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a b s t r a c t

The Pairwise Markov Chain (PMC) model assumes the couple of observations and states
processes to be aMarkov chain. To extend themodeling capability of class-conditional den-
sities involved in the PMC model, copulas are introduced and the influence of their shape
on classification error rates is studied. In particular, systematic experiments show that the
use of wrong copulas can degrade significantly classification performances. Then an algo-
rithm is presented to identify automatically the right copulas from a finite set of admissible
copulas, by extending the general ‘‘Iterative Conditional Estimation’’ (ICE) parameters esti-
mationmethod to the context considered. The unsupervised segmentation of a radar image
illustrates the nice behavior of the algorithm.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let x1:N = (x1, . . . , xN) and y1:N = (y1, . . . , yN) be two series of data. Each xn takes its value in the finite set Ω =

{1, . . . , K} and each yn in the set of real numbersR. When looking for the unobservable data series x1:N from the observable
one y1:N , and when there is no deterministic link between them, probability theory provides a rigorous framework to lead
to results that are generally effective and sometimes spectacular. The couple (x1:N , y1:N) is considered as a realization of
two random processes X1:N = (X1, . . . , XN) and Y1:N = (Y1, . . . , YN) and the stochastic links between the two series are
modeled by a law p (x1:N , y1:N) of couple (X1:N , Y1:N). Despite the lack of deterministic relationship between x1:N and y1:N ,
it is possible to propose optimal methods for finding x1:N , in mean or in long-term, when dealing with the problem a ‘‘large
number’’ of times.

It is however impossible, when N increases, to consider the general law p (x1:N , y1:N) because of the high algorithmic
complexity, and we are forced to consider specific laws. Among these the most spread law is the ‘‘Hidden Markov Chain’’
(HMC), which writes

p (x1:N , y1:N) = p (x1) p (y1 |x1 ) p (x2 |x1 ) p (y2 |x2 ) . . . p (xN |xN−1 ) p (yN |xN ) . (1)

This model was later generalized to ‘‘Pairwise Markov Chain’’ (PMC) (Pieczynski, 2003):

p (x1:N , y1:N) = p (x1, y1) p (x2, y2 |x1, y1 ) . . . p (xN , yN |xN−1, yN−1 ) . (2)

The HMC model is very effective and commonly used, but the PMC model, which allows the same ease of processing as in
the HMC, can improve performances significantly, even in an unsupervised way (Derrode and Pieczynski, 2004).
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Consider a PMC such that the law p (xn−1, yn−1, xn, yn) of (Xn−1, Yn−1, Xn, Yn) does not depend on n = 2, . . . ,N . Law
p (x1:N , y1:N) is then entirely characterized by

p (x1, y1, x2, y2) = p (x1, x2) p (y1, y2 |x1, x2 ) . (3)

This work deals with the modeling of laws p (y1, y2 |x1, x2 ) by means of copulas (Nelsen, 2005). Copulas are used for
a long time in the field of economy and finance (but without considering Markovianity) (Genest and Mackay, 1986;
Nikoloulopoulos and Karlis, 2008; Genest, Rémillard et al., 2009; Genest, Masiello et al., 2009; Ntantamis, 2010), and only
more recently in signal processing (Brunel and Pieczynski, 2005; Mercier et al., 2008; Le Cam et al., 2009; Sakji-Nsibi and
Benazza-Benyahia, 2009; Stitou et al., 2009; Brunel et al., 2010; Iyengar et al., 2011; Sundaresan and Varshney, 2011).

The first work that combined copulas and Markov model was proposed in Brunel and Pieczynski (2005), where the
process X1:N is a Markov chain (such a model is called a HMC ‘‘with dependent noise’’). In addition, a method for parameters
estimation has been proposed, allowing unsupervised processings. Note that both HMC and copulas are known and used for
several decades. It may then seem surprising that the two concepts have been considered in the same model only recently.
This is likely due to the fact that in traditional models (1) the noise is ‘‘independent’’, which implies that p (y1, y2 |x1, x2 ) =

p (y1 |x1 ) p (y2 |x2 ), and therefore the problem of modeling the dependence of random variables Y1 and Y2 conditional on
(X1, X2) does not arise. However, as discussed in this article, this dependence can have a significant influence on the quality
of processings.

In this paper we extend work Brunel and Pieczynski (2005) by considering the problem of generalized mixtures estima-
tion using the ‘‘Iterative Conditional Estimation’’ (ICE) method (Pieczynski, 1992): for all (i, j) ∈ Ω2, the copula associated
to p (y1, y2 |x1 = i, x2 = j ) is unknown and is automatically searched for in a finite set of eligible copulas, from Y1:N = y1:N
only. Incidentally, we show the interest of theMarkovmodels under consideration, by comparing unsupervised estimates of
X1:N = x1:N obtainedwith the structure of a PMC for the lawof (X1:N , Y1:N) andwith the structure of an i.i.d. pairwisemixture
model for which pairs (y1, y2), (y3, y4), . . . are independent but each of them has the same distribution than in a PMC.

The study is focused on the impact of the choice of copulas in the PMCmodel, both for supervised and unsupervised data
restoration. Also, we will consider in this work that the shapes of margins are known with the aim to not bias the results on
copulas. Note that the automatic selection of marginals within a finite set of candidates has been studied in Giordana and
Pieczynski (1997), and can be directly plugged in the proposed algorithm.

The experiments performed allow to affirm the importance of choosing the true copula. They also show the effectiveness
of the automatic identification method of copulas, based on the Bayesian selection method proposed in Huard et al. (2006).

The remainder of the paper is organized as follows. Section 2 provides a brief overview of the PMC model and its
various special cases, and the notion of copula. Section 3 is devoted to highlighting the importance of using the right copula
for restoration in both Markovian and non Markovian contexts. The estimation of the generalized mixture, based on an
extension of ICE, and the results of several Bayesian unsupervised restorations are proposed in Section 4. Section 5 presents
comparative results regarding the segmentation of a radar imagewith automatic copulas selection. The final section contains
conclusions and perspectives.

2. Copulas and PMC

The aim of this section is to present the Pairwise Markov Chain (PMC) model with copulas, including both supervised
and unsupervised Bayesian data restoration according to this model.

2.1. PMC basics

Let X1:N = (X1, . . . , XN) and Y1:N = (Y1, . . . , YN) be two random processes. Each Xn takes its value in the finite set
Ω = (1, . . . , K) and each Yn in the set of real numbers R. Let Z1:N = (Z1, . . . , ZN) with Zn = (Xn, Yn) for all n = 1, . . . ,N .

The process Z1:N is said to be a ‘‘Pairwise Markov Chain’’ (PMC) (Pieczynski, 2003), if it is a Markov chain:

p (z1:N) = p (x1, y1) p (x2, y2 |x1, y1 ) . . . p (xN , yN |xN−1, yN−1 ) . (4)

Transition probabilities can write in the following way

p (zn |zn−1 ) = p (xn, yn |xn−1, yn−1 ) = p (xn |xn−1, yn−1 ) p (yn |xn−1, yn−1, xn ) . (5)

In PMC, the law p (x1:N |y1:N ) is always Markovian, allowing the estimation of X1:N from Y1:N = y1:N (Ephraim and Merhav,
2002), while X1:N being Markovian or not.

More precisely, according to laws p (xn |xn−1, yn−1 ) and p (yn |xn−1, yn−1, xn ), we get four particular PMCs of interest:

(i) Process Z1:N will be called ‘‘HiddenMarkov Chainwith Independent Noise’’ (HMC-IN) if p (xn |xn−1, yn−1 ) = p (xn |xn−1 )
and p (yn |xn−1, yn−1, xn ) = p (yn |xn ), so that transitions in Eq. (5) write

p (xn, yn |xn−1, yn−1 ) = p (xn |xn−1 ) p (yn |xn ) . (6)

ProcessX1:N is then aMarkov chain and randomvariablesY1, . . . , YN are independent conditionally toX1:N . This classical
model is traditionally called the hidden Markov chain.
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(a) HMC-IN. (b) HMC-IN2.

(c) HMC-DN. (d) PMC-IN.

(e) PMC.

Fig. 1. Oriented dependence graphs for the HMC-IN, HMC-IN2, HMC-DN, PMC-IN and PMC models.

