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a b s t r a c t

The hidden Markov chain (HMC) model is a couple of random sequences (X,Y), in which

X is an unobservable Markov chain, and Y is its observable ‘‘noisy version’’. The chain X

is a Markov one and the components of Y are independent conditionally on X. Such a

model can be extended in two directions: (i) X is a semi-Markov chain and (ii) the

distribution of Y conditionally on X is a ‘‘long dependence’’ one. Until now these two

extensions have been considered separately and the contribution of this paper is to

consider them simultaneously. A new ‘‘semi-Markov chain hidden with long

dependence noise’’ model is proposed and it is specified how it can be used to recover

X from Y in an unsupervised manner. In addition, a new family of semi-Markov chains is

proposed. Its advantages with respect to the classical formulations are the low

computer time needed to perform different classical computations and the facility of its

parameter estimation. Some experiments showing the interest of this new semi-Markov

chain hidden with long dependence noise are also provided.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The classical hidden Markov chain (HMC) model is a
couple of random sequences (X,Y), with X=(X1,y,XN) and
Y=(Y1,y,YN), in which X is an unobservable Markov chain,
and Y is its observable noisy version Throughout this
paper, we will assume that each Xn takes its values in
O={o1,y,oK}, and each Yn takes its values in R. The aim
of the Bayesian segmentation is to estimate the hidden
realization x of X from an observed realization y of Y. One
possible way of such an estimation is to set, for n=1,y,N,
x�n ¼ arg maxxn pðxnjyÞ. This estimation, which will be used
everywhere below, is called the ‘‘Marginal Posterior
Mode’’ (MPM). The estimate x*=(x1*,yxN*) is computable,
even for very large N, when the distribution p(x,y) is not
too complex. The most classical model allowing the
computation of x* is the ‘‘hidden Markov chain’’ (HMC)
ll rights reserved.

eu (W. Pieczynski).
whose distribution p(x,y) is given by

pðx,yÞ ¼ pðx1Þ
YN�1

n ¼ 1

pðxnþ1jxnÞ
YN

n ¼ 1

pðynjxnÞ ð1:1Þ

The hidden chain X is then a Markov chain, the random
variables Yn are independent conditionally on X, and they
verify p(yn|x)=p(yn|xn). HMCs are widely used and are
quite efficient in numerous situations [5,11,15,16,19,
24,26,31].

However, both assumptions ‘‘Markovianity of X’’ and
‘‘independence of the components of Y conditionally on X’’
can turn out to be too strong in some situations and two
following extensions have been proposed:
(i)
 The first extension consists in replacing the Markov X

by a ‘‘semi-Markov’’, also called the ‘‘explicit dura-
tion’’, or ‘‘variable-duration’’, chain. One then obtains
a ‘‘hidden semi-Markov chain’’ (HSMC), which still
makes it possible to estimate X from Y and which is of
interest, with respect to the classical HMC, in
numerous situations [1,4,12,13,17,18,20,25,27,31,32,

www.elsevier.com/locate/sigpro
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34,35,39]; also see the recent overview [40] with a
rich bibliography on the subject;
(ii)
 In the second extension, recently proposed in [21], the
very simple distribution of Y conditional on X is
extended to a ‘‘long dependence’’ distribution. Such a
model, where X remains a Markov chain, can have two
kinds of interpretations. Many phenomena are mod-
eled by long dependence processes [10,33,38] and
there can be ‘‘changing points’’, or ‘‘switches’’, in
which the model parameters change. Detecting such
switches is then an important problem [6,36,37]. The
second interpretation corresponds to some X with
‘‘physical’’ existence, as in all the examples dealt with
in the context of HMC. Of course, both interpretations
are close to each other: switches of parameters can be
modelled by a latent variable X.
The aim of this paper, which extends the results
contained in [22,23], is to simultaneously consider both
extensions. A new ‘‘semi-Markov chain hidden with long
dependence noise’’ model is proposed and it is specified
how it can be used to recover X from Y in an unsupervised
manner. Thus, the model proposed can either be seen as an
extension of the model (i) to ‘‘long dependence noise’’, or
as an extension of the model (ii) to ‘‘semi-Markov’’ chain X.

In addition, a new family of semi-Markov chains
(NSMCs) is proposed. This new family can be used either
in the classical context of the semi-Markov chains hidden
with ‘‘independent noise’’ (1.1), or in the new context
extended to long dependence noise. The interest of using
NSMCs lies in low computer time needed to perform
different classical computations and in the ease with
which its parameters can be estimated.

To avoid any confusion let us recall that there are
different research works in which a long dependence
process is approximated by a ‘‘Markov switching’’ model,
which is also called a ‘‘mixture’’ model [9]. This is not the
purpose of this work. In fact, in the model used here p(y|x)
is a long correlation distribution for each sequence x, and
thus one does not need to approach p(y|x) by any Markov
switching distribution.

The paper is organized as follows. The next section is
devoted to the presentation of the new semi-Markov
chain hidden with the classical independent noise. In
Section 3 one recalls the recent Markov chain hidden with
long dependence Gaussian noise model [21]. The new
‘‘semi-Markov chains hidden with long dependence
noise’’ family of models is introduced in Section 4, while
Section 5 is devoted to the related parameter estimation.
Different experiments are described in Section 6, and the
last Section 7 contains conclusions and perspectives.

2. Hidden semi-Markov chains

2.1. Classical formulation of hidden semi-Markov chains

Let X=(Xn)1rnrN and Y=(Yn)1rnrN be two stochastic
chains as above, and let U=(Un)1rnrN be a stochastic
chain taking its values in L={0,y,N�1}. To obtain a
classical semi-Markov distribution for X, which will be
called ‘‘classical’’ SMC and denoted by ‘‘CSMC’’, one
possible way is to assume that (X,U) is a Markov chain
whose distribution is defined by the following. Let d be
the Kronecker function, which is defined by da(b)=1 for
a=b, and da(b)=0 for aab. The distribution of (X,U) is
given by p(x1,u1) and the transitions p(xn +1,un + 1|
xn,un)=p(xn + 1|xn,un)p(un+ 1|xn,un,xn +1) verifying

pðxnþ1jxn, unÞ ¼ dxn ðxnþ1Þ if un40, and pðxnþ1jxnÞ if un ¼ 0

ð2:1Þ

pðunþ1jxnþ1, xn, unÞ ¼ dun�1ðunþ1Þ if un40,

and pðunþ1jxnþ1Þ if un ¼ 0, ð2:2Þ

with p(xn + 1|xn)=0 if xn +1=xn. Classically un is the exact
remaining sojourn time in xn. The advantage of the semi-
Markov distributions over the Markov ones is that in the
former the distribution of Un is of any form, while it is
necessarily of exponential form in the latter.

