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a b s t r a c t

The Bayesian segmentation using Hidden Markov Chains (HMC) is widely used in

various domains such as speech recognition, acoustics, biosciences, climatology, text

recognition, automatic translation and image processing. On the one hand, hidden

semi-Markov chains (HSMC), which extend HMC, have turned out to be of interest in

many situations and have improved HMC-based results. On the other hand, the case of

non-stationary data can pose an important problem in real-life situations, especially

when the model parameters have to be estimated. The aim of this paper is to consider

these two extensions simultaneously: we propose using a particular triplet Markov

chain (TMC) to deal with non-stationary hidden semi-Markov chains. In addition, we

consider a recent particular HSMC having the same computation complexity as the

classical HMC. We propose a related parameter estimation method and the resulting

unsupervised Bayesian segmentation is validated through experiments; in particular, a

real radar image segmentations are provided.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the classical ‘‘hidden Markov chain’’ (HMC) model there
is a hidden chain X¼(X1,y, XN) (which will be written X or
XN

1 , if there is a risk of confusion) and an observed chain
Y¼(Y1,y, YN). The hidden chain X is a Markov one, the
random variables Yn are independent conditionally on X,
and they verify p(yn9x)¼p(yn9xn) for each n¼1,y,N. HMC is
widely used and is quite efficient in numerous situations. In
particular, it has been applied in biosciences [27,37], clima-
tology [3], ecology [21,33], control [24], communications
[12,26], econometrics and finance [23,49], handwriting and
text recognition [11], image processing and computer vision
[20,22,35], processing musical signals [46], speech recogni-
tion [19,34], or general signal processing [9]. We only cite one
or two recent publications in each area, each of them
containing a rich bibliography. Moreover, a rich bibliography
on classical HMC can also be found in Refs. [9,17,27].

In the case of the discrete hidden chain which we deal
with in this paper, these classical models admit two
following extensions.

The first one is the hidden semi-Markov chains, in which
the hidden process is a semi-Markov chain. The advantage
of semi-Markov chains over Markov chains is that in the
latter the sojourn time in a given state is necessarily of
exponential form, while it is of any form in the former. Such
extensions are of interest in different problems, such as the
segmentation of medical images [18], speech reconstruction
[38], mobility tracking [51], or anomaly detection [48]. Also
see recent books or papers [1,2,8,25,39,53,54] containing
rich bibliographies on the subject.

The second one consists of taking into account the
possibility of the presence of a finite number of different
stationarities [29,30,47]. This means that there is an
underlying ‘‘switching’’ process, which governs the ran-
dom changes of the model parameters.

The aim of this paper is to propose a model which is able
to take into account these two generalizations simulta-
neously. We exploit the fact that each of these general-
izations can be modeled by particular ‘‘triplet Markov

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/sigpro

Signal Processing

0165-1684/$ - see front matter & 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.sigpro.2011.06.001

n Corresponding author.

E-mail address: Wojciech.Pieczynski@it-sudparis.eu (W. Pieczynski).

Signal Processing 92 (2012) 29–42



Author's personal copy

chains’’ (TMC) [43,44]. In TMC one adds to the chains X and
Y a third chain U, and one assumes that the triplet T¼(X, U,
Y) is a Markov chain. Thus there is a TMC T1 ¼ ðX, U1, YÞ

such that the distribution of (X,Y), which is the marginal
distribution of T1, is a hidden semi-Markov chain distribu-
tion. Also, there is a TMC T2 ¼ ðX, U2, YÞ such that U2

models the non-stationarity of (X, Y). More precisely, U2

takes its values in a finite set of states, and each state
models a given set of parameters defining a given distribu-
tion of (X, Y) [28,29]. In order to exploit these general-
izations simultaneously, we will consider a TMC
T ¼ ðX, U1, U2, YÞ ¼ ðX, U, YÞ, with U ¼ ðU1, U2Þ, where U1

models the semi-Markovianity of X, and U2 models the
different stationarities of (X,Y) [30]. Therefore we have a
stationary TMC T¼(X,U,Y) which models a non-stationary
HSMC (HSMC-NS). We propose to use such a TMC in
unsupervised hidden discrete signal segmentation. Estimat-
ing the parameters is not a particular problem; in fact, as
HSMC-NS is seen as a particular ‘‘Pairwise Markov chain’’
(PMC), the ‘‘Iterative Conditional Estimation’’ (ICE) method
already successfully used in Ref. [14] can be adapted to the
proposed model. This leads to unsupervised Bayesian
segmentation by the classical Maximum Posterior Mode
(MPM) method. The interest of the new modeling and
related processing is validated by some experiments.

The organization of the paper is the following. The
PMC and TMC are recalled in the next section. The third
section is devoted to the new model we propose, and the
related parameter estimation algorithm is introduced in
section four. Different experiments are provided in sec-
tion five, and the last section contains conclusions and
perspectives.

2. Pairwise and triplet Markov chains

Let X¼(X1,y, XN) be a stochastic chain, each X1,y,XN

taking its values in O¼{o1,...,oK}, and let Y¼(Y1,y, YN) be
a real valued process. The aim of Bayesian segmentation is
to estimate the hidden realization x of X from an observed
realization y of Y. One possible way of such an estimation
is to set, for n¼1,y,N, xn

n ¼ argmaxxn pðxn9yÞ. This estima-
tion, which will be used in the whole paper, is called
‘‘Marginal Posterior Mode‘‘ (MPM) estimation. The esti-
mate xn ¼ ðxn

1, :::, xn
NÞ is computable, even for very large N,

when the distribution p(x, y) is not too complex. The most
classical model allowing the calculation of xn is the
‘‘hidden Markov chain’’ model (HMC) in which p(x, y) is
given by

pðx,yÞ ¼ pðx1Þ
YN�1

n ¼ 1

pðxnþ19xnÞ
YN

n ¼ 1

pðyn9xnÞ: ð2:1Þ

The hidden chain X is then a Markov chain, the random
variables Yn are independent conditionally on X, and they
verify p(yn9x)¼p(yn9xn) for each n¼1,y,N. HMC is widely
used because of its efficiency in general; however, the
simplicity of p(y9x) is open to criticism in some contexts.
In fact, the Markovianity of X assumed in HMC involves
that p(yn9x)¼p(yn9xn) for stationary invertible chains
[29,43], which makes it impossible to take into account
a possibly different distribution of the noise on frontiers.

A more complete model is the so-called ‘‘pairwise Markov
chain’’ (PMC [14,42]), whose distribution is given by

pðx,yÞ ¼ pðx1,y1Þ
YN�1

n ¼ 1

pðxnþ1,ynþ19xn,ynÞ: ð2:2Þ

Then Z¼(X,Y) is a Markov chain, and the same is true
for p(y9x) and p(x9y). The former property allows one to
better model the ‘‘noise distribution’’ p(y9x), while the
latter still allows one to calculate the MPM solution xn.
Moreover, setting p(xnþ1,ynþ19xn,yn)¼p(xnþ19xn,yn) p(ynþ1

9xn,yn,xnþ1), we see that a PMC is an HMC if p(xnþ1

9xn,yn)¼p(xnþ19xn) and p(ynþ19xn,yn,xnþ1)¼p(ynþ19xnþ1).
This shows, at a ‘‘local’’ level, how much larger the
modeling possibilities of PMC are. Moreover, if p(xnþ1

9xn,yn)¼p(xnþ19xn) holds, we can show that X is a Markov
chain [42] (remember that X is not necessarily Markovian
in PMC) and we obtain an HMC in which the random
variables Yn are no longer necessarily independent con-
ditionally on X. Let us remember that different experi-
mental studies presented in Ref. [14] show that this larger
generality of PMC over HMC can result in greater effi-
ciency when unsupervised data segmentation is con-
cerned: the error ratio can be divided by two.