(ii) Process Z1:N will be called ‘‘Hidden Markov Chain with Independent Noise of order 2’’ (HMC-IN2) if transitions in
Eq. (5) write

p (xn, yn |xn−1, yn−1 ) = p (xn |xn−1 ) p (yn |xn−1, xn ) . (7)

Process X1:N is then aMarkov chain and random variables Y1, . . . , YN are independent conditionally to X1:N . An HMC-IN
is a particular case of HMC-IN2.

(iii) Process Z1:N will be called ‘‘HiddenMarkov Chain with Dependent Noise’’ (HMC-DN) if p (xn |xn−1, yn−1 ) = p (xn |xn−1 ),
so that transitions in Eq. (5) write

p (xn, yn |xn−1, yn−1 ) = p (xn |xn−1 ) p (yn |xn−1, yn−1, xn ) . (8)

Process X1:N is again a Markov chain but Y1, . . . , YN are (eventually) dependent conditionally to X1:N . An HMC-IN2 is a
particular case of HMC-DN.

(iv) Process Z1:N will be called ‘‘Pairwise Markov Chain with Independent Noise’’ (PMC-IN) if transitions in Eq. (5) write

p (xn, yn |xn−1, yn−1 ) = p (xn |xn−1, yn−1 ) p (yn |xn−1, xn ) . (9)

Process X1:N is no necessarily a Markov chain but Y1, . . . , YN are independent conditionally to X1:N . Hence, a PMC-IN is
a particular case of PMC-DN, the latter being abbreviated by PMC when no confusion is possible.

Oriented dependence graphs for the general PMC model and the four particular cases (i)–(iv) are reported in Fig. 1. Note
also that models in Eqs. (4), (6) and (8) can be evaluated using on-line demonstrators at url www.fresnel.fr/perso/hmcext/
index.php.

In this work, we will only consider the general PMC model given by Eq. (5) and classical HMC-IN model (i) given by
Eq. (6). Furthermore, in the following, we consider Stationary and Reversible PMCs (SR-PMC). The first hypothesis means
that p (zn, zn+1) does not depend on n = 1, . . . ,N − 1 and the second one means that the two families of conditional laws
p (zn+1 |zn ) and p (zn |zn+1 ) are identical. Under the second hypothesis, models (7) and (8) are equivalent. We then get the
following result, whose demonstration within a general framework can be consulted in Lanchantin et al. (2011):

Proposition. Let Z1:N be a SR-PMC, then the three following conditions are equivalent:

(i) X1:N is a Markov chain;
(ii) p (y2 |x1, x2 ) = p (y2 |x2 );
(iii) p (yn |x1:N ) = p (yn |xn ), for all n = 1, . . . ,N.

www.fresnel.fr/perso/hmcext/index.php
www.fresnel.fr/perso/hmcext/index.php
www.fresnel.fr/perso/hmcext/index.php
www.fresnel.fr/perso/hmcext/index.php
www.fresnel.fr/perso/hmcext/index.php
www.fresnel.fr/perso/hmcext/index.php
www.fresnel.fr/perso/hmcext/index.php
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Given Eqs. (4)–(9) and previous proposition, we can assess how the PMC model generalizes the HMC-IN one satisfying
Eq. (6). Note that this greater generality can result in greater efficiency in unsupervised image segmentation: as experi-
mented in Derrode and Pieczynski (2004), the error rate can be halved.

The main purpose of this paper is to study various models for laws p (y1, y2 |x1, x2 ) in Eq. (4) with copulas. This problem
has been addressed in the case of HMC-DN, with transitions given by Eq. (8), in Brunel and Pieczynski (2005). Results
obtained in unsupervised image segmentation are very encouraging. Here, we extend the work by studying the estimation
of p (z1, z2), including the automatic choice of copulas within a finite set of admissible copulas.

2.2. Copulas in PMC

From p (z2 |z1 ) = p (z1 |z2 ), and so p (x1, x2) = p (x2, x1) and p (y1 |x1, x2 ) = p (y2 |x2, x1 ), a stationary and reversible
PMC is characterized by

• K(K + 1)/2 − 1 joint a priori probabilities p (x1, x2);
• K 2 bi-dimensional densities p (y1, y2 |x1, x2 ) = fx1,x2 (y1, y2), generally called ‘‘data-driven densities’’ since they model

the variability of observations (e.g. noise in measurements), with only K 2 different margins.

Densities p (y1, y2 |x1, x2 ) can be parameterized using copulas (Nelsen, 2005), introduced by Sklar (1959), which allow
to define a 2D density f from its two marginal densities f (1) and f (2), and a dependence structure c , called ‘‘copula’’

f (y1, y2; θ) = f (1) (y1; θ1) f (2) (y2; θ2) c

F (1) (y1; θ1) , F (2) (y2; θ2) ; θ


,

where F (.) denotes Cumulative Distribution Function (CDF) associated to f (.) and θ = {θ1, θ2, θ} denotes the set of
parameters to characterize the parametric copula and the two margins. It is then possible to construct densities over R2

by considering various marginal distributions (Gaussian, gamma, beta of first and second kinds. . . ) and various copulas
(Gaussian, Student’t , Clayton. . . ) in an independent manner. A bi-dimensional Gaussian density is a particular case of
Gaussian margins combined with a Gaussian copula.

For all experiments presented in this paper, we will consider the eight one-parameter copulas presented in Appendix A,
and the zero-parameter product copula which gives the independence case (see below). These copulas can all be
parameterized by Kendall’s rank correlation (denoted by τ ∈ [−1, 1]), allowing comparison between copula shapes with
the same correlation. We will write either c (., .; θ) or c (., .; τ). Note that the range of possible value for τ is not the same
for all copulas. Some of them do not allow τ = 0, whereas some others do not allow τ < 0. In the list considered here,
Gaussian and Student’t copulas are the only ones which cover the entire range of possible values for τ .

To simplify notations and when no confusion is possible, let for x1 = i and x2 = j, p (x1, x2) = pij, cx1,x2(y1, y2; τx1,x2) =

cij(y1, y2; τij), f (y1, y2|x1, x2) = fij(y1, y2), and so forth formarginal densities, e.g. f (y1|x1, x2) = fij(y1) and f (y1|x1) = fi(y1).
Following work in Brunel and Pieczynski (2005) on HMC-DN, copulas can be introduced in PMC and sub-models (i)–(iv)

to parameterize the K 2 data-driven densities. The mixtures for the HMC-IN (6), HMC-DN (8) and PMC (5) models write

fHMC-IN (y1, y2) =

K
i=1

K
j=1

pij fi (y1) fj (y2) , (10)

fHMC-DN (y1, y2) =

K
i=1

K
j=1

pij fi (y1) fj (y2) cij

Fi(y1), Fj(y2)


, (11)

and

fPMC (y1, y2) =

K
i=1

K
j=1

pij fij (y1) fji (y2) cij

Fij(y1), Fji(y2)


. (12)

Indeed, one can note that:

• in Eq. (11), we write fj(y2) instead of fij(y2) because, given x2, y2 is independent of x1;
• in Eq. (12), inversion of indices in fji (y2) = f (y2|x1 = j, x2 = i) comes from the reversibility hypothesis of PMC models

considered here.

An example of a K = 2 classes mixture is shown in Fig. 2 for the three models. We set p (1, 1) = 0.50, p (1, 2) =

p (2, 1) = 0.05 and p (2, 2) = 0.40. For the PMC and HMC-DNmodels, we set the 4 copulas to be of Gumbel–Hougaard type
(c3, see Table A.11) with parameter θ = 3.33 (τ = 0.7). For the HMC-DN and HMC-INmodels, we set the twomargins to be
Gamma distributions G (λ, α, θ) : f1 ❀ G (−2.83, 8, 0.13) and f2 ❀ G (−1.63, 2.67, 0.38). The four margins for the PMC
model are given by the Gamma distributions in Table 1.



S. Derrode, W. Pieczynski / Computational Statistics and Data Analysis 63 (2013) 81–98 85

(a) HMC-IN. (b) HMC-DN.

(c) PMC.

Fig. 2. An example of mixture for the three models with K = 2. Parameter values are reported in the text.

Table 1
Margins parameters used for PMC simulation and restoration with two classes
Ω = {1, 2}. Gamma distributions have been chosen so that their standard
deviations are identical to those of Gaussian distributions.

