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Modeling and Unsupervised Classification of
Multivariate Hidden Markov Chains With Copulas

N. J.-B. Brunel, Jerome Lapuyade-Lahorgue, and Wojciech Pieczynski

Abstract—Parametric modeling and estimation of non-Gaussian
multidimensional probability density function is a difficult
problem whose solution is required by many applications in
signal and image processing. A lot of efforts have been devoted to
escape the usual Gaussian assumption by developing perturbed
Gaussian models such as Spherically Invariant Random Vectors
(SIRVs). In this work, we introduce an alternative solution based
on copulas that enables theoretically to represent any multivariate
distribution. Estimation procedures are proposed for some mix-
tures of copula-based densities and are compared in the hidden
Markov chain setting, in order to perform statistical unsupervised
classification of signals or images. Useful copulas and SIRV for
multivariate signal classification are particularly studied through
experiments

Index Terms—Copulas, EM algorithm, hidden Markov chains,
hidden Markov models, inference for margins, maximum likeli-
hood, multivariate modeling, spherically invariant random vector
(SIRV), statistical classification.

I. INTRODUCTION

O NE of the main problems in the statistical analysis of
multi-component images and multi-dimensional signals

is the choice of relevant statistical parametric laws. This dif-
ficulty is usually overcome by an assumption of Gaussianity,
which is often justified by the use of the central limit theorem,
the maximum entropy principle, or the interpretability of the pa-
rameters. As a last resort, the tractability of the formulae for es-
timation, filtering, classification, can be a self-justification for
the use of Gaussian laws. Nevertheless, in numerous applica-
tions, the non-Gaussianity cannot be neglected and other laws
have to be used. For example, different particular non-Gaussian
laws have been relevantly proposed in radar signal processing
[5], [13], [38]. Among others, the presence of heavy tailed dis-
tributions can present a serious limitation for applications of
Gaussian models, and the use of the family of laws called “stable
laws”, which include various heavy tailed distributions, is an
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interesting alternative [1]. Another problem that can also be en-
countered is the choice of a multivariate law that is compatible
with some previous knowledge. For instance, such a previous
constraint can be due to physical knowledge of the phenomena
involved, implying some knowledge of the statistical behavior
of each component of the multivariate distribution considered.

In particular, this modeling problem occurs when wanting
consider unsupervised Bayesian classification procedures,
which is the subject of this paper. For the classification of
scalar data, it is usually assumed that the expected classes
differ from each other by a mean level and an inner degree of
dispersion. The Gaussian hypothesis is an illustration of this a
priori knowledge on the classes, and the use of Gaussian vectors
for multivariate data shows that the same implicit assumption
is made for multivariate signals. This idea is not limited to
the multivariate Gaussian law, and wider families such as the
“elliptical laws”, which will be specified below, are indexed by
mean and covariance parameters. However, this can be restric-
tive, because the difference between the classes can depend on
the ways the different components are linked, independently of
their mean level and of their inner dispersion. Moreover, the
choice of multivariate models is far more restricted than for
univariate one, especially when one wants to respect some con-
straints on the law of each component. Therefore, for a given
class, the general problem is to model the corresponding multi-
variate distribution in such a way that the various components
are correlated, are not necessarily Gaussian, and the marginal
distributions of the different components can differ from each
another. A very stimulating answer to this general problem is
provided by the theory of copulas [31]. Indeed, copulas enable
us to widen the ability of multivariate modeling by separating
the problem of finding adequate forms of the marginal distribu-
tions, and finding adequate dependence structure of the vector.
Therefore, it is possible to cross different classical margins and
different dependence models in order to obtain a large variety
of original multivariate models. Moreover, it also underlines
the influence of dependence between the components for the
characterization of the classes.

The aim of this paper is to propose some original models
simultaneously using multivariate hidden Markov chains and
copulas, with original parameter estimation methods. The new
models and related new parameter estimation methods enable us
to propose unsupervised image and signal classification, whose
interest is validated by some experiments.

The paper is organized as follows. In Section II, we recall the
definition and some properties of Spherically Invariant Random
Vector (SIRV) models and give two major examples encoun-
tered in signal and image processing, with related parameter
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estimation methods. The main properties of copulas are also
recalled in the Section II. Section III is devoted to Bayesian
unsupervised classification with hidden Markov chains, and
we present original unsupervised learning methods for these
models. Different experiments showing the interest of the new
modeling and of the associated processing are presented in
Section IV. Finally, conclusions are drawn in the final Section.

