and copulas
	Shapes and parameters estimation
	Sampling and classification of HMM-DNs
	Sampling HMM-DNs
	Estimation X1N in HMM-DN (X1N,Y1N)

	GICE algorithm evaluation
	HMM-DNs estimation and restoration
	Comparison with HMM-INs
	Unsupervised image segmentation

	Conclusion
	Brief recall on Pearson’ system of distributions
	References




