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Abstract—Hidden Markov chains have been shown to be inadequate for data

modeling under some complex conditions. In this work, we address the problem of

statistical modeling of phenomena involving two heterogeneous system states.

Such phenomena may arise in biology or communications, among other fields.

Namely, we consider that a sequence of meaningful words is to be searched within

a whole observation that also contains arbitrary one-by-one symbols. Moreover, a

word may be interrupted at some site to be carried on later. Applying plain hidden

Markov chains to such data, while ignoring their specificity, yields unsatisfactory

results. The Phasic triplet Markov chain, proposed in this paper, overcomes this

difficulty by means of an auxiliary underlying process in accordance with the triplet

Markov chains theory. Related Bayesian restoration techniques and parameters

estimation procedures according to the new model are then described. Finally, to

assess the performance of the proposed model against the conventional hidden

Markov chain model, experiments are conducted on synthetic and real data.

Index Terms—Bayesian restoration, biology and genetics, hidden Markov chains,

Markov processes, maximal posterior mode, maximum a posteriori, triplet Markov

chains, Viterbi algorithm

Ç

1 INTRODUCTION

HIDDEN Markov chains (HMCs) have been for long used for data
modeling in a wide range of applications fields, particularly in
signal and image processing. In fact, HMCs have been exten-
sively applied in image segmentation [1], land change detection
[2], handwritten word recognition [3], speech recognition [4],
document image analysis, tumor classification [5], or even
acoustic musical signal recognition [6]. Other potential applica-
tions include communications [7], bioinformatics [8] or genome
structure recognition [9]. Let us also mention some general
books [8], [10] and pioneering papers [11], [12], [13] where the
HMC theory is expansively described.

When the unobserved signal of interest can be modeled via
a finite Markov chain, and when the noise is not too complex,
HMCs are quite robust and allow to provide satisfactory
results. However, they can be inefficient for some complex
data such as nonstationary ones [14], [15].

HMCs have then been generalized in many directions to
enlarge their modeling capabilities while keeping their associated
techniques workable. In particular, pairwise Markov chains
(PMCs) [16] can improve HMCs results [17] (also see [18] for on-
line demos and source codes). Let X be the hidden chain and Y
the observed one. The originality of PMCs with respect to the
classic HMCs is that X is not necessarily Markovian but, since the
couple ðX;Y Þ is of Markov form, X is Markovian conditionally on
Y , which makes feasible the classical Bayesian processing.

Further extensions of PMCs, firstly proposed in [19], consist in

adding a third finite random sequence U and considering that the

triplet ðU;X;Y Þ is a Markov chain. Then, such a “triplet” Markov

chain (TMC) can still be used to search the hidden X, and the com-

puting complexity is comparable to that of conventional HMCs. The

family of TMCs is very rich and the added U can be used to model

different situations. In [14], [15], it models different stationarities of

the distribution of ðX; Y Þ, and thusU models the switches in param-

eters defining the distribution of ðX; Y Þ. In [20] authors use a TMC

to model the additional information contained in an atlas. Another

possibility is to use U to model the semi-Markovianity of X, and

thus the classic hidden semi-Markov model appears as a particular

TMC [21]. Similarly, the Gaussian mixture model (GMM) [22] can

also be considered as a particular TMC. Using Dempster-Shafer

fusion [23] inMarkovian context leads to another class of TMCswith

interesting possibilities of integrating different partial pieces of infor-

mation in conventional HMCs [24], [25], [26], [27], [28], [29]. In addi-

tion, different uses of U can be dealt with simultaneously as, for

example, in the case of nonstationary hidden semi-Markov model

[26]. TMCs have also been used for continuous hidden sequences in

Kalman filtering [30], in prediction [31], or still optimal fast filtering

in a particular class of switching systems [32]. Finally, let us mention

that hiddenMarkov fields have also been extended to tripletMarkov

fields [33], and have been successfully applied to complex structure

data classification [34], in SAR images processing [35], [36], [37], [38]