II. MULTIVARIATE MODELING AND ESTIMATION

IN SINGLE CLASS CASE

There are two sub-sections in the present section. In the first
one, we recall two classical multivariate parametric models and
describe some associated estimation procedures in the case of
independent observations. Some novelties concerning param-
eter estimation are also proposed for the law. In the second
one we introduce copulas and we recall some of their classical
properties. Therefore there are neither Markov models nor nu-
merous classes in this section, which will be studied in the third
one.

A. Spherically Invariant Random Vector

Definitions and Examples: Let be
a Gaussian random vector taking its values in , ,
with mean and covariance matrix

. This Gaussian law, which will be denoted
by , is widely used in different statistical models and
processing; in particular, in statistical signal and image pro-
cessing. However, the stochastic behavior of some phenomena
can deviate from the normal law, and, for instance, such is the
case in remote sensing data. Spherically Invariant Random Vec-
tors (SIRV) model is a possible generalization of the Gaussian
one. Its law can be seen as a modification of the normal law

due to a random fluctuation, modeled by a strictly
non-negative real random variable , of the covariance matrix.
More precisely, a vector is called a SIRV if there exists a
strictly non-negative real random variable and
such that . Let us notice that in radar
signal processing, and are sometimes called “texture” and
“speckle”, respectively.

Let us recall some basic properties of SIRVs [35], [38].
We will assume that the distribution of admits a den-
sity with respect to the Lesbegue measure. Setting

, where is
the transpose of the vector , one can see classically that
the density of the distribution of the couple is

.
Thus the marginal density, which is the density of the distribu-
tion of a SIRV, has the following integral expression:

(1)

Therefore we see, according to (1), that the general expres-
sion of the density is of the form

, with being the integrable non-negative func-
tion defined from the density and the integer by

. Thus the model distri-

bution is indexed by a triplet . It is sometimes said
that SIRVs belong to the family of “elliptical models” or “el-
liptically contoured densities models” since the densities have
elliptical iso-contours, which means that they are constant for
such that is constant.

The parameter is a location parameter and the matrix is
a scatter parameter; however, it is important to notice that they
are, in general, neither a mean vector nor a covariance matrix.
Let us notice that the classical SIRVs consist of the sub-family
with mean equals to 0. The location parameter is introduced
for greater generality since it does not change the main features
of centered SIRVs. Otherwise, SIRVs present the two following
important properties:

(i) all the components have the same marginal
distribution;

(ii) the functional expression of the joint law of a SIRV is
determined by its marginal laws [35].

The consequence of the second claim is that under the spher-
ical invariance assumption, the marginal behaviors of channels
imply the way that they are interacting. This assumption can be
true for some kinds of data or signal—as coherent pulses for
radar signals—but in the case of more general data, it can turn
out to be questionable. We will see below how copulas make
possible to deal with such more general cases.

Remark 2.1: Let us notice that the same density
can be defined by different triplets ; for example,

and , where is defined from by
, give rise to the same density . In

order to obtain a one-to-one correspondence between and
the parameters, we must consider some constraint on the mean
of , or on the scale of . For instance, one possible condition
is .

A closed-form expression for the density can be de-
rived for particular laws of . In this paper, we consider two
such (well-known) cases: the law and the Student’s law.
These distributions are related to the distribution. We recall
that the distribution has a density equal to

where and is the
Euler’s function [2]. We have the following classical result: if
the distribution of is —which will be denoted by

—then the distribution of is the following
“Student law with degrees of freedom” (also called “ law”):

(2)

Let us note that if , is the mean of the law and
is its covariance matrix. The lower is, the thicker

the tails are and, for the extreme case , we obtain the
Cauchy law which does not even admit a mean, and which is
one of the few stable laws with a closed-form density.
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Fig. 1. 2-D and contour plots of the Normal, � and � density with zero mean

and � �
� ���

��� �
(a) Normal density (b) � density with � � �� (c) �

density with � � �.

Concerning the second case we deal with, it is possible to
show that if , then has the following “
distribution”:

(3)

where is the modified Bessel function of the second kind
[2].

The law behaves better than the law because it has mean
and covariance matrix for all . When , we have

a generalized Laplace law and tends to a Dirac distribution
at when goes to zero. Classical asymptotic approximations
of the function enable to show that the tails are equivalent to

for going to infinity, which implies heavier tails
than the Gaussian law [2]. Some plots of the densities in dimen-
sion 2 are given in Fig. 1.