Margin i, j

Gaussian margins N (µ, σ )

p(x) =
1

√
2πσ 2

e−
1
2


x−µ
σ

2 f11 ❀ N (0.0, 1.00)
f12 ❀ N (0.3, 1.60)
f21 ❀ N (1.1, 1.40)
f22 ❀ N (1.5, 1.00)

Gamma margins G (λ, α, θ)

p(x) =
θα

0(α)
(x − λ)α−1 e−θ(x−λ)

f11 ❀ G (−2.83, 8.00, 0.13) , µ = 0.0
f12 ❀ G (−3.65, 8.89, 0.18) , µ = 0.3
f21 ❀ G (−2.08, 3.08, 0.46) , µ = 1.1
f22 ❀ G (−1.63, 2.67, 0.38) , µ = 1.5

3. PMC supervised data restoration

The aim of this section is to evaluate the influence of copula shapes in the supervised restoration (i.e. based on true
parameters) of PMC data. We start by providing a method to simulate PMC data whatever the copula shapes involved. Then
systematic results of data restoration are presented, with varying Kendall’s rank correlation and margin shapes. The last
subsection is intended to measure the influence of Markovianity on results, by mean of experiments regarding an original
model called ‘‘Pairwise Mixture Model’’ (PMM) with copulas.

3.1. Simulation and supervised restoration of PMC data

According to Derrode and Pieczynski (2004), PMC data can be generated using the following procedure. Starting data
(n = 1) are simulated according to

p (x1) =

K
x2=1

p (x1, x2) , p (y1 |x1 ) =

K
x2=1

p (x1 |x2 ) fx1,x2 (y1) .

Simulation of y1 requires a sampling from a finite mixture of, possibly non-Gaussian, 1D densities.
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Then, next data (n > 1) are generated by alternating the simulation of xn+1 (conditionally to zn = (xn, yn)) and the
simulation of yn+1 (conditionally to zn and xn+1) according to

p (xn+1 |xn = i, yn ) ∝ p (i, xn+1) fi,xn+1 (yn) , (13)

p (yn+1 |xn+1 = j, xn = i, yn ) =
fij (yn, yn+1)

fij (yn)
= fji (yn+1) cij


Fij(yn), Fji(yn+1); τij


. (14)

Note again that inversion of indices in fji (yn+1) and Fji(yn+1) in Eq. (14) comes from the reversibility hypothesis of PMC
models.

The simulation of yn+1 can be performed using the rejection principle, as presented in Appendix B. Although very general,
themethod canbe computer demanding since it involves an acceptance criterionwhich can result inmany rejecteddraws for
every accepted one (the rejection rate depends on the copula as detailed in Appendix A).When dealingwith a specific copula,
it can be of interest to replace the rejection principle by methods suited for the copula, e.g. the conditional distribution
method to simulate Franck’s copula (Genest andMackay, 1986) or Gumbel’s copula using a numerical root finding algorithm,
or the specific algorithms designed for Clayton’s copula (Devroye, 1986), Archimedean copulas (Genest and Mackay, 1986)
or t-copula (Demarta and McNeil, 2005). Some of algorithms are reported in Nelsen (2005).

The Bayesian restoration of X according to the MPM (Maximization of Posterior Marginals) criterion writes

∀n ∈ [1,N], x̂n = argmax
xn∈Ω

p (xn |y1:N ) , (15)

with p (xn |y1:N ) ∝ αn(xn) βn(xn) the marginal a posteriori distributions computed from the forward-like αn(xn) =

p (xn, y1:n) and the backward-like βn(xn) = p (yn+1:N |xn, yn ) probabilities suited to the PMC model. These probabilities
can be computed recursively

α1(x1) = p (x1) p (y1 |x1 ) ,

αn+1(xn+1) =


xn∈Ω

αn(xn)p (zn+1 |zn ) , for 1 ≤ n < N, (16)

and

β1(xN) = 1,

βn(xn) =


xn+1∈Ω

βn+1(xn+1)p (zn+1 |zn ) , for 1 ≤ n < N, (17)

see Derrode and Pieczynski (2004) for details. For latter use, see Eq. (23), let us consider joint a posteriori probabilities
p (xn, xn+1 |y1:N ) which write

p (xn, xn+1 |y1:N ) =
αn(xn) p (zn+1 |zn ) βn+1(xn+1)

a∈Ω


b∈Ω

αn(b) p (b, yn+1 |a, yn ) βn+1(b)
. (18)

Bayesian restoration according to theMaximumA Posteriori (MAP) criterion is also available for the PMCmodel (Derrode
and Pieczynski, 2004). But according to our experience in signal and image processing, these two criteria show similar
behavior. This was also confirmed for experiments conducted below, so that we decided not to report MAP results for sake
of clarity.

3.2. Impact of copula shapes on supervised PMC data restoration

In order to account for the numerical influence of the copula shapes only, we conducted the following experiment

1. We simulated N PMC data with K = 2 classes (Ω = {1, 2}), according to some a priori probabilities pij, to some given
copulas cij with parameter τij, and to some margins fij.

2. Then we restored simulated observations according to MPM, using all simulation parameters except the copula shape
which is either the true one or one in the list in Appendix A.

We setK = 2,N = 2000 and the same copula shape for the four copulas cij involved. Joint a prioriprobabilitieswere set to
p (1, 1) = 0.5, p (1, 2) = p (2, 1) = 0.05 and p (1, 2) = 0.4.We conducted systematic experiments for all available copulas
according toGaussian and toGammamargin (see Table 1 for parameter values) and for twoKendall’s rank correlation values:

• τ#1 = 0.16. The set of eligible copulas is noted Π#1 =

c0, c1, c2, c3, c4, c5, c6


.

• τ#2 = 0.70. The set of eligible copulas is noted Π#2 =

c0, c1, c2, c3, c6, c7, c8


.
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Table 2
PMC model. Mean classification error rates using τ#1 = 0.16 and Gaussian (a) or Gamma (b) margins. Example of
reading: for table (a), when the true copula is c3 and the tested copula is c5 , we get an error of 14.11%. The minimal
error is underlined in bold for each column.

Copula c0 c1 c2 c3 c4 c5 c6

(a) Gaussian margins

c0 11.09 (0.9) 14.30 (1.2) 13.72 (1.3) 13.90 (1.2) 14.64 (1.2) 14.73 (1.2) 13.88 (1.2)
c1 11.28 (0.9) 14.09 (1.2) 13.81 (1.4) 13.84 (1.2) 14.39 (1.3) 14.43 (1.3) 13.78 (1.3)
c2 11.89 (0.9) 14.65 (1.2) 13.13 (1.3) 14.03 (1.2) 15.31 (1.3) 15.60 (1.2) 14.23 (1.3)
c3 11.71 (0.9) 14.36 (1.2) 13.59 (1.3) 13.67 (1.2) 14.93 (1.3) 15.05 (1.2) 14.38 (1.3)
c4 11.40 (1.0) 14.13 (1.2) 14.06 (1.4) 13.95 (1.2) 14.26 (1.3) 14.28 (1.3) 13.82 (1.3)
c5 11.69 (1.0) 14.22 (1.2) 14.51 (1.4) 14.11 (1.2) 14.34 (1.3) 14.27 (1.2) 13.94 (1.3)
c6 11.81 (1.0) 14.39 (1.2) 13.90 (1.4) 14.46 (1.2) 14.67 (1.3) 14.83 (1.3) 13.50 (1.3)

(b) Gamma margins

c0 8.54 (0.7) 10.58 (1.0) 10.89 (1.0) 10.95 (1.0) 10.87 (0.9) 10.82 (0.9) 10.46 (1.0)
c1 8.75 (0.8) 10.26 (1.0) 10.78 (1.0) 10.75 (1.0) 10.41 (1.0) 10.33 (0.9) 9.93 (1.0)
c2 9.12 (0.8) 10.65 (1.0) 10.18 (0.9) 10.92 (1.0) 11.04 (1.0) 11.07 (0.9) 10.12 (1.0)
c3 8.78 (0.8) 10.36 (1.0) 10.58 (1.0) 10.57 (0.9) 10.65 (1.0) 10.63 (0.9) 10.24 (1.0)
c4 8.81 (0.8) 10.29 (1.0) 10.86 (1.0) 10.81 (1.0) 10.33 (1.0) 10.24 (0.9) 9.93 (0.9)
c5 8.89 (0.8) 10.33 (1.0) 11.09 (1.0) 10.88 (1.0) 10.38 (1.0) 10.22 (0.9) 9.98 (1.0)
c6 9.17 (0.8) 10.48 (1.0) 10.73 (1.0) 11.23 (1.0) 10.69 (0.9) 10.65 (0.9) 9.73 (0.9)

Table 3
PMC model. Mean classification error rates using τ#2 = 0.70 and Gaussian (a) or Gamma (b) margins.