Setting

pðyjx, uÞ ¼
YN

n ¼ 1

pðynjxnÞ ð2:3Þ

the triplet (X,U,Y) is the classical ‘‘hidden semi-Markov
chain’’, which will be denoted by ‘‘CHSMC’’.

Let V=(X,U). As (V,Y) is a classical hidden Markov chain,
the classical computation used in HMC can be used to
compute p(vn|y)=p(xn,un|y), which gives

pðxnjyÞ ¼
X
un

pðxn,unjyÞ ð2:4Þ

2.2. New class of hidden semi-Markov chains

As specified above, in the classical HSMC the chain
U=(Un)1rnrN takes its values from L={0,y,N�1}, where N

is the size of the observed sample. This can become a
drawback when N is large; for example, in image processing
area the sample size, which is an image size, can be about
one million. To remedy this, let us consider a particular non-
standard semi-Markov chain (X,U) introduced in [22,23].

Eqs. (2.1) and (2.2) are kept, but there are two modifica-
tions with respect to the classical definition of the previous
sub-section. The first one is to consider L={0,y,L�1}, with a
fixed L which no longer depends on N. In practice, L will be
taken of small size compared to N. The second modification,
which makes the model nonstandard, is to relax the
constraint ‘‘p(xn+1|xn)=0 if xn+1=xn’’. Then un is the minimum
remaining sojourn time in xn, and not the exact remaining
sojourn time as in the classical model. In other words, for
un=0, the random variable Xn+1 can remain in the same state
Xn=xn with nonnull probability p(xn+1=xn|xn).

Finally, the new model, which will be denoted by
‘‘NSMC’’, is defined by a Markov chain (X,U)=
(Xn,Un)1rnrN, where each Xn takes its values from O=
{o1,y,oK}, each Un takes its values from L={0,y,L�1},
and whose transitions are defined by (2.1) and (2.2),
without the hypothesis ‘‘p(xn +1|xn)=0 if xn + 1=xn’’.

Let us notice two further points highlighting the
position of the NSMC with regard to the CSMC:
(1)
 A CSMC is a Markov chain when the distribution of the
exact sojourn time follows a geometric distribution.
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The situation is quite different in NSMCs: an NSMC is
a Markov chain when the distribution of the minimal
sojourn time is a Dirac mass: p(un=0|xn)=1 for each
n=1,y,N and each xn 2 fo1, . . . , oKg. In this case the
transition matrices p(xn + 1|xn) related to the NSMC are
the transition matrices related to the Markov chain.
(2)
 The distribution of an NSMC can be seen as a
distribution of a CSMC with the difference that in
NSMC the exact sojourn time distribution is not
known explicitly. More precisely, let us consider a
NSMC defined by the family of distributions
p(un + 1|xn +1) on L={0,y,L�1}, and the transitions
p(xn + 1|xn). Let p�(xn + 1|xn) be the transitions obtained
from the transitions p(xn +1|xn) by p�(xn +1|xn)=0 for
xn=xn +1, and p� ðxnþ1jxnÞ ¼ pðxnþ1jxnÞ=ð1�pðxnþ1 ¼

xnjxnÞÞ for xnaxn +1, and let p�(un + 1|xn+ 1) be the
distributions on N={0,1,y,N,y} defined by
p� ðunþ1 ¼ djxnþ1 ¼ ojÞ ¼ pðxnþ1þdaojjxn ¼ ojÞ�Xd

k¼1

½
X

s1þ ...þ sk¼d

½pðunþ1 ¼ s1jxnþ1 ¼ ojÞpðunþ1þ s1
¼ s2jxnþ1þ s1

¼ ojÞpðunþ1þ s1þ s2
¼ s3jxnþ1þ s1þ s2

¼ ojÞ . . .

pðunþ1þ s1þ ...þ sk�1
¼ skjxnþ1þ s1þ ...þ sk�1

¼ ojÞ�

pðxnþ1þ s1
¼ ojjxnþ1 ¼ ojÞpðxnþ1þ s1þ s2

¼ ojjxnþ1 ¼ ojÞ . . . pðxnþ1þ s1þ ...þ sk�1
¼ ojjxnþ1 ¼ ojÞ��
Then the NSMC distribution given by the distributions
p(un +1|xn + 1) and the transitions p(xn +1|xn) is identical to
the CSMC distribution given by the distributions
p�(un +1|xn + 1) and the transitions p�(xn +1|xn). Of course
such a distribution is difficult to encircle. However, as far
as the problem of Bayesian segmentation is concerned,
this does not appear to be a drawback. Moreover, it allows
very simple, flexible, and rich parameterization, which is
given by the choice of L and a probability distribution,
parameterized or not, on L={0,y,L�1}.

To obtain a hidden NSMC, which will be called
‘‘NHSMC’’, one considers the same distribution of Y

conditional on (X,U) given by (2.3).

Remark 2.1. Both CHSMC and NHSMC can thus be
considered as particular classical HMC (V,Y), with
V=(X,U). Such a representation is of interest as all classical
computations known in HMC can be used in CHSMC and
NHSMC, once the particular form (2.1) and (2.2) of the
transitions and the particular form (2.3) of the noise have
been taken into account.

Remark 2.2. The CSMCs V=(X,U) have been introduced to
extend the Markov chains and thus, in theory, each
variable Un should take its values from the set of natural
numbers N. However, as the number of observations N is
finite, one can consider that each variable Un takes its
values from L={0,y,N�1}, as specified at the beginning
of Section 2. In practice, this set is often restricted to
L={0,y,D}, where D is the maximal duration indepen-
dent of N [39]. As the classical Markov chain does not
belong to the family of such models, doing so is equivalent
to considering an approximation of the ‘‘true’’ SMC. Now,
the new SMC proposed here is quite close to this
approximation: the ‘‘exact’’ duration just becomes the
‘‘minimal’’ duration. As specified above, doing so leads to
a real semi-Markov chain.