In conclusion, the and laws are interesting SIRV models
because they have closed form densities and they can still be
interpreted in the same manner as the Gaussian law. However,
they are richer because of an additional tuning parameter for the
heaviness of the tails, which enables us to cope more easily with
outliers. For the two families, the Gaussian law is a limit case
when tend to infinity, but they differ significantly from each
other by their behavior around the mean when decreases: the

law becomes sharper while the law becomes flatter.
1) Parameter Estimation With EM Algorithm: The estima-

tion of SIRVs has been addressed in number of papers, espe-
cially for the law (see [28], [29], and references therein) and
the law (for radar detection [5], [6], [12], [18]). For the latter,
the method of moments is widely used, as recalled in [23]. The
same method can also furnish estimators for the KUBW family
obtained by applying the «compound generating principle» to
wider families of densities for texture [13].

We propose to estimate by the Maximum
Likelihood Estimator (MLE). The main problem is the effective
computation of the maximum of the log-likelihood. To solve it,
we use the classical Expectation-Maximization (EM) principle
to build a sequence of parameters converging to a sta-
tionary point of the log-likelihood. EM has been successfully
applied to the law [28] and more recently to the univariate
law [37], and we refer to these papers for the explicit computa-
tions of the E-steps, which are the only difficulty here.

By the way, we give the general algorithm for the computation
of the MLE by EM because it can be used in practice for every
SIRVs: the E-steps—which is the only challenge for SIRV—can
be computed either analytically (as in this paper) or by simula-
tion, e.g. Monte Carlo EM (based on empirical estimates of the
posterior moments), Stochastic-EM [11] or Bayesian estimators
with MCMC sampling methods [36].

Let be indepen-
dent realizations of whose density is

The sample is called “complete data” in contrast with
the observations , which are sometimes termed “incomplete
data”. The log-likelihood of the complete data is

. According to the EM principle, a sequence
is defined by starting from an initial value and by

computing . Given the

form of , we have

(4)

which is the general “ step” in SIRVs. Its achievement
requires the calculation of the three following conditional
expectations: , and

. The solution of the “ step” admits a
generic form that corresponds to the standard expression of
robust -estimators of location and scatter parameters [27],
i.e.,

(5)

with .
The posterior expectation necessitates the closed-form ex-

pression of the integrals (divided by ).
These expressions are directly derived from classical tables
of integrals transforms [2]. Indeed, for the -distribution

, and for the
-distribution, . It

finally gives the following weights:

(6)

The tail parameter is found by solving the maximization
problem , which is
done by solving . If the deriva-
tive of w.r.t to is dominated with respect to the
conditional distribution (which is the case of
the gamma and gamma inverse distribution), the Lebesgue’s
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dominated convergence theorem enables to permute inte-
gration and differentiation so that we have only to compute

when is distribution, and
when is inverse distri-

bution. The updating formula are

(7)
where . Indeed in both cases, the
logarithm of the normalizing constant of the density equals

that we have to differentiate also
w.r.t . The only difficulty is the computation of the right-hand
side expression of (7) for the K-distribution, which is done in
[37]. Finally, we have

(8)

B. Copulas

Let us consider a random vector taking its
values in . The distribution of defines the distributions of
the components and the converse is false in general.
However, there are some situations in which the Marginal dis-
tributions of do determine its distribution. The most known
case, which is out of interest in this paper, is the case of indepen-
dent components. More surprisingly, Rangaswamy and al. have
shown that the law of one marginal is sufficient to determine
the whole distribution of a SIRV [35]. In spite of the interest
of SIRVs described above, such a property appears as a rather
strong limitation. In fact, we have seen that SIRV are of interest
because they can be viewed as a generalization of Gaussian vec-
tors that allows heavier tails. Copulas, which we describe below,
will permit to build more general models that can have different
marginal laws. In fact, we will see that copulas allow one to dis-
sociate marginal distributions modeling from dependence mod-
eling, and therefore make possible building unusual and varied
multivariate densities.

1) Generality on Copulas: Let be real
random variables, the cumulative distribution
functions (cdf) of their laws, and the cdf of the law of

. If are continuous, which will
be assumed in this paper, then according to Sklar theorem there
exists an unique function , called “copula,”
such that [31]:

(9)

An important property is that for a random vector
the associated copula models the de-

pendence of its components in an intrinsic way, independently
of the marginal distributions of these components. More pre-
cisely, the random vector defined by

, with any
continuous strictly increasing functions from to , has
the same copula as . In particular, we can use the vector

to obtain a vector whose components are any desired
marginal distributions, and whose copula is the same that the
copula defined by . More precisely, let be the
desired cdf. Then the vector defined with

has the same
copula as , and has the desired as marginal
cdf. Otherwise, we can see that taking for the
identity from to , the copula defined by is the cdf
of the vector . Therefore, a copula can also
be seen as a cdf on the hypercube with uniform mar-
ginal distributions. Finally, we can summarize the properties of
copulas useful for this paper as follows:

(i) a copula is a cdf with uniform
marginal distributions;

(ii) each cdf on is given by a copula and cdfs
on with (9);

(iii) considering (9), one can either make the distributions
,. vary and keep the same , or make the

copula vary and keep the same . In the first
case, it is possible to obtain any desired marginal distri-
butions for a random vector with correlated components.
In the second case, it is possible to obtain a wide family
of different random vectors with correlated components
having the same marginal distributions.

