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Unsupervised Segmentation of Random Discrete
Data Hidden With Switching Noise Distributions

Mohamed El Yazid Boudaren, Emmanuel Monfrini, and Wojciech Pieczynski

Abstract—Hidden Markov models are very robust and have
been widely used in a wide range of application fields; however,
they can prove some limitations for data restoration under some
complex situations. These latter include cases when the data to be
recovered are nonstationary. The recent triplet Markov models
have overcome such difficulty thanks to their rich formalism, that
allows considering more complex data structures while keeping
the computational complexity of the different algorithms linear
to the data size. In this letter, we propose a new triplet Markov
chain that allows the unsupervised restoration of random discrete
data hidden with switching noise distributions. We also provide
genuine parameters estimation and MPM restoration algorithms.
The new model is validated through experiments conducted on
synthetic data and on real images, whose results show its interest
with respect to the standard hidden Markov chain.

Index Terms—Hidden Markov chains, switching noise distribu-
tions, triplet Markov chains, unsupervised segmentation.

I. INTRODUCTION

H IDDEN Markov chains (HMCs) have been extensively
used to solve a wide range of inverse problems occur-

ring in various fields including image and signal processing.
Let us mention [1]–[3] as pioneering papers. When the hidden
data of interest can be modeled through a finite Markov chain,
and when the noise form is simple enough, these models pro-
vide satisfactory results and the hidden data can be recovered
using Bayesian restoration techniques like Maximum A Poste-
riori (MAP) or Maximum Posterior Mode (MPM) [1], [2].
Let be an unobservable process that takes its

values from a finite set of classes , and let
, with , be an observable process that

can be seen as a noisy version of . According to the HMC
formalism, the joint probability of is given by:

(1)
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The Bayesian restoration can then be achieved thanks to the
possibility of recursive computations of forward probabilities

and backward probabilities
. Moreover, these techniques

may be applied in the unsupervised context thanks to parame-
ters estimation algorithms such as Expectation- Maximization
(EM) [2] and Iterative Conditional Estimation (ICE) [4].
Recently, HMCs have been generalized to pairwise Markov

chains (PMCs) [5] and triplet Markov chains (TMCs) [6].
In PMC, one only assumes theMarkovianity of . Hence, the

process is not necessarily Markovian.
In TMC, we introduce an additional underlying process

and only the triplet is assumed to be Mar-
kovian. The new auxiliary process may have different mean-
ings. In [7], authors used to consider nonstationary aspect of
the hidden process . Furthermore, an interesting link has been
established between TMCs and Dempster-Shafer theory of evi-
dence to model multisensor and nonstationary data in the Mar-
kovian context [6].
Let us cite some other works that dealt with nonstationary

data based on the introduction of the “time duration functions”
[8]. Parameters can then be estimated via a Monte Carlo
Markov chain (MCMC) approach [9]. Further extensions to
hidden semi-Markov chains have also been proposed [10].
The aim of this letter is to propose a new TMC model in-

cluding unknown stochastic switches of the noise distributions
in a similar manner as the TMC proposed in [7] to

model the random switches of . Such a model may
be applied in image processing to take light environment or
presence of shadow in the image into account. In finance, this
model may be applied to model the fact that financial returns
behave in a different way in crisis time.
The remainder of the letter is organized as follows: Section II

describes the newmodel and provides its corresponding restora-
tion and parameters estimation procedures. In Section III, the
model validity is assessed through experiments carried on syn-
thetic data and real images. Finally, concluding remarks and fu-
ture improvements end the letter.

II. JUMPING NOISE- HIDDEN MARKOV CHAINS

In this section, we describe the proposed TMC model and
its corresponding MPM restoration and parameters estimation
algorithms. The proposed model will be called all along the re-
mainder of the letter ‘jumping noise – hidden Markov chain’
abbreviated JN-HMC in contrast to the standard HMC.

A. Jumping Noise- Hidden Markov Chain Definition
Let be a hidden process that takes its values

from a finite set of classes and that is to
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be estimated from an observable process , with
. The couple is said to be a JN-HMC if there

exists an auxiliary process that takes its values
from a finite set of auxiliary classes such
that the triplet is a Markov chain. Its distribution
is then given by:

(2)

where

(3)
The MPM restoration is then workable and its complexity is

linear with the data size .