Copula c0 c1 c2 c3 c6 c7 c8

(a) Gaussian margins

c0 11.06 (1.0) 26.27 (2.2) 25.77 (2.3) 26.27 (2.5) 27.50 (2.3) 25.63 (2.2) 25.71 (2.1)
c1 41.55 (1.1) 14.95 (2.1) 17.84 (2.2) 17.13 (2.1) 19.43 (2.5) 16.90 (2.2) 16.70 (2.2)
c2 36.16 (1.0) 16.01 (2.1) 16.86 (2.2) 15.69 (2.0) 17.07 (2.4) 16.27 (2.1) 15.97 (2.1)
c3 40.50 (1.0) 18.14 (2.2) 18.98 (2.4) 12.43 (1.9) 29.37 (2.7) 20.48 (2.4) 15.78 (2.2)
c6 44.41 (1.9) 21.09 (2.3) 21.84 (2.4) 27.97 (2.4) 6.31 (1.1) 18.68 (2.2) 24.21 (2.5)
c7 37.97 (1.0) 16.56 (2.2) 17.64 (2.2) 19.12 (2.2) 13.62 (2.1) 15.25 (2.0) 17.55 (2.3)
c8 39.25 (1.0) 16.59 (2.1) 17.80 (2.5) 13.71 (1.9) 24.98 (2.8) 17.94 (2.3) 14.99 (2.0)

(b) Gamma margins

c0 8.69 (0.7) 22.48 (2.0) 21.94 (2.2) 22.18 (2.1) 23.45 (2.3) 21.97 (2.2) 21.95 (2.2)
c1 44.89 (2.0) 13.37 (1.8) 16.09 (2.0) 19.39 (2.2) 12.12 (1.7) 14.05 (1.9) 16.72 (1.9)
c2 31.04 (2.0) 14.60 (1.8) 14.91 (2.0) 20.14 (2.1) 9.23 (1.3) 13.36 (1.7) 16.72 (1.9)
c3 35.84 (1.1) 15.71 (1.9) 16.98 (2.1) 18.03 (2.1) 17.69 (2.2) 15.87 (2.0) 16.68 (1.9)
c6 45.64 (2.9) 17.66 (2.0) 17.32 (1.9) 23.23 (2.1) 6.71 (1.1) 14.85 (1.8) 20.08 (2.1)
c7 37.56 (2.0) 14.59 (1.8) 15.24 (1.9) 20.56 (2.1) 8.60 (1.2) 13.09 (1.7) 16.98 (1.9)
c8 35.46 (1.4) 14.43 (1.8) 15.62 (2.0) 18.75 (2.2) 12.97 (1.7) 13.87 (1.8) 16.05 (1.9)

A copula is said to be eligible if the value for Kendall’s tau belongs to the admissible range for that copula, see last column
of Table A.11.

For all shapes in Π#i, we simulated noisy data according to the corresponding PMC model. Then we restored data,
providing all parameters used at simulation time and trying each of the copulas in Π#i. The error rates reported below are
means of 300 independent experiments (standard deviation are reported between parenthesis). Experimental results are
reported in Table 2 for τ#1 and in Table 3 for τ#2, using Gaussian and Gamma margins. Bold results underline the minimum
value in each column.

Comments on results can be summarized as follows:

• Whatever Kendall’s correlation value and margins shapes, the restoration with the right copula always gives the lowest
mean error rate;

• When τ is low, the mean error rates can be very close (e.g. Table 2(a) column c1 and Table 2(b) column c5), showing that
confusion can appear in experiments if correlation is low;

• When τ is large, the mean error rates are very different. This is especially true for Clayton’s copula c6, where the rate is
divided up to 5 when compared to Gumbel copula c3 in Table 3(a);

• Copulas with nearly the same density shapes show the same behavior and very small error rate differences (e.g. copulas
c7 and c8).

The main conclusion is that using a wrong copula can result in poor results when correlation is high.
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Fig. 3. Example of mixture for the PMMwith K = 2 classes and the same parameters used to draw the mixture in Fig. 2(c).

3.3. Impact of Markovianity on results

To evaluate the influence ofMarkovianity on classification results, we conducted the same kind of experiments as before,
but considering an i.i.d. Pairwise Mixture Model (PMM), in which (y1, y2) are the pairwise observations and (x1, x2) the
pairwise hidden states. In thismodel, pairs (y1, y2), (y3, y4), . . . are independent but each of themhave the samedistribution
than in the PMC. The PMM is presented in details in Derrode and Pieczynski (2011) for Gaussian densities. Let us extend it
to the copula context considered in this paper.

In the PMM, hidden states are simulated using drawings from p (x1) and p (x2 |x1 ) respectively, whereas observations
are simulated using drawings from the densities p (y1 |x1, x2 ) and p (y2 |x1, x2, y1 ) in Eq. (14) (replacing n by 1), using the
same rejection principle used to simulate PMC data. Themixture model writes the same than the PMCmodel in Eq. (12) and
the mixture corresponding to Fig. 2(c) is shown in Fig. 3 (we kept exactly the same parameter values).

The Bayesian MPM restoration of x1 from observations (y1, y2) and model parameters is done according to

x̂1 = arg max
i∈[1, K ]

p (x1 = i |y1, y2 ) , (19)

with

p (x1 = i |y1, y2 ) =

K
j=1

p (i, x2 = j |y1, y2 ) ∝

K
j=1

pij fij (y1, y2) .

The same kind of equations applies to restore x2 (summing over X1).
For experiments, we computed themeanMPM error rate of 300 independent simulations and restorations for N = 1000

couple of data (y1, y2) (which corresponds to N = 2000 in PMC experiments), keeping the same parameter values than
the ones used in PMC experiments. Results for Gaussian and Gamma margins are reported in Tables 4 and 5 for τ#1 and τ#2
respectively. These tables can directly be compared to Tables 2 and 3 respectively.

One can first notice that several copulas are confused when τ is low (c3 with c0 and c5 with c1 in Table 4(a)). Such
confusions nomore appear for large τ . Also, as for the PMCmodel, mean error rates aremore distinguishablewhen Kendall’s
tau is high. Comparing results from PMC and PMMmodels, it is noticeable that mean error rates for PMM are reduced from
30% to 40% when compared to the PMC model: Markovianity has a strong influence on data restoration.

4. Unsupervised PMC data restoration with copula selection

One of the very interesting properties of the PMC model is the ability to estimate parameters from observations only.
Automatic parameters estimation has already been experimented in the ‘‘full-Gaussian’’ case in Derrode and Pieczynski
(2004) (using ICE), and in the HMC-DN model with Gaussian copulas and non-Gaussian margins (using the Stochastic EM
Celeux and Diebolt, 1985) in Lanchantin et al. (2011), with application in image and signal processing. Given the full PMC
model, onewould like to know if it is possible to automatically recover the proper shape of the copulas involved in simulated
data. To that goal, we incorporated the Bayesian copula selection method introduced by Huard et al. (2006) in an ICE-based
parameter estimation scheme, allowing to select the ‘‘best shape’’ for each of the K 2 copulas at each ICE iteration from
observations only. Several experiments finally illustrate the nice behavior of the entire algorithm.

4.1. Bayesian copula selection

Bayesian identification of marginal and joint CDFs, and copula selection are the subjects of numerous recent papers,
among them (Nikoloulopoulos and Karlis, 2008; Genest, Rémillard et al., 2009; Genest, Masiello et al., 2009; Xiaomei et al.,
2010; Noh et al., 2010). In this work, we used the Bayesian copula selection method (Huard et al., 2006) (i) for its simplicity
and low computational burden, and (ii) since all copulas considered in this paper can be parameterized by Kendall’s tau.
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Table 4
PMMmodel. Mean classification error rates using τ#1 = 0.16 and Gaussian (a) or Gamma (b) margins.

