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Unified Representation of Sets of Heterogeneous
Markov Transition Matrices

Mohamed El Yazid Boudaren and Wojciech Pieczynski

Abstract—Markov chains are very efficient models and have been ex-
tensively applied in a wide range of fields covering queuing theory, signal
processing, performance evaluation, time series, and finance. For discrete
finite first-order Markov chains, which are among the most used models of
this family, the transition matrix can be seen as the model parameter, since
it encompasses the set of probabilities governing the system state. Estimat-
ing such a matrix is, however, not an easy task due to possible opposing
expert reports or variability of conditions under which the estimation pro-
cess is carried out. In this paper, we propose an original approach to infer
a consensus transition matrix, defined in accordance with the theory of
evidence, from a family of data samples or transition matrices. To validate
our method, experiments are conducted on nonstationary label images and
daily rainfall data. The obtained results confirm the interest of the proposed
evidential modeling with respect to the standard Bayesian one.

Index Terms—Hidden Markov chains, Markov chains, model selection,
theory of evidence.

I. INTRODUCTION

Let X = (X1 , ...,XN ) be a stochastic process where each Xn

takes its values in a discrete finite state set Ω = {ω1 , ..., ωK }.
According to the first-order Markov chain model, the joint dis-
tribution of X is given by

p(x) = p(x1)
N∏

n=2

p(xn |xn−1). (1)

When the probabilities p(xn |xn−1) are independent on n,
they are given by a unique transition matrix A = [aij ]Ki,j=1 ,
where aij = p(xn = ωj |xn−1 = ωi), whereas p(x1) is given
by a vector Π, where πi = p(x1 = ωi). Hence, the estimation
of the transition matrix A is crucial to accurately monitor the
system under consideration. For this purpose, many statistical
approaches may be used [1]–[3]. However, such an estimation
is not always an easy task. In particular, we can mention the
following difficulties.
1) The transition probabilities may be fluctuating, and any estimation

under such conditions may lead to a provisional transition matrix
that could be unsuitable for future use.

2) There may be no consensus between experts about the meaning of
states themselves. Thus, expertise reports may be different even if
the same data are considered.

3) A set of transition matrices may be provided by independent experts.
In such cases, where no data are available, it is crucial to derive a
consensus transition matrix.
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In this paper, we propose to use the theory of evidence (TE)
[4]–[9] to take into account these different sources of possible
lack of precision. Markov chains, hidden or not, are widely used,
and the TE also is. However, in spite of the recognized efficiency
of these two tools, there are only few research studies that deal
with them simultaneously. Let us summarize some results linked
with such works. Ramasso and Denoeux use belief functions to
take into account partial knowledge about hidden states of a
hidden Markov model [10]. Hidden evidential Markov chains
(HEMCs) are used in [11] and [12] to deal with possible nonsta-
tionarities of the hidden chain, with application to unsupervised
image segmentation. In [13], authors use HEMCs for power
quality disturbance classification. Decision problems are also
dealt with using HEMCs in [14]. Other applications of HEMCs
include particle filtering [15], prognostics [16], and fault diag-
nosis [17]. Extensions of such models to a multisensor case
with possibly correlated noise are proposed in [18]. Let us also
briefly mention the use of TE in the hidden Markov field context,
where Bayesian processing is somewhat different from the one
used in the Markov chain context, with applications to image
processing [19]–[22]. However, compared with the volume of
publications on HMCs and TE separately, these different results
appear as quite marginal, and thus, there are wide perspectives
for further developments.

The idea presented in this paper is to remedy to different
problems mentioned above by extending the frame of dis-
cernment Ω = {ω1 , ..., ωK } of the “hard” Markov chain to
P (Ω) = {∅, {ω1}, ...,Ω} to consider compound hypotheses, as
in the HEMC, typically to take into account the uncertainty and
the unreliability associated with such hypotheses. Hence, the
corresponding transition matrix A∗ is defined on P (Ω)2 , and at
each site n, the system is modeled through a random variable
Un in P (Ω). Furthermore, if the system state, denoted Xn , is
accessible (or observable) at some date n, we have necessarily
Xn ∈ Un . The conventional Markov chain can then be perceived
as a particular case, where Un = Xn for each 1 ≤ n ≤ N . To
summarize, one can consider that observing Xn at date n does
not fully describe the system state at that date. It is to say that
Xn can be seen as a noisy version of Un . For this purpose, we
propose a genuine approach based on hidden Markov chains,
according to which the exclusive states Xn are considered inde-
pendent of each other conditional on U = u, whereas each Xn is
emitted by its associated Un in accordance with the well-known
Pignistic probability transform [5].