or biometry [39].
In this paper we introduce a particular TMC to deal with the

following problem. Let X ¼ ðX1; . . . ; XNÞ be a random sequence
where each Xn takes its values in the state set V ¼ fv1;v2g; and
let Y ¼ ðY1; . . . ; YN Þ be an observable discrete sequence, where
each Yn takes its values in a finite symbol set � ¼ fy1; . . . ; yMg.
Let us assume that the only observations of interest, which will be
called word symbols, are those corresponding to Xn ¼ v2,
whereas those corresponding to Xn ¼ v1, are “solitary symbols”
and do not contain any useful information. The sequence of word
symbols is a sequence of words, each being of length K. One of
the difficulties when searching words is that they may be inter-
rupted at any moment n (which means that xn ¼ v1) to be
resumed at the next site n0 such that xn0 ¼ v2 (see Fig. 1). There-
fore, for Xn ¼ v2, it is not immediate to see to which place in a
word Yn ¼ yn corresponds, and to answer this question one must
know the past X1 ¼ x1; X2 ¼ x2; Xn�1 ¼ xn�1 which makes the
use of conventional Markov models and even high-order ones
like [40] unsuitable. For this purpose, we define the phase of a
symbol as the length of the sub-word to be fulfilled at the next
occurrence of v2. Hence, a symbol is of phase zero if the begin-
ning of a new word is expected (see Fig. 1). The idea we propose
is then to summarize the useful past information in an auxiliary
discrete sequence U , and to assume that the triplet T ¼ ðU;X; Y Þ
is a Markov chain. As we are going to see, the words sequence of
interest can then be searched by classic Bayesian methods in an
unsupervised way. Let us specify that such problems may occur
in communications. Consider a transmitter who sends through a
channel, using some kind of modulation, a sequence of fixed-size
reserved words to a receiver with the following characteristic: The
transmission may be interrupted at any moment to be resumed
afterward. In the meantime, random data are received. The prob-
lem is to reconstitute the meaningful phrase of interest, typically
a command or a password. The interruption may be due to a
wavering access to the channel by the transmitter. This latter may
also deliberately includes random nonsense data to mislead sniff-
ing attempts. An analogous situation occurs in some biological
data like DNA where a sequence of nucleotide triplets (words of
length 3), encoding a protein, is to be searched within the whole
sequence.

The remainder of the paper is organized as follows: Section 2 gives
an overview about HMCs, PMCs and TMCs formalisms. Section 3
describes the proposed Phasic triplet Markov chain (PTMC) and its
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corresponding theory. Experimental results are provided and dis-
cussed in Section 4. Concluding remarks and future improvements
are given in Section 5.

2 HIDDEN, PAIRWISE AND TRIPLET MARKOV CHAINS

Hidden Markov chains have shown their limitation to handle some
data specificities. For this purpose, these models have been gener-
alized to PMCs and TMCs which are of strictly increasing general-
ity. The aim of this section is to briefly describe HMC, PMC and
TMCmodels.

2.1 Hidden Markov Chains

Let us consider two processes: a hidden discrete process
X ¼ ðX1; . . . ; XN Þ where each Xn takes its values in the state set
V ¼ fv1; . . . ;vSg; and an observable discrete process
Y ¼ ðY1; . . . ; YNÞ where each Yn takes its values in a finite symbol
set � ¼ fy1; . . . ;yMg.

The pairwise process Z ¼ ðX; Y Þ is said to be a HMC if the hid-
den process of interest X is a Markov chain. Moreover, when the
conventional noise independence assumptions hold, the joint dis-
tribution of Z may be expressed as

pðx; yÞ ¼ pðx1Þpðy1 jx1Þ
YN
n¼2

pðxn jxn�1Þpðyn j xnÞ (1)

This model is fully defined through the parameters set
Q ¼ ðP; A;BÞ where P is a distribution on V such as pi ¼ pðx1 ¼
viÞ, A is a transition matrix defined on V2 as ai;j ¼ pðxn ¼
vj jxn�1 ¼ viÞ and B is a distribution defined on V�� as
biðmÞ ¼ pðyn ¼ ym jxn ¼ viÞ. Such a model is called “independent-
noise hidden Markov chain” (IN-HMC). As commonly done in the
literature, we will use ”HMC” to refer to IN-HMC.