Copula c0 c1 c2 c3 c4 c5 c6

(a) Gaussian margins

c0 17.11 (0.8) 19.79 (0.8) 18.48 (0.8) 19.30 (0.7) 20.42 (0.8) 20.60 (0.8) 19.20 (0.8)
c1 17.18 (0.7) 19.74 (0.8) 18.56 (0.8) 19.34 (0.7) 20.32 (0.8) 20.49 (0.8) 19.15 (0.8)
c2 17.12 (0.8) 19.78 (0.8) 18.45 (0.7) 19.27 (0.7) 20.37 (0.8) 20.60 (0.8) 19.20 (0.8)
c3 17.26 (0.7) 19.86 (0.8) 18.57 (0.7) 19.29 (0.7) 20.47 (0.8) 20.65 (0.8) 19.48 (0.8)
c4 17.30 (0.7) 19.75 (0.8) 18.63 (0.8) 19.41 (0.7) 20.31 (0.8) 20.44 (0.8) 19.17 (0.8)
c5 17.56 (0.7) 19.83 (0.8) 18.94 (0.8) 19.55 (0.7) 20.35 (0.8) 20.43 (0.8) 19.26 (0.8)
c6 17.35 (0.7) 19.78 (0.8) 18.70 (0.8) 19.62 (0.8) 20.31 (0.8) 20.46 (0.8) 18.89 (0.8)

(b) Gamma margins

c0 16.99 (0.7) 19.22 (0.7) 18.54 (0.7) 18.78 (0.6) 19.51 (0.6) 19.63 (0.7) 19.23 (0.6)
c1 17.43 (0.6) 18.74 (0.6) 18.45 (0.6) 18.65 (0.6) 18.84 (0.6) 18.91 (0.6) 18.67 (0.6)
c2 17.40 (0.7) 19.06 (0.6) 18.08 (0.7) 18.82 (0.6) 19.29 (0.6) 19.48 (0.6) 18.78 (0.7)
c3 17.18 (0.6) 18.82 (0.6) 18.33 (0.6) 18.58 (0.6) 18.94 (0.6) 19.06 (0.6) 18.78 (0.6)
c4 17.65 (0.7) 18.74 (0.6) 18.56 (0.6) 18.73 (0.6) 18.78 (0.6) 18.83 (0.6) 18.73 (0.6)
c5 17.74 (0.7) 18.80 (0.7) 18.74 (0.6) 18.77 (0.6) 18.82 (0.6) 18.84 (0.6) 18.81 (0.6)
c6 17.75 (0.7) 18.90 (0.6) 18.36 (0.6) 18.96 (0.6) 19.06 (0.6) 19.20 (0.6) 18.49 (0.6)

Table 5
PMMmodel. Mean classification error rates using τ#2 = 0.70 and Gaussian (a) or Gamma (b) margins.

Copula c0 c1 c2 c3 c6 c7 c8

(a) Gaussian margins

c0 17.06 (0.8) 24.33 (0.7) 23.99 (0.7) 24.30 (0.7) 24.95 (0.7) 23.97 (0.8) 24.12 (0.7)
c1 29.90 (0.8) 22.47 (0.7) 22.59 (0.7) 22.41 (0.6) 22.52 (0.7) 22.93 (0.7) 22.67 (0.7)
c2 20.25 (0.8) 22.66 (0.7) 22.09 (0.7) 22.25 (0.7) 22.99 (0.7) 22.49 (0.7) 22.29 (0.7)
c3 25.60 (0.8) 23.30 (0.7) 22.76 (0.8) 21.80 (0.8) 25.72 (0.8) 23.47 (0.8) 22.43 (0.7)
c6 29.13 (1.0) 25.73 (0.8) 24.93 (0.8) 27.38 (0.8) 19.50 (0.8) 24.49 (0.8) 26.19 (0.8)
c7 20.11 (0.8) 22.75 (0.7) 22.21 (0.7) 22.76 (0.7) 22.08 (0.7) 22.38 (0.7) 22.61 (0.7)
c8 21.52 (0.7) 22.81 (0.7) 22.26 (0.7) 21.93 (0.7) 24.28 (0.7) 22.78 (0.7) 22.19 (0.7)

(b) Gamma margins

c0 17.04 (0.6) 23.75 (0.6) 23.54 (0.6) 23.70 (0.6) 24.06 (0.6) 23.58 (0.6) 23.57 (0.6)
c1 26.64 (0.9) 12.02 (0.6) 11.14 (0.6) 11.24 (0.7) 12.89 (0.6) 11.69 (0.6) 11.35 (0.7)
c2 26.26 (0.9) 12.25 (0.7) 10.73 (0.6) 10.36 (0.7) 13.37 (0.6) 11.44 (0.6) 10.72 (0.7)
c3 27.36 (0.9) 12.52 (0.7) 10.93 (0.6) 10.07 (0.7) 14.05 (0.6) 11.78 (0.6) 10.74 (0.7)
c6 28.97 (1.0) 14.36 (0.6) 13.43 (0.6) 15.15 (0.6) 10.94 (0.5) 13.25 (0.6) 14.31 (0.6)
c7 26.51 (0.9) 12.29 (0.7) 10.81 (0.6) 10.83 (0.7) 12.98 (0.6) 11.34 (0.6) 10.94 (0.7)
c8 26.78 (0.9) 12.30 (0.7) 10.78 (0.6) 10.17 (0.7) 13.72 (0.6) 11.54 (0.6) 10.67 (0.7)

For short, given a set of 2D observations y =

y1, y2


with y1

=

y11, . . . , y

1
N


and y2

=

y21, . . . , y

2
N


, the ‘‘best copula’’

cs within a finite set of copula shapes Π =

c1, . . . , cR


is selected according to

s = arg max
r∈[1,R]

1
τ r
M − τ r

m

 τ r
M

τ r
m

N
n=1

cr

F 1(y1n), F

2(y2n); τ

dτ , (20)

where F 1 and F 2 are the CDF of marginal data series y1 and y2 (their shapes are supposed known). Coefficients τ r
m and τ r

M for
copula cr represent the minimal and maximal admissible values for Kendall’s tau (see Table A.11 for copulas considered in
this work). One interesting specificity of themethod is that it does not rely on the estimation of Kendall’s tau. This ‘‘Bayesian
copula selection’’ method has been applied with success in Sakji-Nsibi and Benazza-Benyahia (2009) for wavelet-based
multicomponent image retrieval. Let us now discuss how to integrate this method into ICE parameters estimation.

4.2. Automatic copula selection in ICE-based parameters estimation

Consider a stationary and reversible PMC whose law is given by pθ (z1, z2), with θ a set of real parameters. When one
wishes to estimate θ from y1:N , we can consider at least two general methods that produce series of estimates θ0, θ1, . . . ,
θq, . . . :

(i) ‘‘Expectation–Maximization’’ (EM) method: from θ0, θq+1 is defined from θq using

θq+1(y1:N) = argmax
θ

E

pθ (X1:N , Y1:N)

Y1:N = y1:N , θq(y1:N)

. (21)
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(ii) ‘‘Iterative Conditional Estimation’’ (ICE) method (Pieczynski, 1992): from θ0 and an estimator θ̂(x1:N , y1:N) of θ from
complete data (x1:N , y1:N), θq+1 is defined from θq using

θq+1(y1:N) = E

θ̂(X1:N , Y1:N)

Y1:N = y1:N , θq(y1:N)

. (22)

ICE, which is more recent and less popular than algorithms from the EM family, has been used successfully in different
contexts (Destrempes and Mignotte, 2004; Salzenstein et al., 2007; Wua et al., 2011). Possible equivalence of sequences of
estimated parameters between EM and ICE has been stated in the case of an exponential family of distributions (Delmas,
1997). In the case we are interested in this paper, likelihood is difficult to handle and thus we choose to work with ICE.

When conditional expectation in Eq. (22) is not computable for some components θm in θ, we estimate themby simulating
L realizations x11:N , . . . , xL1:N of x1:N according to x1:N |y1:N . To do this, we use the following transition

pθq (xn+1 |xn, y1:N ) =
pθq (xn, xn+1 |y1:N )

pθq (xn |y1:N )
, (23)

see Eq. (18), and

θ q+1
m (y1:N) =

θ̂m(x1,q1:N , y1:N) + · · · + θ̂m(xL,q1:N , y1:N)

L
. (24)

In the case considered in this paper, let

pθ (z1, z2) = pθ (x1, x2) pθ (y1, y2 |x1, x2 ) . (25)

As our main objective being to study the importance of copulas in the estimation of x1:N from y1:N , we assume that
the marginal distributions pθ (y1 |x1, x2 ) and pθ (y2 |x1, x2 ) are entirely known, i.e. both the laws family and their shape
parameters are known. Laws pθ (y1, y2 |x1, x2 ) are then determined by their copula. In order to simplify notations, let
pθ (x1 = i, x2 = j) = pij and τij denotes the unique parameter for copula cij.