To illustrate the flexibility offered by copulas, let us con-
sider the models of the previous section: Gaussian, Student, and

model. According to (9), we have three different copulas,
denoted respectively by , , and . According to (iii),
each of these copulas can be used with any other marginal dis-
tributions. For example, we can take with Gaussian mar-
gins—which gives the classical Gaussian distribution—, with
Student margins, or with margins. The same can be made for

and , which provides, assuming that for a given distribu-
tion all components are of a same nature, nine different models.
If we assume that for a given model the components can be of
different nature, we obtain 3 different models. Let us no-
tice that the last hypothesis is not purely an academic one and
it can occur in real situations, especially when the multivariate
data are provided by sensors of different nature.

Copulas are generally introduced by (9), but in practice
it is more useful to deal with the densities. When the dif-
ferent cdfs considered above are differentiable, we can use the
densities
with respect to the Lebesgue measure on and ,
and (9) can be rewritten by introducing

:

(10)

Conditional densities are then written

(11)
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Fig. 2. Bivariate densities with various copulas and various marginal distribu-
tions. (a) Gamma and Normal margins (b)� margins with different tail param-
eters (c) Student margins with same tail parameters (d) Student margins with
different tail parameters.

where is the density of the sub-copula obtained from
by ( is also the

copula of the vector ).
2) Gaussian and Student Copulas: Numerous families of

parametric copulas enable one to explore different kinds of
stochastic dependence; one can find in [31] a very complete
overview. In this paper, we deal only with the Gaussian and
Student copulas whose densities are easy to compute and enable
us to recover known models. Nevertheless, we can define den-
sities with very different shapes, with particular symmetry or
completely asymmetric. Some bivariate densities exemplifying
the versatility of copulas are presented in Fig. 2.

We invert (10) to compute the density of Gaussian copula,
which gives

(12)

where is a correlation matrix, ,
and is the cdf of a centered and standardized Gaussian dis-
tribution on . Similarly, we obtain the density of the Student
copula

(13)

Here , where is the cdf of a
centered and standardized univariate Student law, with de-
grees of freedom.

Let us note that the matrix involved in these copulas is no
more the correlation matrix of but it is the correlation matrix
of the transformed random vector .

3) Parameter Estimation: Let
be a random vector in with cdf and marginal
cdfs depending on parameters

, and let be the corre-
sponding densities. Let be the copula of indexed by a
parameter , and its density. The problem we address is the
estimation of and from an independent
sample , with . If one
wants to use the MLE, the log-likelihood to be maximized is

(14)

The search of the global maximum of is difficult in gen-
eral, since we do not have closed form solutions. We propose to
use instead the Inference Functions for Margins method (IFM,
described by Joe in [21]) whose idea is to perform two (easy)
maximizations instead of a single difficult one. One first maxi-
mizes the first term of the right-hand side in (14), which gives

: each is then the MLE of based on the
data . Then we search that maximizes ,
which defines an estimator . Under the classical regularity con-
ditions for the consistency of the MLE, this procedure furnishes
consistent estimators of the parameters ; hence, it suffices
to know how to estimate copulas with i.i.d samples in the hy-
percube to estimate a copula-based densities.

In order to obtain the MLE, we differentiate the function
which give the normal equations to solve, and we give in this
paper the corresponding solutions for the copulas and .

In the case of the Gaussian copula, the normal equation de-
rived from (12) gives a closed form estimator for the matrix :

(15)

with . So the ML estimator is
the covariance matrix of the “Gaussianized” sample

Considering the Student copula , let us first as-
sume that the tail parameter of is known. The
likelihood (13) in of the Student copula boils down
to the likelihood of the random vector

computed with the
Student density (2) and parameters . In that case, we
have only to estimate the scatter parameter which has only
1s on the diagonal (because it is a correlation matrix). Hence,
the MLE of the copula is simply the MLE of the distribution
defined by

(16)
This MLE is a consistent estimator for elliptic distributions

under broad conditions, as it has been shown by Maronna [27]
(since the transformed vector is elliptic, it fur-
nishes also a consistent estimator for the copula). The MLE (16)
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can be computed by remarking that the first order condition im-
plies that satisfies the following implicit equation:

(17)

is then a fixed point of
, which can

be approximated by computing the sequence of iterates
. For all and , Kent and

Tyler [24] have shown that in (17) exists and is unique and
that the iterative search reaches the minimum. An initial value
providing fast convergence is then the Gaussian estimator

. Nevertheless, the obtained matrix
is not necessarily a correlation matrix, and we suggest to
normalize the matrices by the following transformation

. This slight modification of the fixed
point algorithm does not modify the convergence, and it still
provides a correct estimate, as we have empirically observed.