In accordance with HMC formalism, and when the model
parameters Q are known, the hidden process of interest x may be
estimated from y by means of some low-time-consuming Bayesian
techniques such as marginal posterior mode (MPM) [11] or maxi-
mum a posteriori (MAP) [41]. The reader may refer to [13] where
both techniques are described. Furthermore, when the model
parameters are unknown, these latter may be estimated in an
unsupervised manner by means of several iterative algorithms
such as expectation-maximization algorithm (EM) [11], [42], its sto-
chastic version (SEM) [43] or iterative conditional estimation (ICE)
[17], [44].

2.2 Pairwise Markov Chains

Let X ¼ ðX1; . . . ; XNÞ and Y ¼ ðY1; . . . ; YNÞ be two stochastic
sequences as in the previous sub-section. The pairwise process
Z ¼ ðX;Y Þ is said to be a “Pairwise Markov chain” if its joint distri-
bution is written

pðzÞ ¼ pðz1Þ
YN
n¼2

pðzn j zn�1Þ (2)

which simply means that Z ¼ ðX; Y Þ is a Markov chain. The transi-
tion probability can then be expressed as pðzn j zn�1Þ ¼
pðxn j xn�1; yn�1Þpðyn jxn; xn�1; yn�1Þ. One can say that a PMC is a

classic HMC where pðxn j xn�1; yn�1Þ ¼ pðxn j xn�1Þ and
pðyn jxn; xn�1; yn�1Þ ¼ pðyn j xnÞ for each n ¼ 2; . . . ; N (see [15] for
the proof in general context). This means that the noise distribution
can be more complex in PMC and thus, assuming that X Markov-
ian is equivalent to lay down a constraint on the noise distribution.

In spite of this generality of PMCs over HMCs, all Bayesian
processing remain possible, with comparable computation com-
plexity. Moreover, the greater generality of PMCs can result in sig-
nificantly greater efficiency in unsupervised data segmentation
[17].

2.3 Triplet Markov Chains

Let X ¼ ðX1; . . . ; XNÞ and Y ¼ ðY1; . . . ; YNÞ be two stochastic
sequences as above, with X hidden and Y observable. Consider-
ing a triplet Markov chain to search X from Y consists of intro-
ducing a third process U ¼ ðU1; . . . ; UNÞ, where each Un takes its
values in a finite set S ¼ fs1; . . . ; sLg, and assuming that the trip-
let process T ¼ ðU;X; Y Þ is Markovian. In the case of discrete
finite X considered in this paper, TMCs are not very different
from the PMCs from purely mathematic viewpoint. In fact, as
both X and U are discrete finite, one can say setting V ¼ ðU;XÞ,
that T ¼ ðU;X; Y Þ is a TMC if and only if ðV; Y Þ is a PMC. Thus,
different Bayesian methods can still be used to search V from Y

and, having found V ¼ ðU;XÞ one has found X. In addition, U
can also be estimated, which can be of interest. In spite of this
mathematical equivalency between PMCs and TMCs, the latter
turns out to be quite richer. Of course, it is strictly more general
as in a Markov chain T ¼ ðU;X; Y Þ, the couple Z ¼ ðX;Y Þ is not
necessarily Markovian [15].

3 PHASIC TRIPLET MARKOV CHAINS

3.1 Model Definition

Let us consider the situation described in section 1 and let
P ¼ ðP1; . . . ; PNÞ be the phase process associated with processes X
and Y where pn is the phase of symbol yn.

Let us introduce another process U ¼ ðU1; . . . ; UNÞ where each
Un takes its values in the set G ¼ S K�1

k¼0 �
k such as unj j ¼ pn where

wj j is the length of the word w. G is then the set of words whose
length ranges from 0 to K � 1 symbols where the empty word
denoted " is the word of length 0. The process U stores the informa-
tion about the last word portion to be completed at the next occur-
rence of state v2. Hence, the realization of Un is updated at each
occurrence of v2. The empty word " corresponds to the situation
where we have to start a new word from the beginning (Fig. 2).

Considering Tn ¼ ðUn;Xn; YnÞ, the process T ¼ ðT1; . . . ; TNÞ is
called a “triplet process” associated with U , X and Y . Realizations
of such processes will be denoted by lowercase letters, and for sake
of simplicity pðtnÞ will stand for pðTn ¼ tnÞ. We will also denote by
LF ðwÞ the set of left factors of a word w 2 L ¼ S K

k¼0�
k defined as

LF ðwÞ ¼ fz 2 L j 9w0 2 L : w ¼ z � w0g where “�” is the concatena-
tion operator.