We solve the estimation problem using complete data (x1:N , y1:N) in the following way:

• Parameters pij can be estimated by the following empirical estimate:

p̂ij =
1

N − 1

N−1
n=1

1xn=i,xn+1=j. (26)

• Wedivide the sample y1:N inK 2 sub-samples (y ij
1:N), i, j ∈ Ω such that for n = 1, . . . ,N−1, yn ∈ y ij

1:N if (xn, xn+1) = (i, j).
For all (i, j) ∈ Ω2, we select the ‘‘best copula’’ csij corresponding to pθ (y1, y2 |x1 = i, x2 = j ) among Πij =


c1ij , . . . , c

P
ij


,

according to criterion in Eq. (20), and then estimate its parameter τ s
ij from y ij

1:N .

The principle of ICE is then applied according to:

• At first iteration (q = 0), we set initial values p0ij for pij and initial copulas cs,0ij , based on a kmeans classification.
• For next iterations, pq+1

ij are estimated from pqij and cs,qij by taking the conditional expectation of Eq. (26) (see Eqs. (21)
and (22) in Derrode and Pieczynski (2004)), whereas c ij,q+1

s are estimated using the complete data procedure described
above, replacing x1:N by xq1:N (L = 1).

Finally, the K 2 best copulas cs,Qij involved in an estimated PMC model are the copulas selected when ICE has converged
(q = Q ).

4.3. Experiments on copula selection in the PMC model

This section intends to evaluate the combination of ICE and Bayesian copula selection method for the reliable identifica-
tion of copulas used in PMC.

For data simulation, common parameters of all experiments presented below are: K = 2 (Ω = {1, 2}),N = 2500,Q =

30 (number of ICE iterations), and p(1, 1) = 0.50, p(1, 2) = p(2, 1) = 0.05, p(2, 2) = 0.40. Specific parameters used for
the two experiments are:

1. Experiment #1
• Set of copulas: ∀(i, j) ∈ Ω2, Πij = Π#1 =


c1, c3, c6


(resp. Gaussian, Gumbel, Clayton).

• c11 = c1 with τ11 = 0.7, c12 = c3 with τ12 = 0.4, c21 = c3 with τ21 = 0.4 and c22 = c6 with τ22 = 0.7.
• Gaussian margins from Table 1.

2. Experiment #2
• Set of copulas: ∀(i, j) ∈ Ω2, Πij = Π#2 =


c2, c3, c5, c6


(resp. Student’t , Gumbel, Cubic section, Clayton).

• c11 = c2 with τ11 = 0.25, c12 = c5 with τ12 = 0.10, c21 = c5 with τ21 = 0.10 and c22 = c6 with τ22 = 0.20.
• Gamma margins from Table 1.
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(a) Experiment #1. (b) Experiment #2.

Fig. 4. Examples of simulated mixtures for experiments conducted in Section 4.3, when p(1, 1) = 0.50, p(1, 2) = p(2, 1) = 0.05, p(2, 2) = 0.40.

Table 6
Results of automatic copula selection for experiment in Section 4.3. The integer value gives the
number of times the right copula has been chosen for the 10 experiments. Themean Kendall’s
tau is given between parenthesis (true values are recalled in bold for ease of comparison).

Experiment c11 c12 c21 c22

#1 10 (0.69–0.70) 9 (0.29–0.40) 7 (0.32–0.40) 10 (0.71–0.70)
#2 10 (0.23–0.25) 9 (0.10–0.10) 9 (0.11–0.10) 10 (0.22–0.20)

Table 7
Idem as Table 6, but with joint a priori probabilities set to p(1, 1) = p(2, 2) = 0.35 and
p(1, 2) = p(2, 1) = 0.15 for data simulation.

Experiment c11 c12 c21 c22

#1 10 (0.69–0.70) 10 (0.40–0.40) 10 (0.40–0.40) 10 (0.69–0.70)
#2 10 (0.29–0.25) 10 (0.11–0.10) 10 (0.11–0.10) 8 (0.17–0.20)

Examples of mixture are shown in Fig. 4. The sets of candidates were build on the basis of their shape diversity.
Regarding unsupervised restoration, all parameters involved in the PMCmodel are estimated except themarginal density

families, e.g. Gaussian, Gamma, which are supposed known (but parameters of margins are also estimated). The automatic
selection of margin laws family has been studied in Giordana and Pieczynski (1997) in a vectorial HMC, and could have been
adapted here.

Table 6 gives the number of times the right copula were selected for the K 2
= 4 copulas on 10 independent simulations

and unsupervised restorations for the two experiments. Note that parameters estimated formargin shapes are not reported.
Whatever the margin and Kendall’s tau involved, the right copulas are always selected for copulas c11 and c22. One

can note a few confusions for copulas c12 and c21, which can be explained by the low number of samples available for
copulas estimation (about p (1, 2)N = p (2, 1)N = 0.05 ∗ 2500 = 125). This remark is confirmed by results reported
in Table 7, where the only difference with previous experiments concerns the a priori probabilities which were set to
p(1, 1) = 0.35, p(1, 2) = p(2, 1) = 0.15 and p(2, 2) = 0.35 for data simulation. In that case, the automatic selection
of copulas c12 and c21 shows no confusion. Nevertheless, these few confusions have a limited impact on the error rates:

• Experiment #1: the mean error rate is 13.74% for the unsupervised case and 12.16% for the supervised case (i.e. without
parameters estimation, see Section 3.2).

• Experiment #2: the mean error rate is 12.89% for the unsupervised case and 11.35% for the supervised case.

5. Unsupervised image segmentation

This section is intended to illustrate the use of copula selection in PMC for unsupervised segmentation of images.Wewill
focus on the JERS1 Synthetic Aperture Radar image of Rondonia, Brazil, in Fig. 5(a). It is a 3 looks amplitude image with 256
by 256 pixels, and 25 m by 25m soil resolution. SAR images are known to be very challenging due to the speckle that noises
the image.

Rondonia is a part of the Amazon where cultivation displaces the forest. In the Amazon, the prevalent method of
cultivation, called ‘‘slash and burn’’ is made in the following way: first plots of dense forest are cut and burned. Then, plots
of burnt land are put into cultivation and converted into meadows after two or three years. Then other plots of forest are
cut, burned, and transformed into cultivated land. Finally, K = 3 classes should be considered in the extract 5(a): burn plot,
cultivation, and dense forest, cf. Fig. 5(b).
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Fig. 5. (a) Three-look JERS1 image of Rondonia. (b) Image of classes, manually segmented by an expert.

Table 8
Detail of margin shapes. Types IV and VI refer to the Pearson’ system of distributions.

c1,1 c1,2 c1,3 c2,1 c2,2 c2,3 c3,1 c3,2 c3,3

Margin f11 f11 f12 f21 f13 f31 f21 f12 f22 f22 f23 f32 f31 f13 f32 f23 f33 f33
Type IV IV IV VI IV VI VI IV VI VI VI VI VI IV VI VI VI VI

Table 9
Selected copula shapes and Kendall’s tau for the image in Fig. 5(a). Notation c i refers to
Table A.11.

c1,1 c1,2 c1,3 c2,1 c2,2 c2,3 c3,1 c3,2 c3,3

Copula c1 c4 c1 c4 c1 c4 c1 c4 c1
Kendall’s tau 0.29 0.15 0.21 0.17 0.25 −0.19 0.20 −0.17 0.21

As the PMC model is one dimensional, it is first required to convert the bi-dimensional image into a one dimensional
vector of data. Following previous works Giordana and Pieczynski (1997) and Derrode and Pieczynski (2004), the
transformation is made through the Hilbert–Peano (Skarbek, 1992) which is known to best preserve the neighborhood of
pixels within the vector when compared to other classical scan such as the zig-zag one. Here are the main steps to process
an image with the PMC model:

• The bi-dimensional lattice of pixels is first converted into a 1D sequence of observations through the Hilbert–Peano scan;
• Then, parameter estimation and Bayesian restoration techniques described in previous sections can be applied to obtain

a restored sequence of class data;
• Finally, the restored sequence is converted back to a class image by applying the inverse Peano scan.