Remark 2.3. In both CHSMCs and NHSMCs (2.3) can be
easily extended to pðyjx, uÞ ¼

QN
n ¼ 1 pðynjxn,unÞ, where

p(yn|xn,un) varies with un. In fact, such an extension does
not interfere in different computations of interest and it
can be justified in some situations. For example, let us
consider a CHSMC and let us imagine that Y=(Y1,y,YN) is
a line in a digital image. Let O={o1,o2}, where o1 is
‘‘forest’’ and o2 is ‘‘water’’. If xn=o1 the distribution
p(yn|xn=o1,un), which models the variability of the forest,
can depend on un. In fact, the aspect of forest can be
different in spots bordering on water (un=0) than
elsewhere.
Remark 2.4. As specified above, both CHSMCs and
NHSMCs are particular classical HMCs (V,Y), with
V=(X,U). Knowing that the classical HMCs can be
extended to the ‘‘pairwise’’ Markov chains (PMCs [28])
with a noticeable increase in efficiency in unsupervised
data classification [8], let us briefly specify how this
extension can be applied to both CHSMCs and NHSMCs.
In CHSMCs and NHSMCs one has p(vn + 1, yn +1|
vn,yn)=p(vn + 1|vn)p(yn+ 1|vn+ 1), with p(vn + 1|vn) defined by
(2.1) and (2.2). In a ‘‘pairwise’’ extension it would be of
the form p(vn+ 1,yn + 1|vn,yn)=p(vn + 1|vn,yn)p(yn + 1|vn + 1,
vn,yn), where p(vn +1|vn,yn) is still given by (2.1) and
(2.2), with yn as a constant, and p(yn + 1|vn +1,vn,yn) is
possibly kept in its general form. Let us underline the fact
that in such a ‘‘pairwise’’ extension V=(X,U) is no longer
necessarily a Markov chain [29], and thus X is no longer
necessarily a semi-Markov chain. However, V=(X,U) is
Markovian conditionally on Y and thus estimating it from
Y remains feasible. Finally, such a model (X,U,Y) is a triplet
Markov chain [30], but neither X nor (X,U) is Markovian.

3. Semi-Markov chains hidden with general Gaussian
noise (GGN-HSMCs)

3.1. Markov chains hidden with general Gaussian noise

(GGN-HMC)

Let V=(Vn)1rnrN be a Markov chain taking its values
from D={l1,y,lM}, and let Y=(Yn)1rnrN be a stochastic
real valued sequence. In the next sub-section V will be
assumed to be a CSMC or NSMC taking its values from
D=O�L, dealt with in the previous section. However, the
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formulas of interest presented in this sub-section are valid
for any Markov chain V=(Vn)1rnrN and thus its general
form will be kept for the moment.

For each n=1,y,N we will set V1
n=(V1,y,Vn),

Y1
n=(Y1,y,Yn), and v1

n=(v1,y,vn), y1
n=(y1,y,yn) for their

realizations.
The couple (V,Y) is called a ‘‘pairwise partially Markov

chain’’ (PPMC) if its distribution is given by p(v1,y1) and
the transitions p(vn + 1,yn +1|v1

n,y1
n) verifying

pðvnþ1, ynþ1jv
n
1, yn

1Þ ¼ pðvnþ1jvn, yn
1Þpðynþ1jvn, vnþ1, yn

1Þ

ð3:1Þ

Such a model is thus Markovian with respect to V, but
is not necessarily Markovian with respect to Y. One can
show [21] that p(v|y) is Markovian with the distribution
given by

pðv1jyÞ ¼
pðv1, y1Þb1ðv1ÞP
v1

pðv1, y1Þb1ðv1Þ
; ð3:2Þ

pðvnþ1jvn, yÞ ¼
pðvnþ1jvn, yn

1Þpðynþ1jvn, vnþ1, yn
1Þjbnþ1ðvnþ1Þ

bnðvnÞ
,

ð3:3Þ

where the quantities b1(v1),y,bN(vN) are computable
using the backward recursion

bNðvNÞ ¼ 1, bnðvnÞ ¼
X
vnþ 1

pðvnþ1jvn, yn
1Þpðynþ1jvn, vnþ1, yn

1Þbnþ1ðvnþ1Þ

ð3:4Þ

Thus, p(v1|y) and p(vn+1|vn,y) can be computed once the
probabilities p(vn+1|vn,y1

n) and p(yn+1|vn,vn+1,y1
n) are known.

Let us consider these probabilities of particular
Gaussian form, as introduced in [21]. One assumes that
p(vn + 1|vn,y1

n)=p(vn+ 1|vn), and the probabilities p(yn + 1|vn,
vn + 1,y1

n) are assumed to be defined by M2 Gaussian
distributions on RN in the following way. For each
ðli, ljÞ 2 D

2, let qij be a Gaussian distribution on RN. Thus,
for each n=1,y,N�1 and each y1

n=(y1,y,yn), one has a
Gaussian conditional distribution qij(yn + 1|y1

n) on R. Then
p(yn +1|vn,vn +1,y1

n) are defined by

pðynþ1jvn ¼ li, vnþ1 ¼ lj, yn
1Þ ¼ qijðynþ1jy

n
1Þ ð3:5Þ

The important point is that in the Gaussian case
considered, for each ðli, ljÞ 2 D

2 the distributions
qij(y1), qij(y2|y1

1),y,qij(yn + 1|y1
n),y,qij(yN|y1

N�1) are recur-
sively computable in a classical way, each qij(yn + 1|y1

n)
being computable from the previous qij(yn|y1

n�1).
Such a model will be called a ‘‘Markov chain hidden

with general Gaussian noise’’ (GGN-HMC).

Remark 3.1. Let us notice that according to the model, for
each i=1,y,M the distribution qii is the distribution of Y

conditional on v1=v2=?=vN=li. For iaj, the distributions
qij have no immediate interpretation. However, the model
can be simplified by setting p(yn + 1|vn,vn + 1,y1

n)=p(yn+ 1|
vn + 1,y1

n) and then there are M Gaussian distributions
q1,y,qM on RN used, with p(yn +1|vn +1=lj,y1

n)=qj(yn + 1|y1
n).

Such a simplified model, in which q1,y,qM are easier to
interpret, will be considered in experiments below.

Finally, the posterior marginal distribution p(vn|y)
of interest can then be computed in four following
recursions [21]:
(i)
 M2 forward recursions: for each i,j=1,y,M, and
for each n=1,y,N�1, compute qij(yn + 1|y1

n) from
qij(yn|y1

n�1);

(ii)
 compute bn(vn) for each n=N,y,1 by the following

backward recursion: bN(li)=1 for each li,
bnðliÞ ¼

P
lj

pðvnþ1 ¼ ljjvn ¼ liÞq
ijðynþ1jy

n
1Þbnþ1ðljÞ;

pðv , y Þb ðv Þ
(iii)
 set pðv1jyÞ ¼
1 1 1 1P

v1
pðv1 , y1Þb1ðv1Þ

,

pðvnþ1jvn, yÞ ¼
pðvnþ1jvnÞpðynþ1jvn, vnþ1, yn

1Þbnþ1ðvnþ1Þ

bnðvnÞ
;

and compute p(vn|y) for each n=1,y,N by the class-
(iv)

ical forward recursion: p(v1|y) given; pðvnþ1jy

N
1 Þ ¼P

vn
pðvnjyN

1 Þpðvnþ1jvn, yN
1 Þ.

Let us notice that p(vn,vn+1|y1
N), which will be needed in

the parameter estimation in Section 5, is then given by

(v)
 pðvn, vnþ1jy

N
1 Þ ¼ pðvnjyN

1 Þpðvnþ1jvn, yN
1 Þ.
Finally, to summarize one can say that in GGN-HMCs
the posterior marginal distributions p(vn|y1

N) are compu-
table with complexity linear in MN.