Let f and g be two emission probabilities defined on � and �K

respectively as fyn ¼ pðynjxn ¼ v1Þ, and gyn::nþK
¼ pðyn::nþK j

xn::nþK ¼ ðv2; . . . ;v2Þ; pn ¼ 1Þ. Assuming that X is Markovian, let

Fig. 1. Portions of sequences X and Y for V ¼ 1; 2f g, � ¼ a; b; cf g and K ¼ 3.
Word symbols are capitalized for illustrative purpose.

Fig. 2. Introduction of the auxiliary process U to take the phase shift into account.
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P be a distribution on V such as pðx1 ¼ viÞ ¼ pi and let A be a
matrix defined on V2 as pðxn ¼ vj j xn�1 ¼ viÞ ¼ ai;j.

The process T ¼ ðU;X; Y Þ is called a Phasic triplet Markov
chain (PTMC) of order K (or a K-PTMC) if it is a triplet Markov
chain. Hence, its distribution is expressed as pðtÞ ¼ pðt1Þpðt2 j
t1Þ::pðtN j tN�1Þ. Since we deal with a homogeneous TMC, pðtÞ is
fully defined though the initial probabilities pðt1Þ ¼ pðx1Þpðu1;
y1 j x1Þ and the transition ones pðtn j tn�1Þ ¼ pðxn jxn�1Þpðun; yn j
xn; un�1Þwhere

pðu1; y1 jx1Þ ¼
1u1¼"fy1 if x1 ¼ v1

1u1¼y1

P
w2LF�1ðy1Þ gwP

w2�K gw
if x1 ¼ v2:

8>><
>>: (3)

and

pðun; yn j xn; un�1Þ ¼

1un ¼ un�1
fyn if xn ¼ v1

1un ¼ un�1 :yn

P
w2LF�1 un�1 :ynð Þ gwP
w2LF�1 un�1ð Þ gw

if xn ¼ v2; un�1 =2 �K�1

1un ¼ "
gun�1:ynP

w2LF�1 un�1ð Þ gw
if xn ¼ v2; un�1 2 �K�1:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(4)

The conventional HMC is a first-order PTMC (for
which K¼1). The auxiliary process realizations un are then all set
to " and one finds again the usual initial and transition probabili-
ties of the HMC. Notice that the pairwise process Z ¼ X; Yð Þ
associated to the PTMC can be considered as a more general hid-
den Markov chain since the hidden process X is assumed to be
Markovian here.

3.2 Simulation of a PTMC

The simulations of X, Y and U are performed recursively accord-
ing to the following:

1) Simulation of T 1 is conducted as follows:

a) Realization x1 is sampled by drawing from the initial
prior distribution P;

b) Realization y1 is sampled by drawing from the proba-
bilities

pðy1 jx1Þ ¼
fy1 if x1 ¼ v1P

w2LF�1ðy1Þ gwP
w2�K gw

if x1 ¼ v2

8>><
>>: (5)

c) Realization u1 is deduced from x1 and y1 as follows:
u1 ¼ " if x1 ¼ v1 and u1 ¼ y1 otherwise.

2) Simulation of Tnþ1 is achieved as follows:

a) Realization xnþ1 is sampled by drawing from the tran-
sition matrix A;

b) Realization ynþ1 is sampled by drawing from the prob-
abilities

p ynþ1 j un; xnþ1ð Þ ¼

fynþ1
if xnþ1 ¼ v1

P
w2LF�1 un:ynþ1ð Þ gwP

w2LF�1 unð Þ gw
if xnþ1 ¼ v2:

8>>><
>>>: (6)

c) Realization unþ1 is deduced from un, xnþ1 and ynþ1 as
follows:

unþ1 ¼
un if xnþ1 ¼ v1

un:ynþ1 if xnþ1 ¼ v2; un =2 �K�1

" if xnþ1 ¼ v2; un 2 �K�1
:

8<
: (7)

Remark 1. The realization of process U being deducible
from realizations of X and Y , the simulation of a PTMC
may be instead achieved by involving only these latter
two processes.