The remainder of this paper is organized as follows. Section
II recalls some concepts of theory of evidence and introduces
“evidential Markov chains” (EMCs). Section III describes the
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proposed approach to infer a consensus transition matrix from
a family of data samples or transition matrices. Experimental
results, obtained on label images and daily rainfall data, are
provided in Section IV. Section V ends the paper.

II. MARKOV CHAINS AND THEORY OF EVIDENCE

Let Ω = {ω1 , ..., ωK } be a finite state set, called in the TE
language “frame of discernment,” and let P (Ω) = {A1 , ..., Aq}
be its power set, with q = 2K . A function M from P (Ω) to
[0, 1] is called a “basic belief assignment” (bba) if M(∅) = 0
and

∑
A∈P (Ω) M(A) = 1. A bba M defines then a “plausi-

bility” function pl from P (Ω) to [0, 1] given by Pl(A) =∑
A∩B �=∅ M(B) and a “credibility” function Cr from P (Ω)

to [0, 1] given by Cr(A) =
∑

B⊂A M(B). Given a bba M , the
associated Pl and Cr are related through Pl(A) + Cr(Ac) = 1
so that each of them defines the other. In addition, Pl and Cr
can be defined by some axioms, and each of them defines then
a unique bba M . Furthermore, a probability function p can be
seen as a particular bba, which is null outside singletons. We
can see that in such a case, Pl is equal to Cr, and both are
a classic probability. We will say that a bba is “Bayesian” or
“probabilistic” when, being null outside singletons, it defines
a probability, and we will say that it is “evidential” otherwise.
We see how TE extends the classic probabilities defined on
a finite set. Moreover, when two bbas M1 and M2 represent
two pieces of evidence, we can combine, or fuse, them using
the so-called Dempster–Shafer fusion (DS fusion), which gives
M = M1 ⊕ M2 defined by

M(A) = (M1 ⊕ M2)(A) =
1
H

∑

B1 ∩B2 =A �=∅
M1(B1)M2(B2)

(2)
where H is a normalizing constant given by

H =
∑

(B1 ,B2 )∈P (Ω)2 |B1 ∩B2 �=∅
M1(B1)M2(B2).

One can then see that when either M1 or M2 is Bayesian
(with H �= 0), the fusion result M is also Bayesian.

To illustrate the interest of extending the Bayesian model-
ing to the evidential one, let us consider the following exam-
ple. Let Ω = {ω1 , ω2}, and let P (Ω) = {∅, ω1 , ω2 ,Ω} be its
associated powerset. Let us consider a family of probabilities
(pθ )θ∈Θ defined on Ω = {ω1 , ω2}, and let us consider the fol-
lowing “lower” probability p̃(ωk ) = infθ∈Θpθ (ωk ). Let M be
a mass function defined by M({ω1}) = p̃(ω1), M({ω2}) =
p̃(ω2), and M({ω1 , ω2}) = 1−p̃(ω1)−p̃(ω2). The latter quan-
tity illustrates the fluctuation of the accurate varying probability
p. Hence, adopting the bba M instead makes it possible to han-
dle the variability of p while adopting a nonvarying value of
M . The interest of such modeling has been shown theoretically
in the independent nonstationary data classification context in
[11].

To establish a link between TE and the aim of this paper, let us
recall the EMC model. A bba M defined on P (ΩN ) is said to be
an EMC if it is null outside [P (Ω)]N and if it can be written as

M(u1 , u2 , .., uN ) = M(u1)M(u2 |u1)...M(uN |uN −1). (3)

Setting a∗
ij = M(uj |ui), A∗ = [a∗

ij ] is the transition mass de-
fined on P (Ω)2 , which will be called in the remainder of this pa-
per “evidential transition matrix” in contrast with the Bayesian
transition matrix A, defined on Ω2 . The EMC given by (3) gen-
eralizes the Markov chain of (1) and allows one to take into
account the possible fluctuations of the transition probabilities.
This result has been successfully used within the triplet Markov
chain formalism to extend the well-known hidden Markov chain
model [23] in many directions allowing, in particular, nonsta-
tionary data modeling [11], [24], [25], data fusion [18], or both
simultaneously [26].