3.2. Semi-Markov chains hidden with general Gaussian

noise (GGN-HSMCs)

Let us assume now that V=(X,U) is either a CSMC or
NSMC, as introduced in Section 2. As V is a Markov chain it
is possible to apply the considerations of the previous
sub-section resulting in two ‘‘Semi-Markov chains hidden
with general Gaussian noise’’ (GGN-HSMCs), which will
be denoted by GGN-CHSMCs and GGN-NHSMCs, respec-
tively. In each of them there are two possibilities. The
classical one would consist of considering that the
distribution of the noise conditional on V=(X,U) only
depends on X. The more general model consists of
following the Remark 2.3 and considering that this
distribution depends on both X and U.

Finally, in all these models p(vn|y) are computable with
reasonable complexity. However, the noise distributions
p(y|v) involve a great deal of parameters which could
possibly be difficult to determine. For example, taking a
GGN-NHSMC in which the noise distribution depends on
both X and U, there are (KL)� (KL) Gaussian distributions
on RN. If these parameters are known, as well as those
defining the distribution of the NSMC V=(X,U), it is
possible to perform a Bayesian estimation of V=(X,U) from
Y. If not, the parameters have to be estimated. It is possible
to propose an estimation method once a particular
simplified form for the Gaussian distribution had been
considered, which is made in the next section.

4. Semi-Markov chains hidden with long dependence
Gaussian noise

4.1. General model

Let us consider the following particular Gaussian
distributions qij. First, they are stationary: for each k=
1, y,N�1 and n=1, y, N�k, the marginal densities
qij(yn,yn + k) only depend on k. Second, the Gaussian
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distributions qij(yn+ 1|y1
n) only depend on j, which means

that p(yn + 1|vn=li,vn + 1=lj,y1
n) are equal to p(yn + 1|vn + 1=

lj,y1
n)=qj(yn+ 1|y1

n). This second hypothesis is not essential
and what is said below remains valid without it; however,
it will be assumed to simplify the model and make it more
intuitive. In fact, as specified in Remark 3.1, each qj is then
the distribution of Y=(Yn)1rnrN conditional to
xN

1 ¼ ðoj, . . . ,oj|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N times

Þ.
In other words, each qj can be seen as a correlated ‘‘noise’’
related to each class oj. Taking all qj stationary, one can
imagine that the covariance gj(k) of qj(yn,yn +k) decreases
with k. One will say that qj is a ‘‘long dependence’’

distribution if there exist cj40 and aj 2�0, 1� such that

gjðkÞka
j
�!

k-þ1
cj [33]. The ‘‘long dependence’’ means that

the sequence gj(k) tends to 0 ‘‘slowly’’ enough to implyPþ1
k ¼ 0 gjðkÞ ¼ þ1. The long dependence is opposed to the

‘‘short dependence’’ in which
Pþ1

k ¼ 0 gjðkÞoþ1; in parti-

cular, Markov processes are of the ‘‘short dependence’’ kind.
Finally, a stationary GGN-HSMC (V,Y) defined by a

semi-Markov chain V=(X,U) and the Gaussian distribu-
tions q1, y, qK will be called a ‘‘long dependence Gaussian
noise’’ HSMC, and will be denoted by LDGN-HSMC, if at
least one Gaussian distribution qj is a long dependence
one. According to the nature of the HSMC V=(X,U), which
can be of a ‘‘new’’ or ‘‘classical’’ kind, there are two kinds
of LDGN-HSMC: the ‘‘classical’’ LDGN-CHSMC and the
‘‘new’’ LDGN-NHSMC.

4.2. Parameterized model

Let us consider the parameterized covariances
gj(k)=cj(k+1)�a

j

, with cj40 and aj 2�0, 1�, which will be
used in experiments below. There are two corresponding
LDGN-NHSMCs (V,Y). In the simplest one the distribution
of Y conditional on V=(X,U) only depends on X and thus
the model parameters are the following. The distribution
of the Markov chain V=(X,U), which takes its values from
O�L with O={o1,y,oK} and L={0,y,L�1}, is defined
by (2.1) and (2.2). In the stationary case considered one
needs p(x1), p(x2|x1), and p(u1|x1), which involves
K�1+K(K�1)+K(L�1)=K(K+L�1)�1 parameters. The
distribution of Y conditional on X is defined by 3K

parameters (m1,c1,a1), y, (mK, cK, aK), each (mj, cj, aj)
defining qj. In the extended case the distribution of Y

conditional on V=(X,U) is defined by 3KL (instead of 3K)
parameters (mj, cj, aj), the distribution of V=(X,U)
remaining the same.

Remark 4.1. Concerning the corresponding LDGN-
CHSMC case, let us consider the simple case in which
the distribution of Y conditional on V=(X,U) only depends
on X. As such model is a direct extension of the classical
hidden semi-Markov chain, it is of interest to specify what
has to be modified in the latter to obtain the former. As
the distribution of the semi-Markov chain V=(X,U) is
strictly the same in both models, the difference lies in
p(y|x). In the first case it is of the form pðyjxÞ ¼QN

n ¼ 1 pðynjxnÞ, while it is of the form pðyjxÞ ¼
pðy1jx1Þ
QN

n ¼ 2 pðynjxn, yn�1
1 Þ. Thus, everything is the same

except the fact that p(yn|xn) has to be replaced by
p(yn|xn,y1

n�1). The former distribution is very simple while
the latter one has to be computed from the Gaussian
distributions qj. In particular, this is the only change
needed in the computer programs relating to the classical
hidden semi-Markov chains.

However, let us underline the fact that in spite of the
simplicity of p(yn|xn,y1

n�1), which are the same in both
LDGN-CHSMC and LDGN-NHSMC cases, the distribution
p(y|x) is somewhat complicated. In particular, for each
n=1, y, N, the Gaussian distribution p(yn|x1

n) does depend
on all x1, y, xn [21].