3.3 Bayesian Restoration of a PTMC

In this section, we tackle the problem of Bayesian restoration of
data governed by a PTMC. For this purpose, we assume the
model parameters to be known and we focus on the MPM and
MAP estimators. The Bayesian MPM restoration of the hidden
process is performed according to the following estimator for
each n ¼ 1; 2; . . . ; N :

x̂ ¼ ŝMPM yð Þ½ �()
h
x̂n ¼ arg max

v2V
p xn ¼ v j yð Þ

i
(8)

The MPM estimation of (8) can be achieved thanks to the proba-
bility functions forward and backward expressed as an xn; unð Þ ¼
p y1; . . . ; yn; xn; unð Þ and bn xn; unð Þ ¼ p ynþ1;ð . . . ; yN j xn; unÞ respec-
tively, and that can be computed using the following recursion:

a1 x1; u1ð Þ ¼ p t1ð Þ;

an xn; unð Þ ¼
X

xn�1 ;un�1

an�1 xn�1; un�1ð Þ p tn j tn�1ð Þ; (9)

and

bN xN; uNð Þ ¼ 1;

bn xn; unð Þ ¼
X

xnþ1 ;unþ1

bnþ1 xnþ1; unþ1ð Þ p tnþ1 j tnð Þ: (10)

Accordingly, the posterior probability is

p xn; un j yð Þ / an xn; unð Þbn xn; unð Þ; (11)

and the posterior marginal probability required to perform the esti-
mation of (8) can be derived according to

p xn ¼ v j yð Þ ¼
X
un

p xn ¼ v; un j yð Þ: (12)

Remark 2. It has been established in [27] that the number of
elementary operations to evaluate marginal distribu-
tions p xn j yð Þ in a TMC increases proportionally to data
size N . Hence, this remains valid for PTMC.

Let us focus on the MAP estimation which is given by the fol-
lowing estimator:

x̂ ¼ ŝMAP yð Þ½ �()
h
x̂ ¼ arg max

x2VN
p x j yð Þ

i
(13)
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Remark 3. Let T ¼ U;X; Yð Þ be a PTMC and let V ¼ X;Uð Þ.
We have the following:

x̂ ¼ ŝMAP yð Þ½ � ()
hbv ¼ arg max

v2 V�G½ �N
p tð Þ

i
:

We describe now a Viterbi-like algorithm to perform the MAP
restoration. For this purpose, let us consider the quantity
dnðvnÞ¼maxv1;::;vn�12V�G pðt1; . . . ; tnÞ that can be computed using
recursive formulation analogous to the forward probability func-
tion in the following manner:

d1ðv1Þ ¼ pðv1; y1Þ;c1ðv1Þ ¼ 0;

dnþ1ðvnþ1Þ ¼ max
vn2V�G

fdnðvnÞ pðtnþ1 j tnÞg;

cnþ1 vnþ1ð Þ ¼ arg max
vn2V�G

fdn vnð Þ p tnþ1 j tnð Þg;
(14)

where cn vnð Þ is the predecessor of vn giving dn vnð Þ. The optimal
path is then derived as follows:

v̂N ¼ arg max
vn2V�G

dN vnð Þ ; v̂n ¼ cnþ1 vnþ1ð Þ: (15)

3.4 Parameters Estimation from Complete Data

In this sub-section, we show how to estimate the model parame-
ters from complete data. For this purpose, let Z ¼ ðZ1; . . . ; ZRÞ
be a set of R complete sequences where Zr ¼ ðZr

1; . . . ; Z
r
Nr
Þ

and Zr ¼ ðXr; Y rÞ. For a given value of order K, the model
parameters Q ¼ ðP;A; f; gÞ can be computed according to the
following formulae:

pi ¼
PR

r¼1 1 xr
1
¼ vi

R
; (16)

ai;j ¼
PR

r¼1

PNr�1
n¼1 1 ðxrn;xrnþ1

Þ¼ðvi;vjÞPR
r¼1

PNr�1
n¼1 1 xrn ¼ vi;