III. UNIFICATION OF MARKOV TRANSITION MATRICES

In this section, we propose an original approach based on
hidden Markov chains and TE to unify a family of heteroge-
neous Markov transition matrices, or data samples. First, we
discuss the motivation behind our evidential modeling. Then,
we describe the proposed approach and its related techniques.
Finally, we recall the Bayesian information criterion (BIC) that
will be used later for performance evaluation purposes.

A. Model Motivation

Let us consider problem 1 discussed in Section I. Let us
consider a nonstationary sequence X = (X1 , ...,XN ), or al-
ternatively, a family of heterogeneous subsequences (Xs)S

s=1
(for a given S) that could be merged into one sequence X ,
each Xn taking its values in Ω = {ω1 , ..., ωK }. Let us assume
X Markovian, with the distribution p(x1 , ..., xN ) given by an
initial distribution and transition matrices A2 , ..., AN , possi-
bly varying with n. Estimating the transition matrix from the
complete data X = x, while ignoring its fluctuations, may pos-
sibly yield a nonrepresentative Bayesian transition matrix A. On
the other hand, conducting such estimation locally on samples
(Xs)S

s=1 will possibly lead to S different transition matrices
(As)S

s=1 . The problem then is to propose a stationary model,
which would be easier to estimate, and which would approx-
imate the unknown distribution p(x1 , ..., xN ) more accurately
than any homogeneous Markov distribution. To illustrate this
situation, let us consider the following problem of daily rainfall
modeling. Let Ω = {ω1 , ω2}, where ω1 and ω2 denote “Wet”
and “Dry,” respectively. Of course, the transitional probabili-
ties between the system states depend on the year season and
may even vary over the years. Hence, estimating the associated
transition matrix A on different samples of data (Xs)S

s=1 , pos-
sibly taken from different year months, will probably result in
S different transition matrices (As)S

s=1 . Let us now consider
X = (X1 , ...,Xn ) a sequence corresponding to daily rainfall
over a year period, from day 1 to n, and let us assume that
we are interested in estimating Xn+1 knowing (X1 , ...,Xn ) =
(x1 , ..., xn ). From the viewpoint of Markov chain model of
(1), the distribution of Xn+1 can be directly derived from the
transition matrix A through p(Xn+1 = ωj |Xn = ωi) = aij . On
the other hand, according to our evidential model, the situa-
tion where (Xn+1 , Un+1) = (ω1 , {ω1}) can be different from
(Xn+1 , Un+1) = (ω1 , {ω1 , ω2}), in both of which Xn+1 = ω1 ,
since the system behavior is governed by the transition matrix
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A∗ giving p(Un+1 = γj |Un = γi) = a∗
ij . In other words, the

fluctuation of the transitional probabilities with respect to Ω is
modeled through the transitional probabilities on P (Ω) involv-
ing the compound state {ω1 , ω2}, which can be perceived as an
inadequacy measurement of the standard Markov chain model.

To consider problem 2, let us assume that we have two experts.
At date n, we may have Xn = ω1 according to expert 1, while
expert 2 considers that Xn = ω2 . To overcome this lack of
consensus about state meaning, one can set Un = {ω1 , ω2}. In
the daily rainfall problem introduced above, for instance, assume
that assigning a day to “Dry” or “Wet” depends on a threshold
value (defined by an expert) of the precipitation amount [27]
(see Section IV-B).

Let us now consider problem 3, where only a finite fam-
ily of Bayesian transition matrices (As)S

s=1 are available. To
“combine” these matrices (possibly different, due to the rea-
sons described in the two problems above), we propose first to
sample S realizations (Xs)S

s=1 , where Xs = (Xs
1 , ...,Xs

N ) for
a given N using (As)S

s=1 as specified in (1). This gives a family
of data samples that can be merged into one data sequence X .
One finds again the situation of problem 1.