Considering a triplet Markov chain (TMC) consists of
introducing a third stochastic process U¼(U1,y,UN), with
each Un taking its values in a finite set L¼{l1,y, lM}, such
that T¼(X,U,Y)¼((Xn,Un,Yn))1rnrN is a Markov chain. To
simplify, let us introduce V¼(Vn)1rnrN¼(Xn, Un)1rnrN.
Therefore each Vn takes its values in O�L, and (V, Y) is a
PMC. Let us underline the fact that only T¼(X,U,Y) is
assumed to be Markov and thus no one of the six chains X,
U, Y, (X,U), (U,Y), (X,Y) is necessarily Markovian [29,43].

Let us specify how the posterior marginal distributions
p(xn9y) can be computed in the TMC model above. The
chain (V,Y) being a PMC, we can introduce the ‘‘Forward’’
probabilities Fn(vn)¼p(vn, y1,y, yn), and the ‘‘Backward’’
probabilities Bn(vn)¼p(ynþ1,y, yN9vn, yn), which both
extend the classical probabilities used in the HMC model,
and which can be calculated by the following forward and
backward recursions (see [14,42])

F1ðv1Þ ¼ pðv1,y1Þ; Fnþ1ðvnþ1Þ ¼
X

vn2O�L

FnðvnÞpðvnþ1,ynþ19vn,ynÞ;

ð2:3Þ

BNðvNÞ ¼ 1; BnðvnÞ ¼
X

vnþ 12O�L

Bnþ1ðvnþ1Þpðvnþ1,ynþ19vn,ynÞ:

ð2:4Þ

Then we have

pðvn,yÞ ¼ FnðvnÞBnðvnÞ; ð2:5Þ

pðvn,vnþ1,yÞ ¼ FnðvnÞpðvnþ1,ynþ19vn,ynÞBnþ1ðvnþ1Þ, ð2:6Þ

which gives p(vn9y) and p(vnþ19vn,y). Recalling that
p(vn9y)¼p(xn,un9y), the posterior marginal distribution
pðxn yÞ ¼

P
un

pðxn, un yÞ
���� can then be used in MPM seg-

mentation, and pðun yÞ ¼
P

xn
pðxn, un yÞ

���� can be used in
searching U¼u which can be, in some situations, of
interest. For example, when using ‘‘triplet Markov fields’’
in image segmentation, the field U can be used to model
different stationarities – or different ‘‘textures’’ – and thus
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searching U¼u is equivalent to searching textures, which
is an important problem in image processing [4].

Remark 2.1. Let us underline the fact that, in the general
case, U models the non-stationarity of the couple (X, Y).
However, two following particular cases remain possible.
In the first one, the only X is concerned, which means that
p(y9x, u)¼p(y9x). In the second one, the only Y is con-
cerned, which means that p(y9x, u)¼p(y9x). In all papers
published until now [4,28–30], and in the present paper,
one considers the first case; however, the other two cases
could be dealt with as well.

3. Hidden non-stationary semi-Markov chains as a
particular TMC

3.1. Classical hidden semi-Markov chains (HSMC) as TMC

Let X¼(X1,y, XN) be a stochastic chain taking its values
in ON, with O¼{o1,y,oK}, and let Y¼(Y1,y,YN) be a real
valued process as above. X is said to be a semi-Markov
chain if its distribution is defined in the following way.
Let p(x1) be a distribution on O, and let p*(xnþ19xn) be
transitions, that we will assume independent from n, such
that xnþ1¼xn implies p*(xnþ19xn)¼0. Otherwise, for each
okAO let pok

be the distribution of the remaining ‘‘dura-
tion’’ in the state ok. Thus knowing that Xn�1aok and
Xn¼ok, pok

(m) is the probability that Xnþ i¼ok for each
i¼0,y,i¼m, and Xnþmþ1aok. In a Markov chain the
duration distribution is exponential; in fact, we have
pok

(m)¼(lkk)m(1�lkk), with lkk¼p(xnþ1¼ok9xn¼ok). In
semi-Markov chains, which are also known as ‘‘variable
duration HMMs’’, it is of any form. Then the transitions
p*(xnþ19xn) and the distributions pok

define the distribu-
tion of X¼(X1,y, XN). For example, for K¼2, N¼6, and
x¼(o1, o1, o2, o2, o2, o2, o1), we have p(x)¼p(o1)
po1

(1)p*(o29o1)po2
(3)p*(o19o2). In fact, the probability of

X1¼o1 is p(o1). Then we see, according to x¼(o1, o1, o2,
o2, o2, o2, o1), that the duration of X1 in the state o1 is 1;
the probability that this occurs is thus po1

(1). Once this
duration has passed, X3 must be different from o1; its
realization follows p*(. 9o1). Thus the probability for
X1¼o1, X2¼o1, and X3¼o2 is p(o1)po1

(1)p*(o29o1). Con-
tinuing like this we find p(x)¼p(o1)po1

(1)p*(o29o1)po2
(3)

p*(o19o2).
Having p(x), the distribution of (X, Y) is then defined by

pðy9xÞ ¼
QN

n ¼ 1

pðyn

��xnÞ.

Such a HSMC can then be seen as a TMC T¼(X, U, Y),
where Un¼un is the duration in the state Xn¼xn. The
distribution of the Markov chain (X, U) is given by p(x1, u1)
and the transitions p(xnþ1, unþ19xn, un)¼p(xnþ19xn, un)
p(unþ19xnþ1, xn, un). Introducing the Kronecker function d,
where da(b)¼1 for a¼b and da(b)¼0 for aab, we can
write (also see Ref. [52])

pðxnþ19xn,unÞ ¼ dxn ðxnþ1Þ if un40,

and pðxnþ19xn,unÞ ¼ p*ðxnþ19xnÞ if un ¼ 0 ð3:1Þ

pðunþ19xnþ1,xn,unÞ ¼ dun�1ðunþ1Þ if un40,

and pðunþ19xnþ1,xn,unÞ ¼ pxnþ 1
ðunþ1Þ if un ¼ 0: ð3:2Þ

Let us notice that p(unþ19xnþ1, xn, un)¼dun�1(unþ1) if
un40 simply means that if at n the remaining time of
staying in xn is un40, then at nþ1 this remaining time is
unþ1¼un�1. This could also be written p(unþ1¼un�1
9xnþ1, xn, un40)¼1.

In the classical HSMC considered here, these transi-
tions are completed by

pðynþ19xnþ1,unþ1,xn,un,ynÞ ¼ pðynþ19xnþ1Þ: ð3:3Þ

Finally, once we have assumed that p(xnþ19xn, un, yn)¼
p(xnþ19xn, un) and p(unþ19xnþ1, xn, un, yn)¼p(unþ19xnþ1, xn,
un) (see Remark 3.1 below for the general form) to obtain
the classical HSMC, Eqs. (3.1)–(3.3) define the distribution
of T¼(X, U, Y).

Besides, setting V¼(X, U), we can also say that T¼(V, Y)
is the very classical HMC with the particular property p(yn

9vn)¼p(yn9xn, un)¼p(yn9xn). Finally, this particular HMC
also is a PMC and thus (2.3)–(2.5), in which

pðvnþ1,ynþ19vn,ynÞ ¼ pðvnþ19vnÞpðynþ19xnþ1Þ, ð3:4Þ

can be used to compute p(vn9y), p(vnþ19vn, y), p(xn9y), and
p(un9y).