B. Parameters of a Gaussian JN-HMC

Let be a JN-HMC defined with (2) and (3). It will be said
“Gaussian” if the distributions are Gaussian. The
distribution of is then defined by the following
parameters:
— The initial distributions and are given by vec-
tors and , respectively. Hence,
and ;

— The stationary transition distributions and
are given by the transition matrices and

respectively, Hence,
and ,

respectively.
— Since we have hidden classes and auxiliary cases, we
need Gaussian functions, and thus means
and standard deviations. The noise distribution

is then defined as long as the
mean and standard deviation are given.

The parameters of the model being defined, let us notice
that we can sample realizations of in the classical manner:
(i) sample a realization of the hidden process by random
drawings from and respectively; (ii) sample a realization
of the auxiliary process according to and respectively;
and (iii) finally, sample a realization of the observed process
by random drawing from the Gaussian density function corre-
sponding to the hidden and auxiliary process.

C. MPM Restoration of a JN-HMC

Let and let the model parameters be assumed to be
known. We can achieve the MPM restoration to estimate the
realizations of the hidden processes and in the
following way. The MPM estimator is given by the formula:

(4)

Let us define the following generalized Forward functions
and Backward functions

, that can be computed iter-
atively as follows:

(5)

(6)

The posterior distributions are then computable
according to the following formula:

(7)

which gives the posterior margins allowing theMPM estimation
of and .

(8)

(9)

D. Parameters Estimation

When the model parameters are unknown, we propose to es-
timate these latter using an adapted version of the so called EM
algorithm. For this purpose, let us first define the following pos-
terior probabilities:

(10)

(11)

The parameters estimation procedure is achieved in the fol-
lowing iterative way:
— Consider an initial parameters set

;
— For each iteration :
— E-Step: evaluate the functions and using .
—M-Step: Derive the parameters set as follows:

(12)

(13)

(14)
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(15)

(16)

(17)

III. EXPERIMENTAL RESULTS

To assess the effectiveness of our model, we carried out three
series of experiments. The first experiments set is concerned
with synthetic data, whereas the last two experiments sets deal
with images. To enable our “chain” model to be applied on
images, these latter are converted into and from one-dimen-
sional signals via the Hilbert-Peano scan as done in [5]. For all
experiments, models parameters are initialized using a coarse
-Means clustering, which usually provides suitable initial pa-

rameters set. Notice that initialization step is crucial and a bad
choice of initial parameters may lead to poor results.

A. Unsupervised Segmentation of Synthetic Data

Here we consider data sampled according to both HMC and
JN-HMC formalisms.
• Experiment 1: Let be a standard HMC with

where , takes its values
from and takes its values from . The
first realization of the hidden process is sampled uniformly
by a random draw and the next realizations are sampled
by random draws according to the transition matrix

. On the other hand, the realization of

is sampled according to the distributions and
given by the Gaussian densities whose standard

deviations are all equal to 1 and whose means are equal to
0 and 1 respectively.

• Experiment 2: Let be a stationary TMC
with where , takes its
values from , takes its values from

and takes its values from . The
first realization of the hidden process is sampled uni-
formly by a random draw and the next realizations are
sampled by random draws according to the transition

matrix . Similarly, the realiza-

tions are sampled according to the transition matrix

. Finally, the realization of is

sampled according to the distributions ,
, and given by

the Gaussian densities whose standard deviations are all

TABLE I
SEGMENTATION ERROR RATIOS OF EXPERIMENTS SET 1 (%)

Fig. 1. Zebra image restoration according to HMC and JN-HMC for-
malisms. (a) Initial class-image . (b) corresponding to

. (c) Noised image . (d) Image restoration con-
sidering HMC, . (e) Image restoration considering
JN-HMC, . (f) Restoration of the underlying process,

.

equal to 1 and whose means are equal to 0, 1, 2 and 3
respectively.

For both experiments, MPM segmentation was performed ac-
cording to -Means, standard HMC ( ) and JN-HMC
( and ). Average segmentation results, computed
on 100 data sets per experiment, are summarized in Table I.
The obtained results show that the proposed model outper-

forms the standard HMC. In fact, when the data are governed
by an HMC, segmentation error ratios are comparable, whereas,
when the data follow the JN-HMC, the segmentation results are
much better via the new model, which shows that the JN-HMC
actually generalizes the HMC.