When the parameter is unknown, the iterative computation
cannot be used and we must perform a multidimensional search
of the solution . We avoid the global optimization by split-
ting again the computation of the different estimators. We sug-
gest using a moment estimator of and then doing a numerical
optimization for . Indeed, there is a relationship between the
Kendall’s Tau [13] (which is a rank statistic) and the matrix ,
i.e., for where stands for
the Kendall’s Tau between and .

III. UNSUPERVISED CLASSIFICATION USING MULTIVARIATE

HIDDEN MARKOV CHAINS

The multivariate modeling (SIRV and copulas) considered
in the previous section is introduced in order to propose suit-
able multivariate statistical models for Bayesian classification
of multidimensional data. More precisely, we focus on classical
hidden Markov chains (HMC) which enable to deal with depen-
dent data encountered in signal and image processing problems,
but the main point is the modeling of the conditional distribu-
tions of the observations and the ability to estimate mixtures of
multivariate densities for unsupervised classification. Hence, we
show how the different parameter estimation methods described
above can be extended to HMC.

A. Classification With Multivariate Hidden Markov Chains

For notational convenience and to make the paper self-con-
tained, let us first briefly recall main principles of Bayesian clas-
sification with multivariate hidden Markov chains (MHMC, also
see [9], [34]). Let be a Markov chain, each

taking its values in a finite set of classes ,
and let be a random multivariate process,
each taking its values in . The pair

is a called multivariate HMC (MHMC) if its joint dis-
tribution is

(18)

The classification problem is thus the estimation of the un-
observed process from the observations . The
MHMC model is often used because we can easily compute the
Bayesian estimators Maximum A Posteriori (MAP) and Max-
imum Posterior Mode (MPM). In this paper we will focus on
MPM, denoted by . The
MPM, which is optimal in that it minimizes the mean ratio of
wrongly classified points, is defined by

(19)

The computation of the posterior marginal distributions is
feasible thanks to the “forward-backward” method, which is
a fast and exact algorithm allowing one to calculate, among
others, the marginal posterior distributions used in (19).

B. Parameter Estimation and Unsupervised Classification

In practical cases, we need to use a parametric modeling of
the distributions involved in (18) and to estimate the parameters
by using only the observations . We assume then that
the multivariate HMC considered is stationary, so that neither

nor depend on . Moreover,
we assume that belongs to a parametric family of
densities indexed by a parameter . We have to
estimate the global parameter formed by the joint probability
matrix , noted , and . As
in the independent case considered in the previous section, we
propose to use the general EM method. When the laws are as-
sumed to be Gaussian or to belong to the exponential family,
the EM principle gives simple algorithms for the approxima-
tion of the MLE of a finite mixture of densities. Despite some
well-known drawbacks like sensibility to initial conditions and
low speed of convergence, the obtained EM sequences of pa-
rameters present, in general, satisfying qualities. For estimation
of a mixture of multivariate laws considered in this paper, the
EM principle usually stumbles across the maximization step so
that we propose some adaptations of the classical EM for finite
mixture SIRV and copula-based models. Let us notice that the
methods below can be seen as extensions of the methods dis-
cussed in the previous section to the multivariate HMC.

1) SIRV Models With and Laws: We present in this sub-
section the EM formulas in the case of MHMC defined by (18),
where are either or distributions. In both cases, it
is useful to introduce the “texture” random chain involved in the
definition of SIRV such that is the
marginal distribution of . Thus let us consider the
complete process , with the law given

by . We can

notice that we have a “double” hidden chain , which is
such that the r. v. are independent conditionally on

. Otherwise, the distribution of conditional on
is the very classical independent Gaussian distribution.

Finally, the problem is to estimate from the parameters
, and , where

After having chosen an initial value ,
we derive from the EM principle an iterative algorithm, where

is obtained from ,
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and the posterior probabilities
and in

the following manner:

(20)
The updating formulas for the location and dispersion param-

eters are similar to those of (5), which are adapted to the mix-
ture context with and the pos-
terior probabilities . In the same fashion, the equation for
the tail parameters is the adaptation of (7) by using
the posterior expectations ,

and the posterior probabil-
ities

(21)
The difference between the mixture and the single class es-

timation procedures is that in the latter case, we did not need
the expression of the density in (1) unlike in the mixture case,
where we need it for the computation of the posterior probabil-
ities . This can be a serious limitation to the use of general
SIRV models in the classification setting; however, we can cal-
culate the needed density for the and law which are among
the most used models.