B. Model Definition

We now propose a general evidential modeling allowing
to handle the problems discussed above. Let (X1 , ...,XN ) =
(x1 , ..., xN ), where each Xn takes its values in Ω. The main
idea is to consider X as a noisy version of a hidden sta-
tionary evidential chain U = (U1 , ..., UN ) taking its values
in P (Ω) = {γ1 , ..., γq} with q = 2N . The pairwise process
λ = (U,X) is then a hidden Markov chain [23], where U is
defined in the evidential domain P (Ω) associated with the state
set Ω. Thus, we consider a Markov bba M(u1 , ..., uN ) given by
(3) and p(x1 |u1), ..., p(xN |uN ) that we have to define. Then,
we have

p(u, x) = M(u1)p(x1 |u1)
N∏

n=2

M(un |un−1)p(xn |un ). (4)

According to the “Pignistic probability transform” [5], we set

p(Xn = ωi |Un = γv ) =
1ωi ∈γv

|γv |
. (5)

The distributions p(x1 |u1), ..., p(xN |uN ) being defined, the
model is defined through M(u1), M(u2 |u1), ...,M(uN |uN −1).
As the bba M is stationary, the model is then fully defined
through M(u1) and M(u2 |u1). Let θ = (�,A∗) be the set of
parameters of λ, where �i = M(u1 = γi) and a∗

ij = M(u2 =
γj |u1 = γi).

C. Estimation and Processing Techniques

We propose now to consider the three classic problems related
to the proposed evidential model λ:
a) evaluation of the likelihood p(x);
b) estimation of the realization of the hidden process U ;
c) estimation of the model parameters θ.

Before showing how to solve problems a–c, let us define the
probability functions αn (un ) = p(x1 , ..., xn , un ), βn (un ) =

p(xn+1 , ..., xN |un ), ξn (un ) = p(un |x), and ψn (un , un+1) =
p(un , un+1 |x). We have then the following computation rules,
which are similar to the ones used in HMCs:

α1(u1) = M(u1)p(x1 |u1);

αn (un ) =
∑

un −1

αn−1(un−1)M(un |un−1)p(xn |un ) (6)

βN (uN ) = 1;

βn (un ) =
∑

un + 1

βn+1(un+1)M(un+1 |un )p(xn+1 |un+1) (7)

ξn (un ) ∝ αn (un )βn (un ) (8)

ψn (un , un+1) ∝
αn (un )M(un+1 |un )p(xn+1 |un+1)βn+1(un+1). (9)

Solution of problem a: The marginal distribution p(x) can be
computed from (x1 , ..., xN ) through

p(x) =
∑

u∈P (Ω)N

p(u, x) =
∑

uN ∈P (Ω)

αN (uN ). (10)

Remark 1. Let us notice that the distribution p(x) can be
seen as the DS fusion of m(u1 , ..., uN ) with the very simple
distribution q(x1 , ..., xN ) = q1(x1) . . . q1(xN ), where q1 is the
uniform distribution on Ω: p = m ⊕ q.

Solution of problem b: The estimation of the realization of the
underlying process U can be of interest. For this purpose, one
can use some Bayesian techniques such as marginal posterior
mode (MPM) [28] or maximum a priori (MAP) [29].

The MPM estimator, which can be computed through (8), is
given by the following formula:

[û = ûMPM(x)] ⇐⇒
[
ûn = arg max

u∈P (Ω)
p(un |x)

]
. (11)

On the other hand, the MAP estimator is given by the follow-
ing formula:

[û = ûMAP(x)] ⇐⇒
[
û = arg max

u∈P (Ω)N
p(u|x)

]
. (12)

To compute such estimator, let us consider the quantity

δn (un ) = max
(u1 ,..,un −1 )∈[P (Ω)]n −1

p (u1 , x1 , .., un , xn )

that can be computed in the following recursive manner:

δ1 (u1) = M(u1)p(x1 |u1);

ϕ1 (u1) = ∅;
δn+1 (un+1) = max

un ∈P (Ω)
{δn (un ) M(un+1 |un )p(xn+1 |un+1)};

ϕn+1 (un+1) = arg max
un ∈P (Ω)

{δn (un ) M(un+1 |un )

p(xn+1 |un+1)} (13)
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where ϕn (un ) is the predecessor of un giving δn (un ). The op-
timal path is then derived as follows:

ûN = arg max
un ∈P (Ω)

δN (un );

ûn = ϕn+1 (un+1) for n = N − 1, ..., 1. (14)

Solution of problem c: The model parameters θ can be esti-
mated via one of the well-known mixture estimation algorithms
like expectation-maximization (EM) [28], [30], stochastic EM
[31], or iterative conditional estimation [32].