4.3. Bounded length of memory

When N is large the recursive computation of M2 (with
M=K if the distribution of Y conditional on V=(X,U) only
depends on X, and M=KL if not) sequences of the
conditional distributions qj(y2|y1

1), qj(y3|y1
2),y,

qj(yN|y1
N�1) can pose computational problems. In fact,

the problem comes from the large memory needed to
store the matrices defining these distributions. To remedy
this, one possible way is to limit the dependence size to a
given fixed S and to consider qj(yn|yn�S

n�1) instead of
qj(yn|y1

n�1). Further simplification, which will be used in
experiments below, consists of only considering in
qj(yn|yn�s

n�1) the observations yn�1, yn�2,y, yn�k such that
xn=xn�1=?=xn�k, and xnaxn�k�1. This can be modeled
by an auxiliary chain W taking its values from S={0,y,S}
and, at each n=1,y, N, the variable Wn designates the
number krS of previous indices n�1,y,
n–k such that xn=xn�1=?=xn�k, and xnaxn�k�1. There-
fore one can say, for WnoS, that Wn is the exact past
sojourn time in xn. The triplet V=(X, W, U) is thus a Markov
chain, and (V,Y) is a partially Markov chain whose
distribution is given by p(v1,y1)=p(x1)p(y1|x1)d0(w1)
p(u1|x1) and the transitions p(vn + 1,yn + 1|v1

n,y1
n)=p(vn + 1|vn)

p(yn + 1|vn + 1,y1
n). The transitions p(vn +1|vn) are given by

p(vn +1|vn)=p(xn+ 1|vn)p(wn + 1|xn+ 1,vn)p(un + 1|wn+ 1,xn +1,vn).
In the last equality one has p(xn+ 1|vn)=p(xn + 1|xn,un),
p(wn + 1|xn +1,vn)=p(wn +1|xn + 1,xn,wn), and p(un +1|wn +1,xn + 1,
vn)=p(un +1|xn + 1,un). Besides, p(yn +1|vn +1,y1

n)=p(yn +1|xn + 1,
yn

n�wn + 1 +1). Finally, one has

pðvnþ1, ynþ1jv
n
1,yn

1Þ ¼ pðxnþ1jxn, unÞpðwnþ1jxnþ1, xn, wnÞ

�pðunþ1jxnþ1, unÞpðynþ1jxnþ1, yn
n�wnþ 1þ1Þ

ð4:1Þ

with the convention p(yn + 1|xn+ 1, yn+1
n )=p(yn + 1|xn +1).

As in (2.1) and (2.2), the four transitions in (4.1) can be
written using the Kronecker functions. For example, if
un40, the probability for xn + 1=xn is one, which is written
‘‘p(xn +1|xn,un)=dxn

(xn +1) for un40’’. One has

pðxnþ1jxn, unÞ ¼
dxn ðxnþ1Þ for un40

pðxnþ1jxnÞ for un ¼ 0

(
ð4:2Þ

pðwnþ1jxnþ1, xn, wnÞ ¼
dwnþ1ðwnþ1Þ for wnoS and xn ¼ xnþ1

d0ðwnþ1Þ for xnaxnþ1 or wn ¼ S

(

ð4:3Þ
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pðunþ1jxnþ1, unÞ ¼
dun�1ðunþ1Þ for un40

pðunþ1jxnþ1Þ for un ¼ 0

(
ð4:4Þ

pðynþ1jxnþ1 ¼oj, yn
n�wnþ 1þ1Þ ¼ qjðynþ1jy

n
n�wnþ 1þ1Þ ð4:5Þ

However, let us underline the fact that no approxima-
tion is needed for Nr1000.

5. Parameter estimation with ICE

5.1. General ICE principle

The ‘‘Iterative Conditional Estimation’’ (ICE) method is
based on the following principle [8,14,21]. Let
y=(y1,y,ym) be the vector of all real parameters defining
the distribution p(v,y) of a couple of variables (V,Y), where
Y is observed and V is hidden. Let ŷðv,yÞ be an estimator of
y defined from the complete data (v,y). ICE is an iterative
method producing a sequence (yq) in the following way:
(i)
 initialize y0;

(ii)
 compute yi

q+ 1=E[ŷiðV ,YÞ|Y=y,yq) for the components
yi for which this computation is workable;
(iii)
 for other components yi, simulate v1
q,y, vl

q according
to p(v|y,yq) and set y qþ1

i ¼ ½ŷi ðv
q
1, yÞþ � � � þ ŷi ðv

q
l , yÞ�=l.
One notices that ICE is applicable under two very slight
hypotheses: existence of an estimator ŷðv,yÞ from the
complete data, and the ability to simulate V according to
p(v|y). The first hypothesis is not really a constraint
because if one is not able to estimate y from complete
data (v,y), there is no point in searching for an estimator
from incomplete ones y. The second hypothesis is verified
once the distribution p(v|y) is a Markov chain distribution,
which will be verified in this paper.

Remark 5.1. Let us underline the difference between ICE
and the classical ‘‘Expectation-Maximization’’ (EM) meth-
od. The intuitive reason behind the ICE principle is the
following. To simplify, let us suppose that y 2 R, and let
ðX,YÞ be a couple of random variables whose distribution
depends on y, and in which Y is observable and X is
hidden. In general, one can estimate y from complete data
ðX,YÞ with an estimator ŷðX,YÞ, whose efficiency is often
measured by the mean square error Ey[(y� ŷðX,YÞ)2]. As X

is not available, the idea is to approximate ŷðX,YÞ by some
function of Y, and the best approximation, in the sense of
mean square error, is the conditional expectation
ðYÞ ¼ Ey½ŷðX, YÞjY�. Thus, on the one hand, ŷðX,YÞ is close
to y in the mean square error sense and, on the other
hand, ~yðYÞ is close to ŷðX,YÞ according to the same
criterion. In other words, the possibly interesting ‘‘mean
square error’’ properties of ŷðX,YÞ are saved as far as
possible by using ~y. Of course, ~y is no longer an
estimator because it does depend on y, which leads
to the ICE principle. The EM principle is yqþ1

¼

argmaxyE½log½pyðX, YÞ�jY ¼ y, yq
Þ, and it has been success-

fully applied in different classical hidden semi-Markov
models. Thus, ICE and EM follow different principles;
however, they can produce the same sequence of para-
meters in some particular situations [7].
5.2. ICE in LDGN-NHSMC

Let us consider the general parameterized LDGN-
NHSMC (X,U,Y) introduced in Section 4.2. To simplify,
one considers the classical case where p(y|x,u)=p(y|x), but
the general case can be dealt with in exactly similar way.
Thus, for K classes there are K LDGNs, each of which is
defined by the mean Mj ¼ ðmj, . . . ,mjÞ 2 RN and the
variance-covariance matrix Gj=[gnr

j ]1rn,rrN, with gnr
j =

gj(n�r)=cj(|n�r|+1)�aj

. The parameters defining the
distribution of the stationary Markov chain V=(X,U) are
those defining the distribution p(v1,v2)=p(x1,u1,x2,u2). As
the LDGN-NHSMC (V,Y) is a particular Markov chain
hidden with LDGN, the ICE proposed in [21] is applicable
in quite a straightforward way. Let us briefly remember
how it works:
(i)
 initialization y0;

(ii)
 for yq, the next value pq + 1(v1,v2) of the distribution

p(v1,v2) is given by the conditional expectation, which
is computable, by the very classical empirical esti-
mate. To re-estimate the parameters (m1, c1, a1),y,
(mK, cK, aK) (remember that there are K classes), one
samples vq=(xq, uq) according to p(v|y, yq) (just one
value of v will be used, which means that in (iii) l=1).
Then the data y are transformed into data y* in such a
way that for each n=1,y, N�1 and j=1,y, K the
distribution of p(yn* ,yn +1* |xn=oj,xn + 1=oj) is Gaussian
with the mean (mj, mj) and the variance–covariance
matrix

cj cj2�a
j

cj2�a
j

cj

" #

(the transformation used is based on the current
parameter yq). Then the Gaussian parameters of
p(yn* ,yn+ 1* |(xn,xn +1)=(oj,oj)) are estimated from (xq,y*)
by the classical estimators, which gives the next
parameters (mj)q + 1, (cj)q +1, (aj)q +1.
Such a method, which gave satisfying results in [21],
can easily be extended to the case where the noise
distribution p(y|v)=p(y|x,u) depends on both (x,u): the
NSMC (X,U) would be the same and there would be KL

triplets (mj, cj, aj) instead of K.