2) Copula-based Models: We will use the following
notations. For the classes, we have for each

a copula and marginal cdfs
, whose densities will be denoted

by . Thus the parameters to be esti-
mated are . Let us first consider
the complete data . According to (18) and (14), the
log-likelihood can be written as

(22)

The -step consists in replacing the function by the
posterior probability . Hence, as in Section II, we have to
come up against a difficult maximumization program on

, and we propose then the following
two step estimation at each -step:

1) Compute the maximization step for the mixtures of
marginals, so that we have [i.e., maximize the second
term of the right-hand formula of (22)];

2) Plug the estimators into

and maximize on .
The estimation of the transition parameter of the Markov

chain is the same as in the previous subsection. The parame-
ters are updated until the sequence stabilizes around a particular
value occurs.

The motivation of this algorithm is that we can estimate
independently the parameters of the univariate HMC

indexed with parameters and
then plug these values in the log-likelihood for com-
puting the dependence parameters of the multivariate HMC.
This is the application of the Inference Function for Margins
method to the vector . Indeed, we estimate
first the marginal distribution of (which is the mixture

, and plug the estimated parameters
in the complete log-likelihood. Hence, the algorithm links the

models in order to have the same estimation for the
parameter . In particular, the interest of this approach is that
it enables to use already known maximization procedures for
the marginal laws and also known estimators for the copulas,
as the ones given in Section II-B.

IV. EXPERIMENTS

The first subsection is devoted to the unsupervised classifica-
tion in five different test beds. The models used are SIRVs, and
the parameters are estimated with EM. In the second subsec-
tion, we compare the estimates of SIRV parameters when they
are computed by IFM in the context of the new copula based
multivariate HMC.

A. Estimation and Classification of HMC With EM

Let us consider three SIRV models, denoted by (for
Gaussian), (for Student) and (for law). Otherwise, let
us consider a finite Markov chain with
three classes ), a transition matrix ,
with and for . Finally, a HMC is
defined by three , distributions
on . The location (mean) parameters of these three distri-
butions are , ,

and the scatter matrices are , with ,

and . All these parameters being fixed, we
then study five kinds of models with various tail parameters:
a Gaussian model (noted ), a Student model with identical
tail parameters (noted ), an another
Student model with different tail parameters , ,

(noted ), a model with identical tail parameters
(noted ), and an another model with

different tail parameters , , (noted ).
The theoretical error rates of the five models are evaluated by
Monte-Carlo and presented in the first line of Table I. Despite
of different tail parameters, we can observe that the models
and , as well as the models and give nearly the same

Authorized licensed use limited to: Telecom and Management Sud Paris. Downloaded on February 8, 2010 at 02:53 from IEEE Xplore.  Restrictions apply. 



BRUNEL et al.: MODELING AND UNSUPERVISED CLASSIFICATION OF MULTIVARIATE HIDDEN MARKOV CHAINS 345

Fig. 3. Three examples of SIRV models (a) mixture �. (b) mixture � . (c)
mixture � .

error rate, so that the difference is then mainly due to the shape
of the densities, as illustrated in Fig. 3.

We simulate data with models , , , , and the error
rates are presented columnwise in Table I. We show also in Fig. 3
the densities , , . The parameters are estimated with EM
applied to , , and models, and the data are classified ac-
cording to the Bayesian MPM method. The unsupervised error
rates are presented in lines 3, 4, and 4 of Table I. The EM algo-
rithm uses 100 iterations, which was sufficient to obtain conver-
gence.

We can observe that for each model the worst case is that of
Student laws and that the easiest is that of laws. Moreover, we
obtain the best performance in unsupervised classification with
the true model (except for but the difference is small), but we
have a difference between the models with equal or unequal tail
parameters in the case of the law. While there is no difference
for and (except when we use the model ), we have a
noticeable difference for the distribution, and it appears that
different tail parameters (or different textures in radar language)
help for retrieving the different classes. We can also remark that
the distribution seems to be well-adapted for the classification
of and models since we have the best performance with the

model in nearly each configuration.
In order to evaluate the robustness of the estimation and clas-

sification procedures, we have performed the same comparison
of the 3 models on mixtures of Cauchy distributions (i.e., mix-
ture of Student with ). This is the most
difficult case since the supervised error rate equals 20%, never-
theless the and distributions behave analogously to the situ-
ations described in Table I. Indeed, we report unsupervised error
rates equal to 21,5% for the T-model and 22% for the K-model.
As one could expect, the Gaussian model gives very poor results
since two thirds of the experiments gave an error rate higher than
40% (and one quarter have an error rate higher than 50%).