In this experiment, we compared the segmentation of the image 5(a) by a classical HMC-IN model and by the PMC one
when different families of copulas were considered, using the error rate with respect to the ground-truth 5(b). Especially,
we experimented the situations where all K 2

= 9 copulas are (a) Gaussian c1, (b) Student c2, (c) FGM c4, (d) Clayton c6, and
(e) each of them are automatically selected within Π =


c1, c2, c4, c6


.

Regarding the choice of K 2 margin’s shapes, and following results obtained by automatic selection in Delignon (2002),
we set the margin laws to be of type IV and VI from Pearson’ system of distributions (Johnson and Kotz, 1994), see details in
Table 8. Recalling that due to the reversibility hypothesis of PMC models, the number of independent margins is divided by
2. Parameters of all margins were estimated by ICE. Also, the number of ICE iterations were set to 150 for all experiments,
and the MPM criterion were used for classification.

Remark. The Bayesian criterion presented in Section 4.1 allows only to deal with small sample size because of numeric
overflow. In order to cope with this difficulty for image segmentation, the selection of copulas at each ICE iteration were
performed on a sub-sample of maximum 1200 samples for each of the K 2 configurations.

Results of segmentation for the five cases described above plus the HMC-IN case are reported in Fig. 6. The lowest error
rate is obtained when copulas are automatically selected (37.6%). The selected copulas are reported in Table 9. As can be
seen, copulas for cii classes are Gaussian whereas copulas for cij, i ≠ j classes are Gaussian and FGM. Margin parameters are
reported in Table 10, matrix of joint a priori probabilities p (x1, x2) were estimated as 0.22 7.90 10−3 9.13 10−3

7.90 10−3 0.37 4.04 10−3

9.13 10−3 4.04 10−3 0.37

 ,

giving the estimated mixture in Fig. 7, according to Eq. (12).
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0

(a) PMC Gaussian 39.9%. (b) PMC Student 42.7%.

(c) PMC FGM 42.1%. (d) PMC Clayton 46.2%.

(e) PMC Selected copulas 37.6%. (f) HMC-IN 43.6%.

Fig. 6. Confusion matrices and segmentation results for the 5 PMC configurations (a–e) and the HMC-IN model (f).

As expected, the choice of copulas is critical since the quality of segmentation depends on them. A wrong choice of
copulas can even give segmentation with lowest quality than a classical HMC-IN model (e.g. 46.2% for PMC with Clayton
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Table 10
Estimatedmargin parameters for the image in Fig. 5(a).µi: four
moments; β1: skewness; β2: kurtosis.

µ1 µ2 µ3 µ4 β1 β2

f11 49 3.9102 1.4104 1.5106 3.00 9.6
f12 61 3.9102 1.1104 1.2106 2.20 7.6
f21 33 97 5 102 3.2104 0.27 3.4
f13 40 2.3102 3.3103 2.5105 0.91 4.8
f31 18 24 −39 1.8103 0.11 3.2
f22 74 6.5102 1.3104 1.7106 0.58 4.1
f23 73 4.2102

−1.2102 5.3105 0.00 3.0
f32 110 5.5102 1.6104 1.6106 1.40 5.2
f33 112 1.1103 2.7104 4.8106 0.53 3.9

Fig. 7. Mixture estimated by ICE with copulas selected within Π =

c1, c2, c4, c6


after 150 iterations.

copulas versus 43.6% for HMC-IN). In real-word applications, of course, we either do not know the true copula or, even, the
copula is used as an approximation to the unknown probability law governing the process. Sowhat happen if the finite set of
admissible copulas does not include the true copula or even include a close approximation? As experimented in Section 3.2
and confirmed here, we can expect a severe degradation of results. To prevent from such a situation, it is important to
construct admissible sets of copulas rich enough in term of shape diversity.

6. Conclusion

This paper examined the influence of copula shapes in the pairwise Markov chain model. We have first presented
supervised restoration results when systematically interchanging copulas used for PMC data simulation with other copula
families. All things being equal, the use of the false copula can degrade significantly segmentation results, both in the
Markovian and non Markovian contexts. In the case of a noise with strong correlation, the use of an independent noise
model can produce poor results. Also the Markovianity allows significant improvements when compared to a model that
takes into account a single neighbor (i.e. Pairwise Mixture Model).

We also presented an algorithm for the automatic selection of copulas involved in PMC within a finite set of
admissible copulas. According to experiments, the method of copula identification and parameters estimation, based on
the general ‘‘Iterated Conditional Expectation’’ (ICE) method, allows effective unsupervised classifications, as illustrated by
the segmentation of a SAR image. In real-word applications, as copula is mainly used as an approximation to the unknown
probability law governing the process, it is important that the set of candidate copulas being diversified in term of shapes.

As perspective, let us mention the possibilities of extension of the copulas selection method proposed to more complex
Markov models, like triplet Markov Chains (Lanchantin et al., 2011), hidden non stationary semi-Markov chains (Lapuyade-
Lahorgue and Pieczynski, 2012), or still triplet Markov chains hidden with long correlation noise (Lanchantin et al., 2008),
which are recent extensions of the HMC and in which the use of classical ICE gave interesting results.

Appendix A. Copulas used in this work

Table A.11 gives details about the one-parameter copulas considered for experiments: probability density function (pdf),
range for parameter θ and its closed-form solution to Kendall’s tau. We write either cp (u1, u2; θ) or cp (u1, u2; τ). For the
Student’t copula (c2) the degree of freedom ν is supposed to be known.



S. Derrode, W. Pieczynski / Computational Statistics and Data Analysis 63 (2013) 81–98 95

Ta
bl
e
A.
11

O
ne

pa
ra
m
et
er

(n
am

ed
θ
)c

op
ul
as

cp
(u

1,
u 2

;
θ
)
us

ed
in

th
is
re
po

rt
(F
G
M

st
an

ds
fo
rF

ar
lie

–G
um

be
l–
M
or
ge

ns
te
rn

).
#p

N
am

e
cd

fC
p

pd
fc

p
Ke

nd
al
l’s

ta
u

[τ
p m
,
τ
p M
]

0
Pr
od

uc
t

C0
=

u 1
u 2

c0
=

1
0

1
G
au

ss
a

C1
=
 u 1 0

φ

 φ
−
1
(u

2
)−

ρ
φ

−
1
(u

)
√

1−
ρ
2

 du
c1

=
1

√
1−

θ
2

ex
p
 −

1 2
ξT

(ρ
−

I )
ξ

2 π
as
in

θ
[−

1,
1]

w
he

re
ξ i

=
φ

−
1 (
u i

)
w
ith

φ
th
e
st
an

da
rd

no
rm

al
di
st
ri
bu

tio
n,

ρ
=

 1
θ

θ
1 an

d
Ia

re
th
e
2

×
2
co

rr
el
at
io
n
an

d
id
en

tit
y
m
at
ri
ce

s.

2
St
ud

en
ta

C2
=
 u 1 0

t ν
+
1

 
ν
+
1

ν
+

(t
−
1

ν
(u

1
))

2
t−

1
ν

(u
2
)−

ρ
t−

1
ν

(u
)

√
1−

ρ
2

 du
c2

=
1

√
1−

θ
2

0
(

ν 2
+
1 )

0
(

ν 2
)

0
2
 ν

+
1

2


 1

+
1 ν
ξT

ρ
−
1

ξ −ν
+
2

2
 2 i=

1

 1
+

ξ
2 i ν

ν+1 2
2 π
as
in

θ
[−

1,
1]

w
he

re
ξ i

=
t−

1
ν

(u
i)
w
ith

t ν
th
e
t
di
st
ri
bu

tio
n
w
ith

ν
de

gr
ee

s
of

fr
ee

do
m
,ρ

=

 1
θ

θ
1 is

th
e
2

×
2
co

rr
el
at
io
n
m
at
ri
x
an

d
0
(.
)
th
e
G
am

m
a
fu
nc

tio
n.

3
G
um

be
lb

C3
=

ex
p(

−
(U

1
+

U 2
)

1 θ
)

c3
=

U 1
u 1

ln
(u

1
)

U 2
u 2

ln
(u

2
)

(θ
−

1
+

U 1
+

U 2
)

1 θ
(U

1
+

U 2
)

1 θ
−
2
ex

p(
−

(U
1
+

U 2
)

1 θ
)

1
−

1 θ
[0

,
1]

w
he

re
U 1

=
(−

ln
(u

1)
)θ

an
d
U 2

=
(−

ln
(u

2)
)θ
.