Let us notice that the formulation (3.1)–(3.3) of the
HSMC is not new, as a very close formulation is presented
in Ref. [50]. However, using Eqs. (2.3)–(2.5) with Eq. (3.4),
which finally means using a particular very classical HMC
in the classical way originally proposed in Ref. [19], is, to
our knowledge, original and leads to a simpler computa-
tion of p(xn9y) than in Ref. [50].

Remark 3.1. Let us consider a general TMC T¼(X, U, Y)¼
(T1,y, TN), with Tn¼(Xn, Un, Yn) for each n¼1,y,N. Its
transitions in their most general form can be written
p(tnþ19tn)¼p(xnþ19xn, un, yn)p(unþ19xn, un,yn, xnþ1)p(ynþ1

9xn, un, yn, xnþ1, unþ1). In this general case, the chain
T¼(V, Y), with V¼(X, U), is a PMC and thus (2.3)–(2.5) can
be applied. In the classical HSMC above we have p(xnþ1

9xn, un, yn)¼p(xnþ19xn, un), p(unþ19xn, un, yn, xnþ1)¼p(unþ1

9xn, un), and p(ynþ19xn, un, yn, xnþ1, unþ1)¼p(ynþ19xnþ1),
but of course, these simplifications are not essential. Eq.
(3.1) can be easily extended to a more general distribution
in which p*(xnþ19xn, yn) depends on yn. In a similar way, in
Eq. (3.2) p(unþ19xn, un, yn, xnþ1) can depend on (xn, un, yn).
Finally, p(ynþ19xnþ1) in Eq. (3.3) can be extended to the
general p(ynþ19xnþ1, unþ1, xn, un, yn). We see that while
using the general ‘‘TMC’’ approach to model the classical
HSMC, it is easy to propose a ‘‘generalized hidden semi-
Markov chain’’, in which neither is the chain V¼(X, U)
Markovian, nor is the chain X semi-Markovian. However,
we will keep the classical HSMC (3.1)–(3.3) in this paper
because our aim is to study how to extend it to the non-
stationary case, not to study how to extend it to a more
general ‘‘HSMC’’.

3.2. Non-stationary classical HSMC (NS-HSMC)

Until now semi-Markovianity has been achieved, now
this will be combined with non-stationarity. To introduce
the latter, let us first consider the classical HSMC, con-
sidered as a TMC (X,U1,Y), introduced above. Setting
V¼(X,U1), we can consider the HMC (V,Y), where Y is
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observed and V is hidden. Then it is possible to consider
different stationarities of (V,Y), which is modeled by
introducing a third random chain U2 ¼ ðU2

1 , :::, U2
NÞ, each

U2
n taking its values in a finite set L2

¼{1,y,L}, as
proposed in Refs. [28,29]. More precisely, one considers
a stationary TMC (V, U2,Y), where p(v,y9u2) is a non-
stationary Markovian distribution. Such modeling gave
good results in the classical HMC [28,29], and thus we
extend them here to HSMC (X,U1,Y)¼(V, Y). Doing so, we
arrive at ðV , U2,YÞ ¼ ðX, U1, U2,YÞ, which is a stationary
TMC T¼(X, U,Y), with U ¼ ðU1, U2Þ. The transitions p( tnþ1 9
tn) in such model can be defined in many different ways.
In order to extend Eqs. (3.1)–(3.3) in a consistent manner,
we propose to consider the following factorization of the
transition p( tnþ1 9tn) (remember that tn ¼ ðxn, u1

n , u2
n , ynÞ,

and similarly for tnþ1)

pðtnþ19tnÞ ¼ pðxnþ1,u1
nþ1,u2

nþ1,ynþ19tnÞ

¼ pðu2
nþ19tnÞpðxnþ19tn,u2

nþ1Þpðu
1
nþ19tn,u2

nþ1,xnþ1Þ

�pðynþ19tn,u2
nþ1,xnþ1,u1

nþ1Þ ð3:5Þ

Then we propose the following extension of the
classical HSMC defined with Eqs. (3.1)–(3.4). We keep
pðu2

nþ1 tnÞ ¼ pðu2
nþ1 xn, u1

n , u2
n, ynÞ

���� in Eq. (3.5) in its general
form, which is simply recalled by Eq. (3.6). Then
pðxnþ1 tn, u2

nþ1Þ
�� and pðu1

nþ1 tn, u2
nþ1, xnþ1Þ

�� in Eq. (3.5)
become Eqs. (3.7) and (3.8). Thus Eq. (3.7) is simulta-
neously a simplification pðxnþ1 tn, u2

nþ1Þ ¼
�� pðxnþ1 xn, u1

n,
��

u2
nþ1Þ with respect to Eq. (3.5) and an extension of

Eq. (3.1). Similarly, Eq. (3.8) is simultaneously a simplifi-
cation pðu1

nþ19tn,u2
nþ1,xnþ1Þ ¼ pðu1

nþ19u
1
n ,xnþ1,u2

nþ1Þ with
respect to Eq. (3.5), and an extension of Eq. (3.2). Finally,
pðynþ1 tn, u2

nþ1, xnþ1, u1
nþ1Þ

�� could be simplified to
p(ynþ1 9xnþ1) as it is done in the classical model; however,
there is no reason for this and it can be kept in its general
form, which is simply recalled in Eq. (3.9)

pðu2
nþ1 tnÞ ¼ pðu2

nþ1 xn, u1
n , u2

n, ynÞ
���� ð3:6Þ

pðxnþ19tn,u2
nþ1Þ ¼ pðxnþ19xn,u1

n,u2
nþ1Þ ¼ dxn ðxnþ1Þ if u1

n40,

and p*ðxnþ19xn,u2
nþ1Þ if u1

n ¼ 0; ð3:7Þ

pðu1
nþ19tn,u2

nþ1,xnþ1Þ ¼ pðu1
nþ19u

1
n,xnþ1,u2

nþ1Þ

¼ du1
n�1ðu

1
nþ1Þ if u1

n40

and pðu1
nþ19tn,u2

nþ1,xnþ1Þ ¼ pðu1
nþ19xnþ1,u2

nþ1Þ

¼ pxnþ 1 ,u2
nþ 1
ðu1

nþ1Þ if u1
n ¼ 0;

ð3:8Þ

pðynþ19tn,u2
nþ1,xnþ1,u1

nþ1Þ

¼ pðynþ19xn,u1
n,u2

n ,yn,u2
nþ1,xnþ1,u1

nþ1Þ: ð3:9Þ

Eqs. (3.5)–(3.9) thus define an extension of the classi-
cal HSMC to the non-stationary case. In particular,
p*ðxnþ1 xn,u2

nþ1Þ
�� in Eq. (3.7) verifies p*ðxnþ1 xn,u2

nþ1Þ ¼ 0
��

for xnþ1¼xn.

Remark 3.2. Eqs. (3.5)–(3.9) extend the model presented
in Ref. [30]; let us notice that similar ideas have been
independently proposed in Refs. [16,41], where a switch-
ing hidden semi-Markov model (S-HSMM) has been

proposed and studied. However, the two models are
different in that the switches are Markovian in S-HSMM,
while they are semi-Markovian in the model proposed in
Ref. [30]. Then we can observe that the model (3.5)–(3.9)
extends both of them. In fact, taking in Eq. (3.6) pðu2

nþ1

tnÞ ¼ pðu2
nþ1 u2

n Þ
���� we obtain Markovian switches.

3.3. TMC-based definition of a recent HSMC (RHSMC)

In the HSMC defined in sub-section 3.2 above the
sojourn time is not bounded, and thus, we are not in
the exact case of a TMC where U is finite. However, as the
number N of observations used is finite, we can consider
that each Un takes its values in a set with N elements. This
gives the computation complexity as polynomial in time.