B. Estimation and Classification of HMC With Copulas and
IFM

The aim of this subsection is to compare the EM and IFM
efficiencies in the case of and models. For , we interpret
a Gaussian distribution as a density obtained with a Gaussian
copula and Gaussian marginals, so that the copula-based model
is exactly the parametric model . In the case of the mixture ,
instead of considering the model T, we use a generalized Student
model obtained with a copula and Student marginals, so that
each marginal can have different tail parameter. However, we
use a simpler model by imposing the same tail parameter
for all the margins. Hence, each component of the mixture is

indexed by one additional parameter (by comparison with a
law), which is the tail parameter of the Student copula (see

(13)). We note this model and when for
all the components, we obtain the model, which is then nested
in ; but if the then the estimated model
is out of the SIRVs family, and we are in the same case as the
distributions drawn in Fig. 2. In this paper, we fix for
all the classes, so that the mixture belongs to .
We then compare the mean estimation of the parameters and
error rates when observations by Monte-Carlo (with
500 simulations), and by using 300 iterations for the EM and
the IFM algorithms. The results are presented in Tables II–V.

To initialize both EM and IFM algorithms we used a prelimi-
nary classification based on a HMC with distributions whose
parameters are estimated by EM. This EM algorithm is itself
initialized with a classification based on a K-means clustering.
When we consider data coming from heavy tailed distribution as
Cauchy, it is necessary to use the norm and not the Euclidean

norm at this stage, or else a bad initialization can make the
IFM diverge. In order to reduce the risk of spurious local minima
(whose number is increased with heavy-tailed distribution), we
use also a multi-start approach (10 different initial conditions),
by keeping the parameters with the higher likelihood with class
probabilities , , higher than 5% (see Ta-
bles VI–IX).

The conclusion of these experiments is that the efficiencies of
EM and IFM are similar. However, we remark that EM better
estimates , while IFM better estimates the tail parameters.
We remark also that since the parameters are different from
the parameter of the copula , the estimated model tends to
differ from the initial mixture of student distribution: we get then
generalized elliptic models. Otherwise, we obtain similar results
for unsupervised classification. In fact, we have an error rate of
14.2% for the model estimated by EM, and 14.4% when the
model is estimated by IFM. In the case of , these error rates
are 17.1% and 16.9%, respectively.

These experiments show that the copula-based multivariate
models, which are extensions of the classical SIRV models, can
be efficiently learnt with the proposed IFM method.

We complete this study with a robustness analysis by consid-
ering the extreme case of 3 Cauchy distributions, as in Section
IV–A. The conclusion is that EM algorithm is more robust than
IFM (the error rate for IFM is 22.5% versus 21.5% for EM) in
this particular extreme case. This comes from difficulties in the
estimation of the second class for which there is a bias in the po-
sition and the scatter parameters. The difference is essentially
due to the fact that IFM lies on a model that does not contain
the generating process. Indeed, we recall that the copula param-
eter is different from the parameters of the margins. This
discrepancy might be amplified when the fluctuations become
important, as it is the case with the Cauchy distribution. But
for classification and estimation purpose, the difference between
the margins and the dependency matrices are still clearly iden-
tified.

The proposed algorithm for computing the Inference For
Margins estimator is a slight modification of the EM algorithm,
and hence it possesses the same local property, i.e., it depends
on the choice of the initial value. It is difficult to discuss and
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TABLE I
ERROR RATES FOR SUPERVISED AND UNSUPERVISED CLASSIFICATION (%)

TABLE II
ESTIMATIONS OF � , � , � WITH EM AND IFM FOR �

AND � � �� CLASS; TRUE PAR: TRUE PARAMETERS

TABLE III
ESTIMATIONS OF THE VARIANCES (DIAGONAL OF � ) WITH EM AND

IFM FOR � AND � � C1: CLASS; TRUE PAR: TRUE PARAMETERS

TABLE IV
ESTIMATIONS OF � , � , � WITH EM AND IFM FOR �

AND � � C1: CLASS; TRUE PAR: TRUE PARAMETERS

TABLE V
ESTIMATIONS OF � , � , � WITH EM AND IFM FOR �

AND � �; TRUE PAR: TRUE PARAMETERS

TABLE VI
ESTIMATIONS OF � , � , � WITH EM AND IFM FOR �

evaluate the robustness of IFM with respect to the modeling
errors and the different realizations of the data, because it is
related to the finite sample statistical properties of IFM, which
are different from the MLE. It has been shown that IFM gives
better results than MLE on small samples [16] (obviously
MLE tends to be the best estimator as the sample size tends to
infinity). Nevertheless, we advocate that there is a lower sensi-
tivity (greater statistical robustness) with respect to modeling