In this paper, we propose to use the EM algorithm, which
runs as follows:
1) Find an initial value θ(0) of the parameters.
2) Compute θ(q+1) from θ(q ) and x as follows:

a) Step E: Use (6)–(9) to compute ξn (un ) and ψn (un , un +1 )
using the current parameters θ(q ) .

b) Step M: Compute θ(q+1) as follows:

�i =
1
N

N∑

n =1

ξn (γi ) (15)

a∗
ij =

∑N −1
n =1 ψn (γi , γj )∑N −1

n =1 ξn (γi )
(16)

until an end criterion is reached.
Notice that during the execution of EM, the distributions

p(x1 |u1), ..., p(xN |uN ) are forced to remain of the form given
by (5).

D. Bayesian Information Criterion

One of the major issues in model selection is to increase
the model fitting while keeping the model dimension, i.e., the
number of its parameters, reasonable. For this purpose, some
criteria like the BIC [33] or Akaike information criterion (AIC)
[34] introduce a penalty term proportional to the number of
parameters.

Let X = x be a data sample. Let λ be the candidate model,
where θλ denotes its parameter set, with p being its number
of free parameters. Let N be the dimension of the data. Let
L = p(x|λ) be the marginal likelihood of the observed data
given the model λ, and let L̂ be the maximized value of the
likelihood function p(x|θ̂λ) of the model λ. Hence, the BIC is
given by

BIC(x|θ̂λ) = −2 ln(L̂) + p ln(N). (17)

Hence, when a family of models Λ = {λ1 , ..., λD} is avail-
able, the best model is the one given by

λd = min
1≤d≤D

BIC(x|θ̂λd
). (18)

On the other hand, the AIC is given by

AIC(x|θ̂λ) = −2 ln(L̂) + 2p. (19)

Accordingly, the BIC tends to favor models with small N (for
N ≥ 8, ln(N) ≥ 2). Since we deal with bigger values of N in
this paper, we will use BIC for comparison sake between the
proposed model and the Markov chain model to favor this latter.

Fig. 1. Estimation of the underlying process U for the “Texture” image.
(a) Texture image, K = 2. (b) MPM-based estimate of U , where ω1 , ω2 and
{ω1 , ω2} are depicted in black, white, and gray, respectively. (c) Texture image,
K = 3. (d) MPM-based estimate of U , where ω1 , ω2 , ω3 , ..., {ω1 , ω2 , ω3} are
depicted gradually from black to white.

IV. EXPERIMENTS

The aim of this section is to show, through experiments, the
effectiveness of the proposed approach to derive a consensus
evidential Markov transition matrix and to show, according to
BIC metric, the interest of such modeling with respect to the
classical Bayesian transition matrix. For this purpose, we con-
sider two series of experiments. In the first one, we deal with
an image modeling problem, where images are converted to
and from 1-D sequences via the Hilbert–Peano scan as done in
[11]. In the second series, we consider the problem of consensus
transition matrix estimation from daily rainfall data.

A. Inference of Evidential Transition Matrix From Data Samples

Let us consider the “Texture” image of size 256 × 256 [see
Fig. 1(a)]. We have a realization of X with Ω = {ω1 , ω2}, where
ω1 and ω2 correspond to black pixels and white ones, respec-
tively. The image is then divided into four square subimages X1

(upper left), X2 (upper right), X3 (down right), and X4 (down
left) of the same size 128 × 128 [see Fig. 1(a)]. Such subimages
can be seen as four different realizations of a same system. Hav-
ing X = x, X1 = x1 , X2 = x2 , X3 = x3 , and X4 = x4 , how
could one model the corresponding system?