Let us consider the following recent model, which is a
particular HSMC and which allows the computation com-
plexity to be linear in time [31,32]. The classical model
above is defined by the transitions p*(xnþ19xn) such that
xnþ1¼xn implies p*(xnþ19xn)¼0, and by the distributions
pok

(unþ1)¼p(unþ19xnþ1¼ok) on the set of natural num-
bers N. Let us modify two things. First, for xnþ1¼xn the
transition p*(xnþ19xn) is no longer necessarily null and
becomes a transition of any form. Such new transitions
will be denoted with q(xnþ19xn). Second, the distributions
pok

(unþ1) are defined on a finite set L¼{0,y, P�1}, with P

independent from N. Such new distributions will be
denoted with qok

(unþ1)¼q(unþ19xnþ1¼ok). Such a model,
proposed in Ref. [31], will be called a ‘‘recent’’ SMC
(RSMC). Thus the couple (X, U) is Markovian finite, each
(Xn, Un) taking its values from {o1,y,oK}� {0,y,P�1}. Its
difference from the classical SMC is that in SMC Un¼un is
the exact sojourn time in Xn¼xn, while in RSMC it is the
minimal sojourn time in Xn¼xn. The transitions p(xnþ1,
unþ19xn, un) of an RSMC are defined by Eqs. (3.1), (3.2)
with the difference that for xnþ1¼xn the transition
p*(xnþ19xn) in Eq. (3.1), which is here q(xnþ19xn), is not
necessarily null, and pxnþ 1

(unþ1) in Eq. (3.2) is replaced
with qxnþ 1

(unþ1).
Concerning the position of the RSMC with regard to

the classical SMC let us notice two points: (i) the classical
SMC is a Markov chain when the sojourn time is expo-
nential, while the RSMC is a Markov chain when the
minimal sojourn time is null with probability one: p(un¼

09xn)¼1 for each n¼1,y,N, y and each xnA{o1,y,oK}.
In this case the transition matrices q(xnþ19xn) related to
the RSMC are the transition matrices related to the MC;
(ii) as shown in Ref. [32], the distribution of an RSMC can
be seen as a distribution of an SMC where the sojourn
time distributions are not known explicitly. More pre-
cisely, let us consider a RSMC defined by the distributions
q(unþ19xnþ1) on L¼{0,y, P�1}, and the transitions
q(xnþ19xn). Let p*(xnþ19xn) be transitions obtained from
q(xnþ19xn) by p*(xnþ19xn)¼0 for xn¼xnþ1, and

p*ðxnþ19xnÞ ¼
qðxnþ19xnÞ

1�qðxnþ1 ¼ xn9xnÞ
,

and let p*(unþ19xnþ1) be the distributions on N defined by

p*ðunþ1 ¼ d9xnþ1 ¼ojÞ ¼ qðxnþ1þdaoj9xn ¼ojÞ
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�
Xd

k ¼ 1

�X
s1þ ...þ sj ¼ d

½qðunþ1 ¼ s19xnþ1 ¼ojÞ

�qðunþ1þ s1
¼ s29xnþ1þ s1

¼ojÞ

�qðunþ1þ s1þ s2
¼ s39xnþ1þ s1þ s2

¼ojÞ. . .

�qðunþ1þ s1þ ...þ sk�1
¼ sk9xnþ1þ s1þ ...þ sk�1

¼ojÞ

�qðxnþ1þ s1
¼oj9xnþ1 ¼ojÞ

�qðxnþ1þ s1þ s2
¼oj9xnþ1 ¼ojÞ. . .

�qðxnþ1þ s1þ ...þ sk�1
¼oj9xnþ1 ¼ojÞ�

�
ð3:10Þ

Finally, RHSMCs are particular HSMCs with the parti-
cularity of offering the possibility of Bayesian classifica-
tion with complexity linear in time.

3.4. Non-stationary recent HSMC (NS-RHSMC)

Here we propose two extensions, of growing generality,
of the RHSMCs to the non-stationary model. The first one is
similar to the model given by Eqs. (3.6)–(3.9): these equa-
tions are kept with the difference that pðxnþ1 u2

nþ1, xnÞ
�� is

not necessarily null for xnþ1¼xn (i.e., p*ðxnþ1 xn, u2
nþ1Þ

�� in
Eq. (3.7) is replaced with qðxnþ1 xn, u2

nþ1Þ
�� ), and that U1

i

takes its values from a finite set L1
¼{0, 1,y, P�1} (i.e.,

pðu1
nþ1jxnþ1, u2

nþ1Þ in Eq. (3.8) is replaced with pðu1
nþ1

��xnþ1,
u2

nþ1Þ ¼ qxnþ 1 , u2
nþ 1
ðu1

nþ1Þ). The second one is more general:
Eqs. (3.6) and (3.9) are kept, and Eqs. (3.7), (3.8) are extended
to Eqs. (3.11), (3.12) below. Of course, setting V ¼ ðX, U1, U2Þ,
the NS-RHSMC T¼(V, Y) defined by Eqs. (3.6), (3.11), (3.12),
(3.9) is a pairwise Markov chain with p(vnþ1,ynþ19vn,yn)¼
p(vnþ19vn,yn)p(ynþ19vn,yn,vnþ1), where p(vnþ19vn, yn) is
defined with Eqs. (3.6), (3.11), (3.12), and p(ynþ19vn, yn, vnþ1)
is defined with Eq. (3.9). Therefore we have a classical PMC
T¼(V, Y), with V discrete and finite, and thus Eqs. (2.3)–(2.6)
can be applied. For K classes and L stationarities, such a
general NS-RHSMC is thus defined by KL probabilities on O
conditional on ynAR – see Eq. (3.11) – , and K2L probabilities
on L1 conditional on ynAR—see Eq. (3.12). The motivation
of such an extension is the following. Adding the condition-
ing upon yn in Eqs. (3.11) and (3.12) means that in the PMC
T¼(V, Y) we do not necessarily have p(vnþ19vn, yn)¼
p(vnþ19vn). This means that V is not necessarily a Markov
chain, and thus T¼(V, Y) is not necessarily a ‘‘hidden Markov
chain’’. Now, it has been shown in Ref. [14] that extending
the classical HMC to PMC can be of great interest in
unsupervised data segmentation; thus it seems to be quite
justified to conjecture that it will be of interest in the semi-
Markov non-stationary context considered.

pðxnþ19xn,u1
n ,yn,u2

nþ1Þ ¼ dxn ðxnþ1Þ if u1
n40,

and qðxnþ19xn,u2
nþ1,ynÞ if u1

n ¼ 0; ð3:11Þ

pðu1
nþ19xn,u1

n ,yn,xnþ1,u2
nþ1Þ ¼ du1

n�1ðu
1
nþ1Þ if u1

n40,

and pðu1
nþ19xn,u1

n ,yn,xnþ1,u2
nþ1Þ

¼ qðu1
nþ19xn,yn,xnþ1,u2

nþ1Þ if u1
n ¼ 0; ð3:12Þ

We will specify some particular simple NS-RHSMC
models dealing with some experiments in the next section.

4. Parameter estimation

The model parameter estimation from the only observed
data Y¼y is the core point when wishing to perform
unsupervised segmentation. The aim of this section is to
describe the use of the general ‘‘Iterative Conditional Esti-
mation’’ (ICE) method, which gave conclusive results in
similar applications [5,20,22,30] and, in particular, which
has already been successfully applied in unsupervised
segmentation of PMCs in Ref. [14]. As NS-RHSMCs are
particular PMCs, here we adapt the ICE used in Ref. [14] to
the considered context. However, as specified in Remark 4.2
below, in the Gaussian case considered in the next section
the well-known ‘‘Expectation-Maximization’’ (EM) algo-
rithm could be used as well.