5.3. ICE in bounded memory model

Let us detail ICE in the bounded and stochastic
memory model proposed in Section 4.3, which will be
used in the experiments below. One adds the chain W to
the model discussed in the previous sub-section, which
does not modify the parameters. Thus one has to estimate
the distribution p(x1, u1, x2, u2) and (m1, c1, a1), y, (mK, cK,
aK). The difference with the previous model is that
searching for y� is not necessary. In fact, p(yn,yn +1|xn,xn +1)
is here Gaussian with the mean (mj,mj) and the variance–
covariance matrix

cj cj2�a
j

cj2�a
j

cj

" #
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4 pixels 16 pixels 64 pixels 

Fig. 1. Construction of a Hilbert–Peano scan used to represent realiza-

tions of mono-dimensional sequences as bi-dimensional images
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if xn=xn + 1=oj, and p(yn,yn +1|xn,xn + 1)=p(yn|xn)p(yn + 1|xn+ 1)
if xnaxn + 1.

The distribution p(x1, u1, x2, u2) is estimated from the
complete data T=(X, U, W, Y) with the classical empirical
estimator

p̂ðx1,u1,x2,u2Þ ¼
1

N�1

XN�1

n ¼ 1

Iðxn ¼ x1,un ¼ u1,xnþ1 ¼ x2,unþ1 ¼ u2Þ

ð5:1Þ

where the function I is defined by I(a=b)=1 if a=b, and 0
otherwise.

Taking the conditional expectation of (5.1) gives

pðqþ1Þðx1,u1,x2,u2Þ ¼
1

N�1

XN�1

n ¼ 1

pðxn ¼ x1,un ¼ u1,xnþ1

¼ x2,unþ1 ¼ u2jy,yqÞ ð5:2Þ

which is computable; in fact, p(xn,un,xn + 1,
un +1|y,yq)=p(vn,vn + 1|y,yq) are computable with (i)–(v),
Section 3.1.

The ‘‘noise parameters’’ (m1, c1, a1),y, (mK, cK, aK)
will be estimated from T=(X, U, W, Y) by the follo-
wing classical estimators. For j=1,y, K, let
Nj ¼

PN
n ¼ 1 Iðxn ¼ojÞ and Nj,j ¼

PN�1
n ¼ 1 Iðxn ¼oj, xnþ1 ¼

ojÞ. One sets m̂
j
¼ ð1=NjÞ

PN
n ¼ 1 ynIðxn ¼ojÞ,

ĉ
j
¼ ð1=NjÞ

PN
n ¼ 1 ðyn�m̂

j
Þ
2Iðxn ¼ojÞ and âj

¼�logðĝj
Þ=

logð2Þ, where ĝ j
¼ ð1=Nj,jÞ

PN�1
n ¼ 1ðyn�m̂

j
1Þðyn�m̂

j
2ÞIðxn ¼

oj,xnþ1 ¼ojÞ, with m̂
j
1 ¼ ð1=Nj,jÞ

PN�1
n ¼ 1 ynIðxn ¼ x,xnþ1 ¼ xÞ

and m̂
j
2 ¼ ð1=Nj,jÞ

PN�1
n ¼ 1 ynþ1 Iðxn ¼ x,xnþ1 ¼ xÞ.

Concerning the noise parameters, the conditional
expectation is computable for none of them, and one
has to use the sampled vq=(xq, uq). In experiments below
the initialization is obtained from the segmentation by
the classical k-means method.

6. Experiments

The new ‘‘hidden semi-Markov chains with long
dependence’’ noise (LDGN-NHSMC) model extends, on
the one hand, the classical ‘‘hidden semi-Markov chains’’
(HSMC) and, on the other hand, the ‘‘Markov chains
hidden with long dependence’’ noise (LDGN-HMC). The
aim of this section is to test the interest of these two
generalizations in an unsupervised data segmentation
framework. The four following models will be compared:
the very classical ‘‘hidden Markov chain’’ (HMC) given by
(1.1), the ‘‘Markov chain hidden with Gaussian long
dependence noise’’ LDGN-HMC, the ‘‘new hidden semi-
Markov chain’’ NHSMC, and the new LDGN-NHSMC
proposed. Numerous tests have been performed and some
of them, which are representative of different other
experiments, are presented below.

Four series of experiments are proposed:

In the first series, the data are produced by NHSMC,
and the question is to study whether using the new
more complex LDGN-NHSMC degrades the results or
not.
The second series is devoted to the converse problem:
when data are sampled according to LDGN-NHSMC,
how do NHSMC and LDGN-HMC work?
In the third series one uses data produced by none of
the four models.
In the three first series the noise is sampled and thus
its level is controlled.
Finally, in the fourth series one considers a real radar
image on which one applies HMC, LDGN-HMC, and
LDGN-NHSMC.

To illustrate the results one will use images of size
N=128�128. Such a bi-dimensional set of pixels is
transformed into a mono-dimensional set using a Hil-
bert–Peano scan [14], presented in Fig. 1, which gives a
mono-dimensional chain. Such a representation is quite
pleasant because it allows one to appreciate visually the
degree of the noise, and the quality difference between
two segmentation results as well. However, let us insist
on the fact that in the three following sub-sections this is
only a representation, and the problem dealt with is the
problem of mono-dimensional chains. Therefore, the
results presented are of interest in any area mentioned
in the Introduction. However, it can also be used in image
segmentation, which is dealt with in Section 6.4.

In all experiments presented in this section one
hundred iterations were used for ICE.