We first consider the standard Bayesian modeling. Hence, as-
suming X Markovian and stationary, we estimate the transition
matrices A, A1 , A2 , A3 , and A4 based on sequences X , X1 ,



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 24, NO. 2, APRIL 2016 501

TABLE I
COMPARISON BETWEEN TRANSITION MATRICES PERFORMANCES BASED

ON BIC METRIC, TEXTURED IMAGE, K = 2

A 1 A 2 A 3 A 4 A A ∗ A ∗∗

X 1 15 074 21 627 32 394 19 143 18 726 15 979 16 135
X 2 29 152 11 491 15 143 18 809 12 449 11 221 11 507
X 3 22 977 5749 3331 13 628 6880 5129 5097
X 4 16 442 19 343 28 249 15 539 17 055 16 568 16 568
X 83 558 58 132 79 031 63 628 55 024 48 406 48 789

X2 , X3 , and X4 , respectively. We obtain

A =

(
0.877 0.123

0.195 0.805

)

A1 =

(
0.848 0.152

0.704 0.296

)
, A2 =

(
0.841 0.159

0.089 0.911

)

A3 =

(
0.979 0.021

0.021 0.979

)
, A4 =

(
0.858 0.142

0.471 0.529

)
.

As we can see, the transition matrices obtained are different
from each other. This situation corresponds actually to problem
1 discussed in Section I. The whole image can then be perceived
as a varying system, for which a representative transition matrix
is to be estimated, for possible future use.

To apply our approach, let us consider an underlying process
U taking its values in P (Ω). Assuming (U,X) a hidden Markov
chain and setting (5), the evidential transition matrix is estimated
in an unsupervised way from X = x using the EM algorithm as
described in Section III. We obtain

A∗ =

⎛

⎜⎝

0.865 0.003 0.132

0.005 0.961 0.034

0.268 0.037 0.695

⎞

⎟⎠ .

The performance evaluation results of all the transition matri-
ces are provided in Table I. The evidential transition matrix A∗

is more appropriate than the Bayesian ones to model the whole
data sequence X . Indeed, for A, BIC = 48 406, whereas for
A∗, BIC = 55 024. On the other hand, A∗ is also more suitable
than A to locally model subimages.

In addition, it is possible to quantify the usefulness of the
proposed evidential modeling over the Bayesian one by con-
sidering the joint mass function m∗ associated with A∗, where
m∗

ij = M(Un = γi, Un+1 = γj ) and which can be estimated
using a formula similar to (16) with no denominator:

m∗ =

⎛

⎜⎝

0.427 0.001 0.065

0.001 0.253 0.009

0.065 0.009 0.169

⎞

⎟⎠ .

In fact, the sum of quantities allocated to m∗
ij , where γi or γj

are nonsingletons is quite high (0.317), which shows how the
evidential modeling can overcome the lack of precision of the
Bayesian modeling.

TABLE II
COMPARISON BETWEEN TRANSITION MATRICES PERFORMANCES BASED

ON BIC METRIC, TEXTURED IMAGE, K = 3

A 1 A 2 A 3 A 4 A A ∗ A ∗∗

X 1 29 509 43 442 102 312 33 094 34 981 31 283 30 614
X 2 39 352 16 400 36 956 26 938 18 851 16 785 17 763
X 3 34 869 12 135 3452 18 435 11 463 5413 6695
X 4 32 781 40 119 74 766 28 352 30 550 30 544 31 142
X 136 343 111 945 217 301 106 640 95 685 82 616 84 775

The MPM-based estimate of the evidential process U is shown
in Fig 1(b). The presence of the underlying class {ω1 , ω2} (de-
picted in gray) refers in some manner to the lack of precision of
the Bayesian modeling. Indeed, for each site n, the uncertainty
is then associated with sites where Un �= Xn .