4.1. Iterative conditional estimation (ICE)

Let us consider two random processes (V, Y) whose
distribution depends on a vector of parameters y¼(y1,y,
ym). The problem is to estimate y from Y. The ICE method
we will use is based on the following principle. Let ŷðv, yÞ be
an estimator of y from complete data (V,Y)¼(v,y) and let us
assume that we can sample realizations of V according to
p(v9y). The ICE sequence is obtained as follows :

(i) Initialize y0;
(ii) compute yqþ1

i ¼ E½ŷiðV , YÞ Y ¼ y, yq
Þ

�� for the compo-
nents yi for which this computation can be carried on
explicitly;

(iii) if there are components yi for which the computation
above is not feasible, simulate vq

1,y,vq
l according to

p(v9y, yq) and set for each such component yi

yqþ1
i ¼

½ŷiðv
q
1,yÞþ . . .þ ŷiðv

q
l ,yÞ�

l
:

We see that the ICE is applicable under two very mild
hypotheses:

(H1) existence of an estimator ŷðv, yÞ from the com-
plete data, and

(H2) the ability of simulating V according to p(v9y).
The first hypothesis is not really a constraint because if

we are not able to estimate y from the complete data (v, y),
there is no point in searching for an estimator from
incomplete ones y. When (V, Y) is a Markov chain, the
posterior distribution p(v9y) also provides a Markov chain:
it allows us easily to derive V according to the second
hypothesis.

Remark 4.1. Concerning the parameter estimation in the
case of incomplete data, the most known and used
method is the so-called ‘‘Expectation-Maximization’’
(EM) method, whose aim is to iteratively maximize the

likelihood p(y9y) according to the principle yqþ1
¼

argmax
y

Eyq ½LogðpyðV , YÞÞ Y ¼ y�
�� . In the context of Gaussian

NS-RHSMC considered in this paper, which resembles, as
far as the parameter estimation problem is concerned, the
very classical HMC, EM could be applied in an analogous
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way as ICE is. However, as we use ICE, let us recall some
general properties of both methods:

(i) ICE is more general than EM, and can be easier to
perform in complex situations. It is more general
because the estimator ŷðv, yÞ can be of any form; in
particular, it can be the ‘‘maximum likelihood’’ (ML)
estimator or not. Thus, when the ML estimator does
not exist, ICE can possibly still be used, when EM
cannot. Moreover, it can be easier to perform because
the maximization step in the equality defining yqþ1

above does not exist in ICE;
(ii) as stated in Ref. [13], in the case of exponential

models – and under the condition that ŷðv, yÞ used
in ICE is the ML estimator – EM and ICE can produce
the same sequence (yq);

(iii) many comparisons between EM and ICE have been
performed in classical contexts with Gaussian noise,
like adaptive estimation [40], hidden Markov chains
[5], or hidden Markov trees [36]. In all these situa-
tions, the EM formulae are computable and it turns
out that both EM and ICE methods are of quite
comparable efficiency;

(iv) the use of EM is justified by the theoretical results
concerning the optimal behavior of the ML estimator,
and by the fact that EM produces a sequence (yq)
such that the sequence p(y9yq), being increasing,
often converges to a local maximum. We have to
notice that this does not imply the convergence of
(yq) to the real parameter y; however, if the initial
value y0 is close enough to the real value y, the
convergence can be shown under some mild hypoth-
eses. The idea behind ICE is different and is based on
the following. Assuming that ŷðv, yÞ has an interest-
ing quadratic error – or is even optimal, being, for
example, an ML estimator in an exponential model –
one wishes to approximate it by a function of the
only observed variables y. The ‘‘best’’ – with regard to
the same ‘‘quadratic error’’ criterion – approximation
is the conditional expectation. As this expectation
depends on the parameter, we arrive at the point (ii)
in the definition of ICE above. Concerning the con-
vergence of ICE, let us mention a recent theoretical
result obtained in the case of independent data [45].
As in the case of EM, convergence can be obtained
under some reasonable hypotheses if the initial value
y0 is close enough to the real value y;

(v) EM encounters more difficulties in hidden Markov
field models, where the maximization step cannot be
calculated and one is obliged to simplify the model,
for example by introducing the ‘‘mean field’’ as
indicated in Ref. [10]. ICE can be used without model
modification, even in more complex situations, as in
the context of recent triplet Markov fields [4].

4.2. ICE in NS-RHSMC

Let us consider NS-RHSMC T ¼ ðX, U1, U2,YÞ specified
in sub-section 3.4: the variables Xn, U1

n , and U2
n take their

values from O¼{o1,y,oK}, L1
¼{0,y, P�1}, and L2

¼

{1,y, L}, respectively. Thus we have a Markov chain

T¼(V,Y), where V ¼ ðX, U1, U2Þ, and where each Vn takes
its values in O�L1

�L2, and each Yn takes its values in R.
To estimate the parameters, we will assume that the
distribution p(tn, tnþ1) does not depend on n, which
means that the distribution of T¼(V,Y) is defined by the
distribution p(t1, t2).

Let us consider the following particular distribution

p(t1, t2)¼p(v1, v2)p(y19v1)p(y29v2)¼pðx1,u1
1,u2

1,x2,u1
2,u2

2Þpðy1

9x1Þpðy29x2Þ, which means that the PMC T¼(V,Y) is in fact

a classical HMC with independent noise. This particular
case was chosen on purpose, to facilitate comparisons
with other classical models in the experiments below. Let
us see what the parameters defining the model are

exactly. The vector ðV1,V2Þ ¼ ðX1,U1
1 ,U2

1 ,X2,U1
2 ,U2

2 Þ takes its

values in the finite set ðO�L1
�L2

Þ
2, which contains

(KPL)2 elements. However, due to the very definition of
the model there are some elements with zero probability.

Let v1 ¼ ðx1 ¼oi,u
1
1 ¼ j,u2

1 ¼ kÞ. For u1
1a0 we necessarily

have v2 ¼ ðx2 ¼oi,u
1
2 ¼ j�1,u2

1 ¼ kÞ, and for u1
1 ¼ 0 the

vector v2 ¼ ðx2,u1
2,u2

1Þ is of any possible value in O�L1
�

L2. Therefore p(v1, v2) is defined on a subset A¼{a1,y, aA}

of ðO�L1
�L2

Þ
2 containing A¼ KðP�1ÞLþK2L2P¼

KLðKLPþP�1Þ elements, and thus p(v1, v2) is defined by
A parameters a1¼p(a1),y,aA¼p(aA). Concerning the K

distributions p(y19x1¼o1),y,p(y19x1¼oK) - remember
that p(yn9xn) does not depend on n - we assume that they

depend on vector parameters b1,y,bK, respectively. For

example, for Gaussian distributions, b1,y,bK are means

and variances b1 ¼ ðm1,s2
1Þ,. . .,bK ¼ ðmK ,s2

K Þ. Finally, the

parameters to be estimated are y¼(a, b)¼(a1,y,aA,

b1,y,bK).
Then the ICE method can be used once there is, for

each i¼1,y,K, an estimator b̂iðy
i
1, :::, yi

nÞ of bi from a
sample yi

1, :::, yi
n produced according to p(y19x1¼oi). In

fact, (H1) is verified upon using the following estimator
ŷðv, yÞ. Considering an even N¼2N’, the parameters ai are
estimated by the classical empirical estimators

âiðv1,. . .,vNÞ ¼
1

N0

XN0
j ¼ 1

1½ðv2j�1 ,v2jÞ ¼ ai �, ð4:1Þ

and the vectors bi are estimated by b̂iðy
iÞ, where yi is the

sub-sample of y¼(y1,y, yN) such that yj is in yi if xj¼oi. In
other words, to estimate b¼(b1,y,bK) we use (iii) of the
ICE description in the previous sub-section, with l¼1.