(17)

fym ¼
PR

r¼1

PNr
n¼1 1 xrn;y

r
nð Þ¼ v1 ;ymð ÞPR

r¼1

PNr
n¼1 1 xrn¼v1 ;

(18)

gw ¼
PR

r¼1

PNr
n¼1 1 ðxrn;urn;wÞ¼ðv2;";urn�1

:yrnÞPR
r¼1

PNr
n¼1 1 ðxrn;urnÞ¼ðv2;"Þ:

(19)

3.5 Parameters Estimation from Incomplete Data

The model parameters can also be estimated in an unsuper-
vised manner from a realization of Y ¼ Y1; . . . ; YNð Þ provided
that the model order K is beforehand known. Thereafter,
we describe an EM-like algorithm to estimate the set of
model parameters Q ¼ ðP;A; f; gÞ. For this purpose, let
xn vnð Þ ¼ p vn j yð Þ and �n vn; vnþ1ð Þ ¼ p vnþ1 j vn; yð Þ, that can be
expressed through the recursive probability functions an

and bn as follows:

xn vnð Þ / an vnð Þbn vnð Þ; (20)

�n vn; vnþ1ð Þ / an vnð Þp tnþ1 j tnð Þbnþ1 vnþ1ð Þ: (21)

The EM- like procedure runs as follows:

1) Consider an initial value of the parameters
set Q0 ¼ ðP0; A0; f0; g0Þ.

2) For each iteration q, calculate Qqþ1 from Qq and y in two
steps:

a) E Step: Compute aq
n vnð Þ and bqn vnð Þ, and then xq

n vnð Þ
and �qn vn; vnþ1ð Þ;

b) M Step: Calculate Qqþ1 as follows:

pqþ1
i ¼

X
un2G

xq
1 xn ¼ vi; unð Þ; (22)

aqþ1
i;j ¼

PN�1
n¼1

P
un;unþ1ð Þ2G2 �qn xn ¼ vi; un; xnþ1 ¼ vj; unþ1

� �
PN�1

n¼1

P
un2G x

q
n xn ¼ vi; unð Þ ; (23)

fqþ1
ym

¼
PN

n¼1

P
un2G 1 yn¼ymx

q
n xn ¼ v1; unð ÞPN

n¼1

P
un2G x

q
n xn ¼ v1; unð Þ ; (24)

gqþ1
w ¼

PN�1
n¼1

P
vn2V�G 1 w ¼ un:ynþ1

�qn vn; xnþ1 ¼ v2; unþ1 ¼ "ð ÞPN
n¼1 x

q
n xn ¼ v2; un ¼ "ð Þ : (25)

4 EXPERIMENTAL STUDY

In this section, we assess the performance of the proposed PTMC
against the HMC and PMC models in the task of data segmenta-
tion. For this purpose, we present two series of experiments. The
first set of experiments, in which we deal with DNA sequences,
aims to highlight the prevalence of PTMCs over HMCs and PMCs
when real parameters are available. On the other hand, the aim of
the second set of experiments, which are concerned with sampled
data, is basically to check the validity of the EM parameters estima-
tion procedure.

The segmentation performance may be expressed in terms of
mislabeled symbols ratio, precision, recall, or F-measure among
other criteria [45], [46]. However, a phase error may have an impact
on word symbols even if these latter are assigned to their correct
class (v2), which strongly affects the data significance while the
misclassification ratio may remain high. For this purpose, it would
be more relevant to consider word symbols (belonging to v2) and
having different phase labels as belonging to distinct classes.
Accordingly, we will adopt the “Phasic error ratio” that provides
the proportion of symbols assigned to a wrong class or assigned
correctly as a word symbol but with a wrong phase label. Similarly,
we will consider a ðK þ 1Þ � ðK þ 1Þ Phasic confusion matrix,
based on which, performance metrics will be computed.

For this study, we will adopt the commonly used F-measure
metric (also known as F1-measure) which is the harmonic mean
of precision p and recall r.

F ¼ 2pr

pþ r
(26)

The F-measure ranges between 0 and 1 and the higher is its
value, the better is the classification quality. The global F-measure
is computed here by averaging, over K þ 1 classes, the F-measure
values computed locally on each class i.