Finally, let us assume that the four Bayesian transition ma-
trices A1 , A2 , A3 , and A4 are provided by four independent
experts, regardless of the data sequence X = x corresponding
to the image. The problem is to derive a representative transition
matrix of the family (As)4

s=1 . For this purpose, we apply the
sampling algorithm of Section III-A. Setting N = 15 000, we
obtain

A∗∗ =

⎛

⎜⎝

0.851 0.034 0.115

0.058 0.939 0.003

0.302 0.004 0.694

⎞

⎟⎠

which is close to A∗ estimated on the genuine image realization.
The performance of A∗∗ has also been assessed via BIC metric,
and the results obtained are reported in Table I.

As we can see, the performance of A∗∗ estimated by sam-
pling (BIC = 48 789) is close to the one provided by A∗

(BIC = 48 406). In all cases, A∗∗ is more suitable than the
Bayesian A. This shows again the greater generality of the pro-
posed evidential modeling over the standard Bayesian one.

To consider a more complicated image modeling problem,
the same experiment is conducted on a three-class version of
the same “Texture” image [see Fig. 1(c)], where ω1 , ω2 , and
ω3 correspond to black, gray and white pixels, respectively. The
performance evaluation of the associated transition matrices is
provided in Table II (also see Fig. 1(d) for the MPM-estimate
of U ). The results obtained confirm the interest of the evidential
modeling with respect to the classic Markov chain.

B. Inference of Consensus Transition Matrix From Rainfall Data

Let us consider the problem of daily rainfall modeling dis-
cussed in Section III-A. Let X = (X1 , ...,XN ), where each
Xn takes its values in Ω = {ω1 , ω2}, where ω1 and ω2 denote
“Wet” and “Dry,” respectively. Assigning a day to one of the two
classes depends on a beforehand established threshold. In [27],
for instance, three threshold values have been considered, and
accordingly, three transition matrices have been estimated per
month over a period of 60 years (1941–2000). In this experiment,
the same set of matrices has been used to sample a sequence
of data X = (X1 , ...,XN ) with N = 21 915 (corresponding
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TABLE III
COMPARISON BETWEEN TRANSITION MATRICES PERFORMANCE BASED

ON BIC METRIC, DAILY RAINFALL DATA

threshold 0.1 mm 1 mm 3 mm

A 1 26 965 27 051 26 376
A 2 27 292 26 747 25 445
A 3 28 574 27 198 25 040
A ∗ 27 010 26 570 25 256

to 60 years). Hence, we have three different interpretations
of data: X1 = (x1

1 , ..., x
1
N ), X2 = (x2

1 , ..., x
2
N ), and X3 =

(x3
1 , ..., x

3
N ). The aim is then to check that for each data sam-

ple (i.e., interpretation), the evidential transition matrix is better
suited than the two Bayesian ones associated with the two other
data samples.

Hence, for each sequence Xi , we have estimated the Bayesian
transition matrix. The obtained matrices are

A1 =

(
0.690 0.310

0.293 0.707

)
,

A2 =

(
0.617 0.383

0.253 0.746

)
, A3 =

(
0.529 0.471

0.203 0.797

)
.

Since the meaning attached to the data sample is different, the
transition matrices also are. The problem is then to estimate the
consensus evidential transition matrix. Applying our approach,
we obtain the evidential transition matrix

A∗ =

⎛

⎜⎝

0.643 0.102 0.255

0.042 0.737 0.221

0.146 0.233 0.621

⎞

⎟⎠ .

The performance evaluation results of the transition matrices
are given in Table III. As we can see, the BIC values corre-
sponding to the evidential transition matrix are very close to
the ones based on the Bayesian transition matrices estimated
locally on each data sample. For X2 , the performance of A∗ is
even higher than the A2 one. This is due to the fact that data
samples are nonstationary regardless of the interpretation re-
lated to the precipitation threshold value, given the fluctuations
of transitional probabilities depending on the year month. This
proves the interest of the proposed modeling and the inference
approach.

V. CONCLUSION

In this paper, we have proposed an original approach, based
on EMCs, to infer a consensus transition matrix from a set of
data samples or, a set of Markov transition matrices. The pro-
posed approach has been validated through experiments on label
images and daily rainfall data. The results obtained confirm, on
one hand, the interest of the evidential modeling with respect to
the conventional Bayesian one and, on the other hand, the va-
lidity of the proposed approach to infer the consensus transition
matrix. An interesting future direction would be to consider the
same extension for Markov random fields and general Bayesian
networks.
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