As (H2) is verified from the fact that p(v9y) is a Markov
chain distribution, the ICE method can be used. In parti-
cular, to re-estimate a¼(a1,y,aA) we see that when using
âiðvÞ defined by Eq. (4.1), aqþ1

i ¼ E½âiðVÞ Y ¼ y, aqÞ
�� is com-

puted by

aqþ1
i ¼

1

N0

XN0
j ¼ 1

pððv2j�1,v2jÞ ¼ ai9y,yq
Þ, ð4:2Þ

where p((v2j�1, v2j)¼ai9y,yq) are computable from Eq. (2.6).
To re-estimate b¼(b1,y,bK), we use (iii) of the ICE descrip-
tion in the previous sub-section, with l¼1.

Remark 4.2. We said in Remark 4.1 that the well-known
EM method could also be used; let us briefly specify how.
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The re-estimation of a¼(a1,y,aA) with Eq. (4.2) would be
identical in both methods, and the difference is at the
b¼(b1,y,bK) re-estimation. Let us assume that the noise
is Gaussian, and thus we have bi ¼ ðmi,s2

i Þ with mi the
mean and s2

i the variance of the Gaussian distribution
corresponding to the class oi. We have seen that in
ICE bi ¼ ðmi,s2

i Þ is estimated from the sub-sample yi of
y¼(y1,y, yN) defined by ‘‘yj is in yi if xj¼oi’’. In EM each
bi ¼ ðmi,s2

i Þ would be re-estimated from the whole sam-
ple y¼(y1,y, yN) in the following way. After having
computed pðxj ¼oi9y,yq

Þ ¼
P
ðu1

i
,u2

i
Þpðxj ¼oi,u

1
i ,u2

i 9y,yq
Þ�, we

would set

mqþ1
i ¼

PN
j ¼ 1 yj½pðxj ¼oi9y,yq

ÞPN
j ¼ 1½pðxj ¼oi9y,yq

Þ�
,

ðs2
i Þ

qþ1
¼

PN
j ¼ 1 ðyj�mqþ1

i Þ
2
½pðxj ¼oi9y,yq

Þ�PN
j ¼ 1½pðxj ¼oi9y,yq

Þ�
: ð4:3Þ

We obtain formulas which extend the classical EM
formulas which are well known in the classical hidden
Markov chains.

5. Experiments

We present three series of experiments. Their aim is to
show that the new model is of interest, when coupled with
the related ICE-based estimation method, in the unsuper-
vised segmentation context. Let us recall that the unsu-
pervised segmentation context can be quite different from
the supervised, which means that the model parameters
are known. In fact, when all parameters are known the
new model must be of interest, simply because of its larger
generality. However, in unsupervised context things are
more complicated. In fact, let us assume that a given set of
data perfectly corresponds to the classical HMC. Of course
HMC is a RHSMC and thus when the parameters are
known both models are strictly the same and thus they
will provide the same results. Things are different in the
unsupervised context: using HMC directly needs fewer
parameters to be estimated than using RHSMC. Therefore,
when the parameters have to be estimated, using HMC
instead of RHSMC could possibly give significantly better
results. To study whether this occurs or not is the very aim
of the first series of two experiments presented in sub-
section 5.1.

In sub-section 5.2 we study the converse problem.
When the data does follow an RHSMC which is not an
HMC, can the use of a HMC provide comparable results?
In other words, are there situations in which RHSMC
presents an interest in the unsupervised segmentation
context? As above, the problem is somewhat different in
supervised and unsupervised cases. In the former case the
RHSMC based results must be better, according to the
very Bayesian theory. In unsupervised case this is not
necessarily true, especially when the data are very noisy.
In fact, if the RHSMC parameters estimation turned out to
be less efficient than the HMC parameters estimation, the
HMC based segmentation could provide better results
that the RHSMC based one. The stronger the noise the
higher the risk that such cases occur is; thus we directly
study a rather noisy case.

In the third series the hidden data suit neither HMC
nor RHSMC and thus it is of interest to test which one
between the two models will be more efficient in unsu-
pervised context. As above, the parameter estimation is of
importance and thus the simpler HMC model, having
fewer parameters to be estimated, could possibly be more
efficient than the more complex RHSMC.

Finally, we present some segmentation of a real radar
image in sub-section 5.4.

Let us notice that the calculations Eqs. (2.3)–(2.5) can
be used when N is not too large; however, when it is, both
FN(vn) and B1(v1) tend to 0, when N tends to infinity, at
exponential rate. To remedy this problem we use, as in
Refs. [14,15], the following ‘‘normalized’’ forward and
backward probabilities

anðvnÞ ¼ pðvn9y1,. . .,ynÞ, ð5:1Þ

bnðvnÞ ¼
pðynþ1,. . .,yN9vn,ynÞ

pðynþ1,. . .,yN9y1,. . .,ynÞ
, ð5:2Þ

which can be calculated by the following recursions:

a1ðv1Þ ¼ pðv19y1Þ;

anþ1ðvnþ1Þ ¼

P
vn2O�LanðvnÞpðvnþ1,ynþ19vn,ynÞP

ðvn
n ,vn

nþ 1
Þ2ðO�LÞ2anðvn

nÞpðv
n

nþ1,ynþ19vn
n,ynÞ

ð5:3Þ

bNðvNÞ ¼ 1; bnðvnÞ

¼

P
vnþ 12O�Lbnþ1ðvnþ1Þpðvnþ1,ynþ19vn,ynÞP
ðvn

n ,vn

nþ 1
Þ2ðO�LÞ2anðvn

nÞpðv
n

nþ1,ynþ19vn
n,ynÞ

: ð5:4Þ

Having calculated an(vn) and bn(vn) , we compute
p(vn, vnþ19y) and p(vn9y) with

pðvn,vnþ19yÞ

¼
anðvnÞpðvnþ1,ynþ19vn,ynÞbnþ1ðvnþ1ÞP

ðvn
n ,vn

nþ 1
Þ2ðO�LÞ2anðvn

nÞpðv
n

nþ1,ynþ19vn
n,ynÞbnþ1ðv

n

nþ1Þ
,

ð5:5Þ

pðvn9yÞ ¼ anðvnÞbnðvnÞ: ð5:6Þ

In particular, p(vn9y) gives p(xn9y)¼
P

unALp(vn¼

(xn,un)9y) and p(un9y)¼
P

xnAO p(vn¼(xn,un)9y).
Finally, dividing Eq. (5.5) by Eq. (5.6) we obtain

pðvnþ19vn,yÞ

¼
pðvnþ1,ynþ19vn,ynÞbnþ1ðvnþ1Þ

bnðvnÞ
P
ðvn

n ,vn

nþ 1
Þ2ðO�LÞ2anðvn

nÞpðv
n

nþ1,ynþ19vn
n,ynÞbnþ1ðv

n

nþ1Þ

ð5:7Þ

Both p(vn, vnþ19y) and p(vnþ19vn, y) will be used in the
parameter estimation method discussed in sub-sections
5.1–5.3 below.

5.1. Unsupervised segmentation of simulated hidden

Markov and semi-Markov chains

The series of tests considered consists in simulating an
HMC and segmenting it in unsupervised manner, by using
the HMC or the RHSMC model. As an HMC is a special case
of an RHSMC, it is interesting to see whether the unsu-
pervised segmentations based on the RHSMC model are
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close or not to those based on the HMC model. We present
two series of results, with increasing noise level.