Fi ¼ 2piri
pi þ ri

; F ¼
PKþ1

i¼1 Fi

K þ 1
: (27)

4.1 Statistical Segmentation of DNA Coding Sequences
into Exons/Introns

Deoxyribonucleic acid (DNA) is a molecule that encodes the
genetic information of all known living organisms. Such informa-
tion are encoded as a sequence of nucleotides (guanine, adenine,
thymine, and cytosine denoted G, A, T and C respectively). Many
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works have viewed the biological sequences like DNA as strings on
alphabets of four nucleotides A, C, G and T [47]. Stochastic gram-
mars such as HMCs can be then useful for various problems for
biological sequence analyses [48]. Indeed, biological sequences can
be modeled as the output of a process that evolves through a
sequence of discrete hidden states. Hence, the applicability of
HMCs to computational biology has gained recognition during the
last two decades [48]. In [49], an HMM has been applied to E. Coli
to identify gene structure. HMCs have also been generalized to
allow one hidden state to generate more than one symbol [50]
which provides a solution to represent genes with their various
functional features. In [51], a Bayesian basecalling solution to the
hidden Markov model of electropherograms is proposed. An
MCMC algorithm is developed to estimate the sequence of bases in
the presence of unknown system parameters. For the same
sequencing problem, Nelson et al. propose an HMC based
approach applied on rice DNA sequences [52]. High-order Markov
chains have also been widely considered for DNA sequences
modeling [51], [53]. The reader may also refer to [54] where the use
of HMCs in biological sequences modeling is reviewed. Finally, let
us mention that some systems devoted to DNA sequences segmen-
tation such as VEIL [54] and Genie [55] are based on HMCs.

Let us highlight that the aim of this study is not to propose a
formalism that surpasses the existing stochastic approaches
devoted to the DNA sequences modeling, but rather to establish
that the proposed PTMC outperforms the conventional HMC by
taking into account such data particularity. Of course, a more
elaborated approach based on PTMC should focus on DNA bio-
logical features [48].

For human beings, among other species, only a small fraction of
the global genome sequence encodes protein. The coding DNA
sequence (CDS) is that portion of a gene’s DNA, composed of
“exons” (sequence of nucleotides triplets that code for protein),
and “introns” (non-meaningful nucleotides located within that
portion). An encoding word may be interrupted at a certain site
(beginning of an intron) to be resumed at the next occurrence of
exon. Hence, DNA sequences are typical examples of data where
the application of conventional HMCs suffers from phase shift
problem. We will see that the proposed PTMC is well-suited to
model this situation.

In this set of experiments, we tackle the problem of human CDS

segmentation into introns and exons. For this purpose, we describe

how PTMC is used to model CDS and then we evaluate the model

ability to perform the task of segmenting a CDS into Introns and

Exons. Let Y ¼ ðY1; . . . ; YNÞ be a CDS with each Yn 2 fA;C;G; Tg
and let X ¼ ðX1; . . . ; XNÞ with Xn 2 fI; Eg where I stands for

intron and E for exon. Assuming that Z ¼ ðX;Y Þ is a three-PTMC

denoted �Q where Q ¼ ðP; A; f; gÞ is a known set of parameters,

the aim is to estimate x from y using the restoration techniques

described in Section 3.3.
We consider 50 different human DNA sequences chosen ran-

domly from the ExonIntron Database (EID) [56], and from which
CDSs are extracted. Since each gene has its own properties, we
devote a different PTMC (and hence different parameters Q) to
each CDS. For each model, parameters Q are estimated based on
the complete data z as described in Section 3.4. Segmentation is
then conducted using MPM and MAP techniques based on the
model corresponding to the CDS under consideration. Similarly,
the same experiment is conducted through HMCs and PMCs in a
classical way. Segmentation results in terms of Error ratio (Err),
Phasic error ratio (Ph-Err), F-measure (F) and Phasic F-measure
(Ph-F) are reported in Table 1 (Err and Ph-Err are expressed in
percent).