6.1. HSMC data segmented with LDGN-NHSMC

Let (X, U, Y) be an NHSMC, with K=2 and L=10. The
means of the Gaussian distributions p(yn|xn=o1) and
p(yn|xn=o2) are equal to 1 and 2, respectively, and their
common variance is equal to 20. In the following, one will
adopt the notations p(yn|xn=o1)�N(1,20) and p(yn|xn=
o2)�N(2,20). The distribution of p(un +1|xn + 1,un=0) is
uniform on L for each xn +1, and p(xn,xn + 1|un=0)=0.4995
for xn=xn + 1, and p(xn,xn+ 1|un=0)=0.0005 for xnaxn +1. The
obtained realization Y=y, presented in Fig. 2, is then
segmented by three methods. The first one is the MPM
method based on the true NHSMC model and the true
parameters; thus the result is used as the reference. The
second method is the MPM unsupervised method based
on the classical HSMC and ICE, while the third method is
the MPM unsupervised method based on the new LDGN-
NHSMC model, with S=50, and the related ICE. The aims
of this experiment are, on the one hand, to show the
robustness of the LDGN-NHSMC model and on the other
hand, to see how the new model manages the inde-
pendent noise.

According to the results presented in Fig. 2, the new
model gives comparable results to those obtained with
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xX = yY = NHSMC, 3.74%, 
true parameters 

Unsupervised
NHSMC, 4.55% 

Unsupervised LDGN-
HSMC, 4.57% 

Fig. 2. Segmentation of NHSMC data according to three methods.

Table 1
Estimation of the parameters of NHSMC and LDGN-HSMC from data produced by NHSMC. t: error rate of wrongly classified pixels.

Real parameters NHSMC LDGN-HSMC

o1 o2 o1 o2 o1 o2

m 1.00 2.00 1.01 2.04 0.98 1.97

s2 20.00 20.00 19.81 20.71 19.84 20.46

a – – – – 15.28 5.95

t (%) 3.74 4.55 4.57

xX = yY = HSMC,
%15.31=τ

LDGN-HMC, 
%53.21=τ

LDGN-HSMC, 
%16.3=τ

Fig. 3. Three unsupervised segmentations, based on HSMC, LDGN-HMC, and LDGN-HSMC, of data simulated according to HSMC-LDN. t: error rate of

wrongly classified pixels.

Table 2
Estimation of the noise parameters in the three models NHSMC,

LDGN-HMC, and LDGN-NHSMC.

Real parameters NHSMC LDGN-HMC LDGN-NHSMC

o1 o2 o1 o2 o1 o2 o1 o2

m 1.00 2.00 0.97 2.44 1.08 2.22 1.03 1.98

s2 1.00 1.00 0.59 0.56 0.83 0.78 0.96 0.93

a 0.50 0.50 – – 0.69 0.72 0.62 0.61
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NHSMC. This is probably due to the good behaviour of the
noise parameters estimation (see estimates in Table 1).
Otherwise, one can see that the level of the noise is really
high. In fact, when it is lower the three methods give
almost identical results and thus one had to increase it to
obtain some difference. This means, on the one hand, that
ICE works very well and, on the other hand, that using
LDGN-NHSMC instead of NHSMC hardly degrades the
results. In other words, when the data do follow NHSMC,
the more general LDGN-NHSMC can be used in an
unsupervised manner without any risk.

6.2. LDGN-NHSMC data segmented with NHSMC and

LDGN-HMC

Here one considers the converse problem. When data
follow the new LDGN-NHSMC model, can either NHSMC
or LDGN-HMC provide results comparable to those
obtained with the LDGN-NHSMC model? In other words,
when data have both ‘‘long dependence noise’’ and ‘‘semi-
Markovianity of the hidden chain’’ properties, can assum-
ing just one of them be sufficient in unsupervised
segmentation? Let us consider the same semi-Markov
chain (X, U) as above. For the long dependence noise, the
means are, respectively, equal to 1 and 2, the common
variance is equal to 1, and a1=a2=a=0.5.

According to the results presented in Fig. 3, neither
NHSMC nor LDGN-HMC can compete with LDGN-NHSMC
when data are produced by the latter. The difference in
error ratios is very large, which means that LDGN-NHSMC
is a really significant extension of both NHSMC and LDGN-
HMC Fig. 3. Besides, in spite of the high noise level one can
notice that ICE works quite well (Table 2).
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Table 3
Estimation of the noise parameters in HMC, LDGN-HMC, and LDGN-

NHSMC.

HMC LDGN-HMC LDGN-NHSMC

o1 o2 o1 o2 o1 o2

m 0.75 2.27 1.02 2.07 0.99 2.03

s2 0.52 0.52 0.60 0.65 0.61 0.66

a – – 1.38 1.31 1.43 1.25
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6.3. Hand written data corrupted with spatially correlated

noise

The aim of this series is to consider data provided by
none of the studied models. Let us consider a hand-
written image ‘‘target’’ X=x of size 128�128 presented in
Fig. 4. One will consider two correlated noises obtained by
the spatially ‘‘mobile mean’’: first, for each pixel s of the
image, one samples an independent Gaussian noise
Bs�N(0,1). Then one computes Cs ¼ a

P
t2Vs

Bt , where Vs is
a window of size 25�21 centered at s, and a is chosen
such that Var[Cs]=1.

Let us consider two examples. In the first one one sets
Ys=Cs+1 if Xs=o1, and Ys=Cs+2 if Xs=o2. Thus one obtains
a correlated Gaussian distribution p(y|x), with
p(ys|xs=o1)�N(1,1) and p(ys|xs=o2)�N(2,1). As above,
one considers L=10 for the sequence U and S=50 for the
sequence W.

Bearing in mind that the mono dimensional chain Y1,
y, Y128�128 is obtained from the bi-dimensional set of
pixels by the Hilbert–Peano scan presented in Fig. 1, one
can say that the structure of the correlations of the
Gaussian distribution p(y|x) seen as the distribution of a
mono-dimensional chain is very complex and undoubt-
edly quite different from any ‘‘long dependence’’ form
previously considered. Moreover, given the form of the
Hilbert–Peano scan the chain (X,Y) cannot be considered
to be stationary. Thus one sees that in this sub-section the
‘‘Hilbert–Peano’’ representation is used to simply produce
data which suit none of the considered models.

The results of different unsupervised segmentation
methods are presented in Fig. 4, while the estimates of the
noise parameters obtained with ICE are given in Table 3.
Concerning the initialization of ICE obtained with the
classical ‘‘C-means’’ classification algorithm, one finds
m1

0=0.75, m2
0=2.66, (s1

2)0=0.48, and (s1
2)0=0.47. Thus the

ICE estimation of the means is excellent in both models
LDGN-HMC, LDGN-NHSMC, while the estimation of the
variances is less efficient.

It appears that HMC cannot manage the noise correla-
tion and gives quite poor results. Introducing long
dependence noise in the hidden Markov chains improves
things and the error rate passes from 30.0% to 22.8%.
However, the really interesting result is that introducing
LDGN-NHSMC still significantly improves the results
obtained with LDGN-HMC, with the error rate passing
from 22.8% to 14.2%. This clearly shows that using both
aspects ‘‘long dependence noise’’ and ‘‘semi-Markovian-
ity’’ simultaneously can be of great interest. This also
xX = yY =        HMC,
%0.30=τ

Fig. 4. Unsupervised segmentations of a hand written image noisy with spatia

rate of wrongly classified pixels.
shows that these two aspects model different things and
that one cannot replace the other.