In order to visualize the results, we will use images
of size N¼256�256. Such a bi-dimensional set of pixels
is transformed into a mono-dimensional set using a
Hilbert–Peano scan, as presented in Fig. 1. Such a repre-
sentation is quite pleasant because it allows one to
appreciate visually the degree of the noise, and also the
quality difference between two segmentation results.
However, let us insist on the fact that in this sub-section
and the following one, this is only a representation, and
the problem we deal with is the problem of mono-
dimensional chains.

More precisely, we simulate a two-class stationary
Markov chain X whose distribution is defined by p(x1¼

o1, x2¼o1)¼p(x1¼o2, x2¼o2)¼0.495, p(x1¼o1, x2¼o2)¼
p(x1¼o2, x2¼o1)¼0.005, and whose realization is pre-
sented in Fig. 2(a). The noise distribution p(y9x) is defined
by two Gaussian distributions p(yi9xi¼o1)�N(1, 1), p(yi9xi¼

o2)�N(2, 1) and one realization y of Y is presented in
Fig. 2(b). In RHSMC used we take P¼10. Although the noise
is rather strong, we see that both HMC and RHSMC based
unsupervised methods give identical results, which are very
close to the segmentation based on real parameters. This
shows that when RHSMC turns out to be a HMC, the ICE
method is capable of finding that out, and thus, roughly

   
4 pixels  16 pixels  64 pixels  

Fig. 1. Construction of a Hilbert–Peano scan used to represent realizations of mono-dimensional sequences as bi-dimensional images.

Fig. 2. Unsupervised segmentation of an HMC. From left to right: (a) simulation x of X, (b) simulation y of Y, (c) segmentation of y based on the HMC

model and the real parameters used in (a) and (b), (d) unsupervised segmentation of y based on the HMC model and the ICE method, and

(e) unsupervised segmentation of y based on the RHSMC models and the ICE method. t is the proportion of misclassified points.
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speaking, when the data suits HMC, there is no risk of using
the broader RHSMC model.

The estimates of the noise parameters are given in
Table 1, and the estimated p(x1, x2) by the ICE method in
both the HMC and the RHSMC models are p̂ðx1 ¼o1,
x2 ¼o1Þ¼pðx1¼o2,x2¼o2Þ¼0:496, p̂ðx1¼o1,x2 ¼o2Þ ¼

pðx1 ¼o2,x2 ¼o1Þ ¼ 0:004, which is very close to the real
values.

In order to further challenge the proposed method, we
considered an experiment with a lot more noise. Namely,
let us consider the same p(x1, x2) as above, and p(yi9xi¼

o1)�N(1, 10), p(yi9xi¼o2)�N(2, 10). The results obtained
are presented in Fig. 3.

The estimates of the noise parameters are given in
Table 2. For the HMC, the estimated p(x1, x2) are p̂ðx1 ¼

o2, x2 ¼o2Þ ¼ 0:495 and p̂ðx1 ¼o1, x2 ¼o2Þ ¼ p̂ðx1 ¼o2,

x2 ¼o1Þ ¼ 0:005. The estimates related to RHSMC are

p̂ðx2 ¼oj

��x1 ¼oi,u
1
n ¼ 0Þ ¼

0:84 0:16

0:12 0:88

� �
,

p̂ðu1
nþ19xn ¼o1,u1

n ¼ 0Þ

¼ ð0:15,0:15,0:13,0:11,0:09,0:08,0:07,0:07,0:07,0:08Þ

and

p̂ðu1
nþ1

��xn ¼o2,u1
n ¼ 0Þ

¼ ð0:14,0:14,0:12,0:11,0:09,0:08,0:08,0:08,0:08,0:08Þ

According to Fig. 3, we see that the noise is really
significant. In fact, the misclassification error is t¼17.42%
when using the real parameters. The good behavior of the
ICE method in the HMC case is confirmed, as the misclassi-
fication error t¼18.38% is quite close to the error in the
supervised case. We also see that using the RHSMC models

Table 1
Noise parameters estimated by the ICE method for the HMC and the

RHSMC models in the case in Fig. 2. True parameters are m1¼1, m2¼2,

and s2
1 ¼ s2

2 ¼ 1.

HMC RHSMC

o1 o2 o1 o2

m 0.99 2.01 0.99 2.01

s2 0.99 1.01 1.01 1.01

Fig. 3. Unsupervised segmentation of an HMC. From left to right: (a) simulation x of X, (b) simulation y of Y, (c) segmentation of y based on the HMC

model and the real parameters used in (a) and (b), (d) unsupervised segmentation of y based on the HMC model and the ICE method, and (e)

unsupervised segmentation of y based on the RHSMC models and the ICE method.

Table 2
Noise parameters estimated by the ICE method for the HMC and the

RHSMC models in the case in Fig. 3. True parameters are m1¼1, m2¼2,

and s2
1 ¼ s2

2 ¼ 10.

HMC RHSMC

o1 o2 o1 o2

m 1.02 2.01 0.76 2.07

s2 10.31 9.67 9.99 9.71
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instead of the HMC model degrades the results, which
seems to be mainly due to the estimation of the means.
However, we also notice that in order to obtain such
degradation, we had to consider a very high noise level,
which probably goes beyond cases met in real applications.

5.2. Estimation of a simulated hidden semi-Markov chain

Here, we deal with the converse problem: the data is
sampled according to an RHSMC and the observations are
segmented, in an unsupervised manner, by both the
RHSMC and the HMC-based methods. Of course, the very
Bayesian theory implies that when the RHSMC considered
is not an HMC, the RHSMC with results based on real
parameters must be better than the HMC based on any
other parameters; however, it is interesting to see whether
the latter are close to the former, especially in an unsuper-
vised segmentation context. In other words, it is interesting
to look at what the RHSMC model brings in addition to the
HMC model.

Let us consider a two-class RHSMC (X, U1, Y), where U1

takes its values in L1
¼{0,..., 9} and the distribution pðu1

nþ1

9xnþ1,u1
n ¼ 0Þ is uniform for any value xnþ1 of Xnþ1.

The transitions pðxnþ1

��xn,u1
n ¼ 0Þ are given by pðxnþ1 ¼

xn 9u1
n ¼ 0Þ ¼ 0:99, and pðxnþ1axn9u1

n ¼ 0Þ ¼ 0:01, and the
noise distributions are p(yi9xi¼o1)�N(1, 20), p(yi9xi¼

o2)�N(2, 20). Therefore, to better appreciate the

differences among the two models, we directly consider
a very noisy case.

The estimated parameters of the RHSMC model are

p̂ðx2 ¼oj9x1 ¼oi,u
1
n ¼ 0Þ ¼

0:89 0:11

0:11 0:89

� �
,

p̂ðu1
nþ19xn ¼o1,u1

n ¼ 0Þ

¼ ð0:11,0:11,0:11,0:11,0:10,0:10,0:09,0:09,0:09,0:09Þ

and

p̂ðu1
nþ19xn ¼o2,u1

n ¼ 0Þ

¼ ð0:11,0:11,0:11,0:11,0:10,0:10,0:09,0:09,0:09,0:09Þ:

The corresponding results are presented in Fig. 4.
The estimates of the noise parameters are presented in

Table 3. Overall, using the ICE in the HMC or the RHSMC
context gives similar results. Also, given the very high
level of the noise we note the good behavior of the ICE
method.