The segmentation results confirm the dominance of the pro-
posed PTMC over both HMC and PMC. The difference in terms of
performance can be even striking. Notice that MAP restoration

provides the most suitable performance since the aim here is to
determine the most probable state sequence whereas the MPM res-
toration suffers from the phase shift phenomenon due to the data
specificity. More precisely, MPM technique being purely local with
no consideration for data global structure, the estimated hidden
sequence is not necessarily a valid path. On the other hand, MAP
technique holistically estimates themost valid path from all the pos-
sible ones. According to the defined Phasic F-measure, which is the
most significant performance metric here, the proposed PTMC is
muchmore efficient thanHMC and PMC.

4.2 Statistical Segmentation of Simulated PTMCs

In this set of experiments, we check the PTMC model validity and
its associated Bayesian restoration techniques on data sampled
according to a PTMC model �Q where Q ¼ ðP; A; f; gÞ as described
in Section 3.2. The restoration results are also compared to those
provided by HMC and PMC models. The same experiment is con-
ducted for two different values of the model order K ¼ 2 (Experi-
ment 1) and K ¼ 3 (Experiments 2 and 3). For all experiments
T ¼ ðT1; . . . ; TN Þ with N ¼ 5000, V ¼ fv1;v2g and � ¼ fa; b; cg.
The data are sampled according to

P ¼ 0:5
0:5

� �
;A ¼ 0:99 0:01

0:01 0:99

� �
:

Experiment 1. f has a uniform distribution over �, whereas g has
a uniform distribution over fab; bc; cag.

Experiment 2. f has a uniform distribution over �, whereas g has
a uniform distribution over faab; bac; cabg.

Experiment 3. f has a uniform distribution over �, whereas g has
the following form: gðwÞ ¼ 19=81 for w 2 faab; abc; acbg and
gðwÞ ¼ 1=81 for w elsewhere.

For all data sets, restoration of x from y is performed according to
MPM and MAP techniques using real parameters Q and estimated
parameters bQ (from y using EM- procedure as described in Section
3.5). For unsupervised parameters estimation, parameters are initial-
ized using random values forP andA, and uniform values for f and
g over their domains. The EM- procedure is run for 15 iterations.
Finally, as we deal with sampled data, each experiment is achieved
100 times and average values of performance metrics are summa-
rized in Table 2.

Overall, the results obtained show that the proposed PTMC out-
performs the conventional HMC and PMC. The performance of the
HMC is bad. In experiment 1, for instance, even when real parame-
ters are available, HMC has no way to discriminate between the
two classes since they have the same marginal symbol emission
distributions, and hence, symbols are randomly assigned to one of
the two classes. On the other hand, PMCs performance is better,
particularly when real parameters are available. Finally, the PTMC
performs well even in unsupervised context. Notice that in terms
of Phasic metrics, MAP yields particularly better results than MPM
due to the data nature. Indeed MAP supplies the more likely states
sequence that corresponds to the symbols sequence. Such holistic
estimation respects the symbols phase property.

TABLE 1
Results of CDS Segmentation into Introns/Exons

HMC PMC 3-PTMC

MPM MAP MPM MAP MPM MAP

Err 22.2 23.7 16 16.4 8.8 7.7
Ph-Err 34.9 32.8 35.2 31.1 23.8 8
F 0.69 0.75 0.73 0.71 0.92 0.92
Ph-F 0.46 0.45 0.47 0.47 0.57 0.92
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Furthermore, in all experiments, the EM-like procedure of
PTMC furnishes good quality estimated parameters and perfor-
mance metrics in the unsupervised context are comparable to those
provided by real parameters whereas the EM-procedure of the
HMC and PMC turns out to be inefficient due to the mismatch
between the model structure and the data nature.

5 CONCLUSION

In this paper, we proposed a new TMC model that takes into
account the Phasic nature of some complex data. Unlike memory-
less conventional HMCs, the proposed PTMC employs an auxiliary
process in order to keep in memory some earlier data, useful to the
different estimation tasks of interest. We showed how model
parameters can be estimated from complete and incomplete data.
We also provided related Bayesian restoration procedures. The
model dominance over the usual HMC and PMC models has been
checked through experiments conducted on sampled data and
DNA sequences.

As future improvements, we intend to extend the PTMC model
to consider the situation where words have different lengths.
Another interesting direction would be to further investigate the
use of the proposed model in the field of DNA sequences align-
ment and digital data transmission through a communications
channel.
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