In the second example, one sets Ys=Cs if Xs=o1, and
Ys ¼

ffiffiffi
5
p

Cs if Xs=o2. Thus one obtains a correlated
Gaussian distribution of p(y|x), with all means null and
the variance of p(ys|xs=o1) equal to 1, while the variance
of p(ys|xs=o2) is equal to 5. As above, Y=y is segmented by
using the three methods HMC, LDGN-HMC and LDGN-
NHSMC. As above, one considers L=10 and S=50.

The results are presented in Fig. 5. As above, when the
noise is not strong enough the results of the three
methods considered are comparable, and thus one had
to consider a rather strong noise, as shown in Fig. 5. One
can formulate the same conclusions as in the first
example: the use of LDGN-NHSMC can greatly improve
the results obtained with LDGN-HMC and HMC.
Concerning the parameter estimation, one can notice
that ICE encounters some problems in correctly
estimating of the variances, while means are well
estimated and the estimation of a gives comparable
results in both LDGN-HMC and LDGN-NHSMC cases
(Table 4).

Concerning the computation time, the classical HMC
based method takes about 10 s, LDGN-HMC takes about
25 min, and LDGN-NHSMC takes about 45 min.
6.4. Real radar image segmentation

Finally, let us consider a real radar SAR airborne image.
This image, seen as a realization Y=y, is presented in
Fig. 6. The size here is 256�256 pixels. The set of pixels is
converted into mono-dimensional sequence using the
Hilbert–Peano scan and the observed sequence is then
segmented by three methods based on HMC, LDGN-HMC
and LDGN-NHSMC, respectively. The results obtained are
presented in Fig. 6, and the parameter’s estimates are
given in Table 5.
LDGN-HMC, 
%8.22=τ

LDGN-NHSMC, 
%2.14=τ

lly correlated noise using HMC, LDGN-HMC, and LDGN-NHSMC. t: error
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xX = yY = HMC,
%3.46=τ

LDGN-HMC,
%2.31=τ

LDGN-NHSMC,  
%1.21=τ

Fig. 5. Three unsupervised segmentations of a hand written image noisy with spatially correlated noise.

Table 4
Estimation of the parameters in the three models HMC, LDGN-HMC, and

LDGN-NHSMC.

HMC LDGN-HMC LDGN-NHSMC

o1 o2 o1 o2 o1 o2

m 1.29 �1.09 0.07 �0.03 �0.04 0.10

s2 1.02 1.30 1.38 4.03 1.74 3.56

a – – 0.15 0.13 0.12 0.14

Table 5
Estimation of the parameters in the three models HMC, LDGN-HMC, and

LDGN-NHSMC in the real SAR image presented in Fig. 6.

HMC LDGN-HMC LDGN-NHSMC

o1 o2 o3 o1 o2 o3 o1 o2 o3

m 9.51 20.12 4.25 12.78 20.63 4.77 17.65 20.57 6.25

s2 18.37 5.46 8.74 31.89 4.35 11.56 7.43 4.40 14.28

a – – – 0.13 2.01 5.86 0.99 1.69 1.84
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In LDGN-HMC case one has taken S=10, and one has
taken S=L=10 in the LDGN-NHSMC case. One assumes
the existence of three classes: o1 (green) is the river,
o2 (blue) is the vegetation, and o3 (brown) is what
remains in the image.

One can notice that the LDGN-NHSMC based segmen-
tation method clearly provides the best results. In
particular, it better finds the river and does not confuse
the river with the vegetation, as HMC and LDGN-HMC
based methods do.

Remark 6.1. The hidden Markov fields (HMF) are intui-
tively better suited to dealing with unsupervised image
segmentation and let us underline the fact that the new
LDGN-NHSMC model is not proposed to compete with
HMF in image segmentation problems. As LDGN-NHSMCs
extend LDGN-HMCs, NHSMCs, and HMCs, they are
automatically of interest in all contexts the latter three
models are, provided however the parameters are esti-
mated efficiently. The main purpose of the Sections 6.1
and 6.2 was to show that ICE works well, even under very
high noise. However, the results presented in the Section
6.3 and the present one present a double interest.

First, given the form of the Hilbert–Peano scan the
random chain relating to the mono-dimensional sequence
so obtained is very irregular and its distribution is
probably very far from the distributions of all models
studied. In addition, it is well known that SAR images are
difficult to segment. This shows the very good robustness
of the new LDGN-NHSMC model, at least with respect to
the classical HMC and LDGN-HMC ones.

Second, even in unsupervised image segmentation
context the use of HMC can be of interest with respect
to the use of HMF in some situations [14]. In particular,
using HMF is very time consuming and thus HMC can be
used to initialize the HMF-based processing. Thus LDGN-
NHSMC can be used instead of HMC in such situations,
probably with better efficiency.
7. Conclusions

This paper contains two novelties. First, a new family
of semi-Markov chains has been proposed. In the case in
which they are hidden with the classical independent
noise, using the models from this family is as easy as using
HMC, both in terms of computational cost and the
parameter estimation. Second, the classical hidden model
relating to this family has been extended to the long
dependence noise case. A parameter estimation method
has been defined and different experiment results have
been provided.

As a general conclusion one can say, according to
different experiments results, that the new semi-Markov
chain hidden with the long dependence noise model
proposed, turns out to be of interest, when unsupervised
segmentation is concerned, with respect to classical
simpler models. More precisely, it is possible to put forth
the following points:
(i)
 The main result is that there are situations in which
the data are very noisy, they suit none of the
considered models, and in which the new model
clearly gives the best results. In other words, both the
‘‘long dependence’’ of the noise and the ‘‘semi-
Markovianity’’ of the hidden chain are of importance
and can strongly contribute to the improvement of
results obtained with simpler classical models.
(ii)
 The parameter estimation method proposed, which is
of the ‘‘Iterative Conditional Estimation’’ (ICE) kind, is
well suited to the problem, even in very highly noisy
cases.
(iii)
 The proposed models and related unsupervised
processing is immediately applicable to different
areas mentioned in the Introduction. In particular,
the last example of the previous section shows that
its application in image segmentation is promising.
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yY = HMC

CMSHN-NGDLCMH-NGDL

Fig. 6. Three unsupervised segmentations of a real SAR airborne image of the ‘‘Rhone Valley’’, France. o1 (green) is the river, o2 (blue) is the vegetation,

and o3 (brown) is what remains. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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Among perspectives, let us mention the possible use of
copulas, to generalize the Gaussian noise used in this
paper to noises of any marginal distributions [3]. Another
perspective could be applying LDGN-NHSMC to 3D
images [2].
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