Fig. 4. Unsupervised segmentation of an RHSMC. From left to right: (a) simulation x of X, (b) simulation y of Y, (c) segmentation of y based on the RHSMC

model and the real parameters used in (a) and (b), (d) unsupervised segmentation of y based on the HMC model and the ICE method, and (e)

unsupervised segmentation of y based on the RHSMC models and the ICE method. t is the proportion of misclassified points.

Table 3
Noise parameters estimated by the ICE method for the HMC and the

RHSMC models.

HMC RHSMC

o1 o2 o1 o2

m 0.85 2.48 0.60 2.33

s2 19.78 19.01 19.81 20.05
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5.3. Segmentation of a ‘‘hand-made’’ non-stationary picture

In this sub-section we present some results concerning
the new NS-RHSMC model. The presented results are of
importance in real applications because the data consid-
ered are non-stationary and they are obtained neither
with an NS-HMC model nor with an NS-RHSMC one.

The simplified NS-HSMC used here and in sub-section
5.4 is the model considered in sub-section 4.2:

pðxnþ19xn,u1
n ,yn,u2

nþ1Þ ¼ dxn ðxnþ1Þ if u1
n40,

and p*ðxnþ19xn,u2
nþ1Þ if u1

n ¼ 0; ð5:8Þ

pðu1
nþ19xn,u1

n ,yn,xnþ1,u2
nþ1Þ ¼ du1

n�1ðu
1
nþ1Þ if u1

n40,

and

pðu1
nþ19xn,u1

n,yn,xnþ1,u2
nþ1Þ ¼ pðu1

nþ19xnþ1,u2
nþ1Þ if u1

n ¼ 0

ð5:9Þ

pðu2
nþ19tnÞ ¼ pðu2

nþ19u
2
nÞ: ð5:10Þ

pðynþ19tn,u2
nþ1,xnþ1,u1

nþ1Þ ¼ pðynþ19xnþ1Þ: ð5:11Þ

The realization X¼x is obtained by considering a
collage of two different textures and the result is pre-
sented in Fig. 5(a). The observed data are obtained by
using two Gaussian distributions p(yi9xi¼o1)�N(1, 2),
p(yi9xi¼o2)�N(2, 2) and we can see, according to Fig. 5,
that such a noise is rather strong. Then Y¼y is segmented
in three unsupervised ways, based on three models with
increasing generality: HMC, NS-HMC, and NS-RHSMC.
Thus the important point here is to study whether
NS-RHSMC can improve results obtained with NS-HMC,
recalling that the results obtained with both NS-HMC and
NS-RHSMC are of two kinds: recover the classes X¼x, and
recover the ‘‘textures’’ U2 ¼ u2. Therefore, we consider an
HMC (X , Y), an NS-HMC (X, U2, Y), and an NS-RHSMC
ðX, U1, U2, YÞ. In both NS-HMC (X, U2, Y) and NS-RHSMC

Fig. 5. Estimation of X by using the HMC, NS-HMC, and NS-RHSMC models. Estimation of U2 ¼ u2 by using NS-HMC and NS-RHSMC. Parameters

estimated with the ICE method, t is the misclassification error: (a) hand-made X¼x, (b) observed Y¼y, (c) texture chain U2
¼u2, (d) HMC segmentation

t¼32%, (e) NS-HMC segmentation t¼30%, (f) NS-RHSMC segmentation t¼25%, (g) NS-HMC estimation of u : t¼18%, (h) NS-RHSMC estimation of u : t¼9%.
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ðX, U1, U2, YÞ the two different textures are considered as
being modeled by a two-value random chain U2, and the
semi-Markovianity in ðX, U1, U2, YÞ is modeled by U1,
which will take its values in L1

¼{0,y,4}. In all cases

considered, the parameters are estimated by ICE described
in sub-section 4.2.

According to Fig. 5, we can see that NS-RHSMC-based
results are significantly better than the NS-HMC-based ones.
Concerning the misclassification error, they are t¼25% and
t¼30%, respectively. What is more, the difference between
NS-RHSMC and NS-HMC is larger than the difference
between NS-HMC and HMC. The difference in texture
classification efficiency between NS-RHSMC and NS-HMC
is still more significant, the error ratio being t¼9% and
t¼18%, respectively. Also, we show in Table 4 the noise
estimates by the three ICE algorithms used and it turns out
that the results obtained in both NS-RHSMC and NS-HMC
cases are good and similar. This means, on the one hand,
that the efficiency difference between NS-RHSMC and

Table 4
Estimated parameters in the case of the HMC, NS-HMC and NS-RHSMC

models. The real parameters are m1¼1, m2¼2, and s2
¼2 for both

classes o1, o2.

HMC NS-HMC NS-RHSMC

o1 o2 o1 o1 o1 o2

m 1.18 1.89 0.89 1.93 0.96 1.89

s2 2.07 2.19 1.92 2.05 2.01 2.08

Fig. 6. Three unsupervised segmentations of a real SAR airborne image of the )Rhone Valley*, France. o1 (blue) is the river, o2 (green) is the vegetation,

and o3 (brown) is what remains.
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NS-HMC is due to the superiority of the former over the
latter, and not to some difference in parameter estimates.
On the other hand, this also means that the ICE works well
in both NS-RHSMC and NSHMC cases.

Remark 5.1. We showed above that the proposed new
model can be applied in image segmentation. Let us
notice that where statistical image segmentation is con-
cerned, the Markov model which is mostly used is the
hidden Markov field (HMF) model. However, as shown in
the classical hidden Markov chains and hidden Markov
fields models, the former can be useful with respect to the
latter. In some situations they may be of comparable
efficiency. In some others, they can be used to initialize
the HMF-based methods [20].

5.4. Real image segmentation

Finally, let us consider a real radar SAR airborne image.
This image, seen as a realization Y¼y, is presented in Fig. 6.
The size here is 256�256 pixels, and the set of pixels is
converted into mono-dimensional sequence using the
Hilbert–Peano scan. The observed sequence is then seg-
mented by four methods based on HMC, NS-HMC, RHSMC
and NS-RHSMC, respectively. We consider three classes
‘‘water’’, ‘‘vegetation’’, and ‘‘others’’. For NS-HMC and NS-
RHSMC, we considered two different stationarities and
L1
¼{0,...,9}. The results obtained are presented in Fig. 6.
As we have no ground truth it is difficult to draw

general conclusions. However, both HSMC and NS-HMC
based segmentations seem clearly of better quality than
the HMC based one, mainly because of the false presence
of ‘‘water’’ in the upper left corner of the HMC-based
segmentation. Thus each of these two models is of
interest when replacing the classical HMC. However, it
does not clearly appears, in the example considered, that
these advantages have cumulative interest. In fact, the
difference between the HSMC based segmentation and
the NS-HSMC based seems negligible, and it is still true
when comparing the NS-HMC based segmentation and
the NS-HSMC based one.

6. Conclusion

We proposed in this paper a new non-stationary
hidden semi-Markov chain model and a related parameter
estimation method. Both of them have been applied to
unsupervised Bayesian signal segmentation and the inter-
est of the whole method has been validated through
different experiments. As the new model can be applied
in any area where the classical hidden Markov chains are
of interest, its applicative possibilities are extremely wide
and, in particular, contain different domains mentioned in
the introduction.

As perspective, let us mention the possibility of extend-
ing the Gaussian noise model considered here to a noise
with marginal distributions of any form. In fact, the general
method based on Copulas presented in Ref. [7] – and
extended to the non-stationary case in Ref. [29] – can be
adapted to the proposed model and the good behavior
of the parameter estimation method let us envisage its

possible extension to more complex situations. The use of a
3-dimensional Hilbert–Peano scan, as introduced in
Ref. [6], opens the way to different investigations related
to 3-dimensional – or spatio-temporal – data segmentation.
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