4
FG

M
C4

=
u 1

u 2
(1

+
θ
(1

−
u 1

)(
1

−
u 2

) )
c4

=
1

+
θ

(1
−

2u
1)

(1
−

2u
2)

2θ 9

 −
2 9
,

2 9


5

Cu
bi
c
se
ct
io
n

C5
=

u 1
u 2

(1
+

2θ
(1

−
u 1

)(
1
−

u 2
)(
1
+

u 1
+

u 2
−

2u
1u

2)
)

c5
=

1
+

2θ
 (1

−
u 1

)(
1

−
u 2

)(
−
8u

2u
1
+

2u
1
+

2u
2
+

1)
+

u 1
(1

−
u 2

)(
4u

2u
1
−

u 1
−

2u
2
−

1)
+

(1
−

u 1
)u

2(
4u

2u
1
−

2u
1
−

u 2
−

1)
+

u 1
u 2

(−
2u

2u
1
+

u 1
+

u 2
+

1)


2 3
θ

−
6 22
5
θ
2

 0,
33 20
0



6
Cl
ay

to
nb

C6
=
 u−

θ
1

+
u−

θ
2

−
1 −1 θ

c6
=

(1
+

θ
)
u−

1−
θ

1
u−

1−
θ

2

 −
1

+
u−

θ
1

+
u−

θ
2

 −1 θ
−
2

θ
θ
+
2

]0
,
1]

7
Ar

ch
12

b,
c

C7
=

 1
+

(U
1
+

U 2
)

1 θ

 −1
c7

=
U 1

u 1
(u

1
−
1 )

U 2
u 2

(u
2
−
1 )

 θ
−

1
+

(θ
+

1 )
(U

1
+

U 2
)

1 θ

 (U
1
+
U 2

)
1 θ

−
2

 1+
(U

1
+
U 2

)
1 θ

 3
1

−
2 3θ

 1 3
,
1

w
he

re
U 1

=

 1 u 1
−

1 θ an
d
U 2

=

 1 u 2
−

1 θ
8

Ar
ch

14
b,
c

C8
=

 1
+

(U
1
+

U 2
)

1 θ

 −θ
c8

=
U 1

U 2
(U

1
+

U 2
)

1 θ
−
2
 1

+
(U

1
+

U 2
)

1 θ

 −2−
θ

 θ
−
1+

2θ
(U

1
+
U 2

)
1 θ


θ
u 1

u 2

 u
1 θ 1

−
1 u

1 θ 2
−
1

1
−

2 3θ

 1 3
,
1

w
he

re
U 1

=

 u−
1 θ

1
−

1 θ an
d
U 2

=

 u−
1 θ

2
−

1 θ
a
Fa

m
ily

of
el
lip

tic
al

co
pu

la
s.

b
Fa

m
ily

of
Ar

ch
im

ed
ea

n
co

pu
la
s.

c
Co

in
fr
om

th
e
or
de

ro
fa

pp
ea

ra
nc

e
in

N
el
se
n
(2
00

5)
.



96 S. Derrode, W. Pieczynski / Computational Statistics and Data Analysis 63 (2013) 81–98

Table B.12
Closed-form solutions for u2∗ = argmaxu2∈[0,1] c (u1, u2) and M = c (u1, u2∗) for several copulas in Table A.11
(u1 ∈ [0, 1]); see also Fig. B.8.

#i Name u2∗ M

0 Product – 1
1 Gaussian φ


φ−1(u1)

θ


1√
1−θ2

exp


1
2


φ−1(u1)

2
2 Student’t cf. Appendix C
3 Gumbel No closed-form solution found → numerical solution

4 FGM

0 if (1 − 2u1) θ > 0
1 if (1 − 2u1) θ < 0
− else

1 + max ((1 − 2 u1) θ, − (1 − 2 u1) θ)

5 Cubic section


0 if 0 ≤ u1 <

1
2

− if u1 =
1
2

1 if
1
2

< u1 ≤ 1


1 + 2θ


−3u2

1 + 1


if 0 ≤ u1 ≤
1
2

1 + 2θ

−3u2

1 + 6u1 − 2


if
1
2

≤ u1 ≤ 1

6 Clayton min

1,


θ+1
θ


u−θ
1 − 1

− 1
θ

 
(1 + θ) uθ

1 if u2∗ = 1
θ + 1
2θ + 1

 2θ+1
θ θ

u1

1 − uθ

1

 else

7 Arch12 No closed-form solution found → numerical solution
8 Arch14 No closed-form solution found → numerical solution

Appendix B. Rejection algorithm to simulate Y2|Y1 = y1 in a copula framework

Let Y1 and Y2 two real-valued random variables with probability density function f (1)(.) and f (2)(.), and cumulative
distribution functions F (1)(.) and F (2)(.). Assuming a copula representation for f (y1, y2), we can write

p (y2 |y1 ) = fy1 (y2) = f (2) (y2) c

F (1)(y1), F (2)(y2); θ


. (B.1)

Assuming a real numberM and a density g such that ∀x ∈ R, fy1 (x) ≤ M g (x), the simulation of Y2 conditionally to Y1 = y1
can be performed using the rejection algorithm (Devroye, 1986):

1. Sample X = x according to g and V = v according to U ([0, 1]), the uniform law.
2. Accept y2 = x if

v ≤
fy1 (x)
M g (x)

. (B.2)

3. Else, go back to 1.

Choosing g = f (2) and M = maxu2∈[0,1] c (u1, u2), Eq. (B.2) now writes

v ≤
c

u1, F (2)(x); θ


max

u2∈[0,1]
c (u1, u2; θ)

,

where u1 = F (1)(y1).
So, it is possible to generate drawings from Y2|Y1 = y1 whatever the shape of the copula, once we know the pdf of the

copula and how to generate a random variate for Y2. Algorithm efficiency, i.e. number of rejections before an acceptance
occurs, depends on the value of M and so on the copula shape. Table B.12 shows analytical solutions for M for several
copulas studied here. Appendix C details calculations for the Student’t copula. When no closed-form solution is available, a
numerical method can be easily implemented to find the maximum value.

Appendix C. Calculation of u2∗ = argmaxu2∈[0,1] c2

u1, u2


This appendix details the calculation of u2∗ = argmaxu2∈[0,1] c2(u1, u2) for the Student’t copula. From ∂c2(u1,u2)

∂u2
= 0,

we get

− ξ 3
2 − θξ1ν ξ 2

2 +

(ν + 1)


ν (1 − θ2) + ξ 2

1


− ν (ν + 2)


ξ2 + θνξ1 (ν + 2) = 0, (C.1)

where ξi = t−1
ν (ui). Using Tartaglia–Cardan method for solving third order equations,

a = −1, b = −θξ1ν, c = (ν + 1)

ν (1 − θ2) + ξ 2

1


− ν (ν + 2), d = θνξ1 (ν + 2)
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(a) Gauss—θ = 0.25. (b) FGM—θ = 0.72.

(c) Cubic section—θ = 0.24. (d) Clayton—θ = 0.38.

Fig. B.8. Curves u2 ∗ (u1) (solid, in blue) and M(u1) (sign ‘o’, in red) for some copulas in Table B.12. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Eq. (C.1) writes z3 + pz + q = 0, with ξ2 = z −
b
3a and

p = −
b2

3a2
+

c
a
, q =

b
27a


2b2

a2
−

9c
a


+

d
a
, ∆ = q2 +

4
27

p3.

The solution to this third order equation depends on the sign of ∆:

• If ∆ > 0, there is an unique real-valued solution:

z0 =
3


−q +

√
∆

2
+

3


−q −

√
∆

2
.

Note that each term of the sum can be complex, but the sum of the two terms is real-valued. The solution finally writes

u2∗ = tν


z0 −

b
3a


.

• if ∆ ≤ 0, there are three real-valued solutions:

∀k ∈ {0, 1, 2} , zk = 2


−p
3

cos


1
3
arccos


−q
2


27
−p3


+

2kπ
3


.
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The solution to be retained among the three possible values sk = tν

zk −

b
3a


is the one which gives the higher value

u2∗ = arg max
k∈{0,1,2}

c2 (u1, sk) .

The solution is not tractable analytically but the highest value can be easily computed.

In both cases, the analytical solution forM = c2 (u1, u2∗) is not tractable but can also be easily computed.
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