B. Unsupervised Segmentation of Noised Images

For this experiments set, we consider the “zebra” black-and-
white 256 256 class-image [Fig. 1(a)]. Thus, the realization
of the hidden process , which is not necessarily Markovian, is
given, where corresponds to “black” and to “white”. For
the auxiliary process , where each takes its values from

, we consider predefined realizations in the fol-
lowing way: we subdivide the image into blocks of the same
size (Fig. 1(b)) and these latter are assigned alternately to
(black) and (white). The “noisy” image is then derived ac-
cording to the same noise densities as in the second experiment
of the previous sub-section. The same experiment is conducted
for different values of blocks size . The image is then restored
according to -Means, HMC and the JN-HMC formalisms. The
results are summarized in Table II.
As shown in Table II, when the blocks size is relatively small

( and ), the segmentation results provided
by HMC and JN-HMC are comparable, because the noise is too
strong to distinguish between dark and fair blocks. On the other
hand, JN-HMC model gives significantly better results once the
block’s size is larger than 8 8. In fact, the JN-HMC permits to
achieve the MPM restoration irrespective of the auxiliary class
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TABLE II
SEGMENTATION ERROR RATIOS OF EXPERIMENTS SET 2 (%)

Fig. 2. Unsupervised segmentation of real color images according to HMC and
JN-HMC formalisms. (a) Original color image . (b) Ground truth image.
(c) Image segmentation into 3 classes via -Means, error ratio .
(d) Image segmentation into 3 classes according to HMC, error ratio .
(e) Image segmentation into 3 classes using JN-HMC with 2 auxiliary classes,
error ratio . (f) Estimation of the auxiliary underlying process,
“dark”: black, “fair”: white.

to which the pixel belongs to (Fig. 1), as this fact is taken into
account by the modeling.
Supplementary experiments have been conducted consid-

ering different irregular predefined realizations of the auxiliary
process . The obtained results confirm the superiority of the
JN-HMC model over the standard HMC.

C. Unsupervised Segmentation of Real Color Images

In this experiment, we assess the JN-HMC model against
the standard HMC on a set of real color images [Fig. 2(a)].
For this purpose, ground truth images were produced manually
[Fig. 2(b)]. Let us consider, for instance, the real “Africa” color
image [Fig. 2(a)-1]. The aim is then to segment this latter into
three classes: sea, earth and clouds. As the image presents some
dark parts, it would then be interesting to achieve the segmen-

tation using the proposed JN-HMC with two auxiliary classes
corresponding to the brightness of the image.
The segmentation result is then compared with the one pro-

vided by the standard HMC. Notice that the observed process
takes its values here from , and multivariate versions of HMC
and JN-HMC are then used instead of the plain ones. As shown
in Fig. 2(a), the HMC model confounds the dark part of “earth”
and “sea” (global error ratio of 27.3%). This is due to the fact
that pixels belonging to the dark part of “earth” class have a sim-
ilar visual aspect to the “sea” class pixels. On the other hand,
the JN-HMC takes this fact into account, and thus, makes it
possible to distinguish between all classes, even under different
brightness conditions (global error ratio of 3.8%). The auxil-
iary process estimate [Fig. 2(f)] can then be interpreted as the
brightness along the image. We can visually check that darker
pixels belong actually to the “dark” class and vice versa. Similar
results were obtained on other color images as shown in Fig. 2.
This proves the supremacy of the proposed model over the stan-
dard HMC.

IV. CONCLUSION

In this letter, we proposed a new TMC that extends the stan-
dard HMC in the sense that it allows one to take into account the
random unknown switches of the noise distributions in a Mar-
kovian context. Such amodel may be applied in situations where
the observed data depend, not only on the hidden classes as in
the HMC formalism, but also on a further underlying process.
This latter can be used, for instance, to define the presence of
shadow in an image. We showed through experiments that our
model permits the MPM restoration of data in an unsupervised
way using genuine EM-like parameters estimation procedure.
As future improvement, we intend to use the present model to
derive shadow models for computer vision applications. An-
other extension would be to consider cases where the auxiliary
process is continuous.
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