TABLE VII
ESTIMATIONS OF THE VARIANCES (DIAGONAL OF � ) WITH EM AND IFM

FOR CAUCHY MIXTURE

TABLE VIII
ESTIMATIONS OF � , � , � WITH EM AND IFM FOR CAUCHY MIXTURE

TABLE IX
ESTIMATIONS OF � , � , � WITH EM AND IFM FOR CAUCHY

errors as the estimation of the parameters of each marginal does
not depend on the models (possibly wrong) used for the other
marginals or the joint distribution. Moreover, the robustness can
be increased for the estimation of the parameters of the copulas,
by using a semi-parametric version of the IFM, called the om-
nibus estimator which estimates the copula without the explicit
use of the parametric assumptions made on the marginals. In
the particular robustness analysis we dealt with, we can check
that the copula-based model with 3 additional parameters (the
tail parameters of the margins) can still be correctly estimated
by IFM (and parameters remain close to the asymptotically
optimal estimator) despite its increased complexity.

C. Real Data Processing

1) Radar Doppler Segmentation: Motivation and Modeling:
In this section we present an application of the non-Gaussian
modelling to the segmentation of radar Doppler data. An im-
portant aim in radar signal processing is the estimation of the
velocity field of the radar environment [10], [26]. Indeed, the
difference between frequencies of the transmitted signal and
the received signal is given by , where is the
speed of the reflector and the wave length of the transmitted
wave. The frequencies are usually called “Doppler frequen-
cies.” In practice, the signals received are structured on a dis-
tance-azimuth map; azimuth representing the angle formed by
the radar and the normal direction. For a given distance and az-
imuth, we observe a complex vector whose
the fast Fourier transform provides us with the distribution of the
signal power through the Doppler frequencies, called usually a
“Doppler spectrum”
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where is the coherent time and corresponds to the time
needed to get a suitable Doppler spectrum, in practise, this time
is about . represents the Doppler intensity
due to the Doppler frequency ; if the reflector has a speed
equal to , is proportional to a Dirac distribution cen-
tered at . However, a reflector such as a fluid can
have several speed components, that corresponds to different
peaks in the Doppler Spectrum.

It is to say, in a range-azimuth map, one can be interested
in finding and characterizing the spatial changes in the Doppler
spectra. A possible way to construct such a map is to perform
unsupervised segmentation of the radar returns based on the
Doppler (frequency) content of the range-azimuth cells [25].

Let us detail some of the statistical assumptions about the
radar signal. It is assumed that each vector
is centered and stationary, so that the Doppler infor-
mation is contained in the Toeplitz covariance matrix

of the sample
where and the spectrum can be estimated
by Fast Fourier Transform of this covariance matrix

Under the auto-regressive assumption, the Doppler spec-
trum can be parametrized by a finite number of reflexion
coefficients and the back-scattered in-

tensity , which are easily computed via the Durbin-Watson
algorithm, [20]. More precisely, we propose then to con-
struct automatically a map of the velocity field by applying
the unsupervised classification algorithm defined in Sec-
tion III-A to the reflexion coefficients instead of to the returns

.
Let be the distribution of the th cell

on ( being the set of complex numbers), to be
defined. We can not consider a classical SIRV model
because the reflexion coefficients are in the unit disc. Let

be
the observation from the distance-azimuth cell . In the
following, we will suppose that . In order to reduce
the complexity of , we will suppose that the

angles are independent of each
other conditionally on the states . Moreover, as the
arguments lie on and are likely not to be uniformly
distributed, we suppose that the angles have a Von Mises
Fisher distribution with direction parameters
and concentration parameters [3],

hence

, with

Fig. 4. (a): Range-azimuth map of returned intensities (8 azimuths and 1548
range cells); (b): classification of radar returns using independent modules; (c):
classification of radar returns using dependent modules with Gaussian copulas.

Moreover, we suppose that

and are independent

conditionally on the states so that

.

Finally, as (see [4] for details) and are
not necessarily uniformly distributed, we will suppose that

has beta distributions for margins,

i.e., , and we
will consider two dependence structures between the modules:

Model 1 (independence)

(23)

Model 2 (dependence with Gaussian copula)

(24)

where is the beta distribution with f.d.r. and
is the Gaussian copula.
2) Data and Classification of Radar Returns: We use data

kindly provided by THALES coming from measurement made
with a coastal X-band radar whose transmitted frequency is

Ghz. The radar resolution is 300 meters (size of a
cell), and we are provided with pulses. The data
environment is divided into 1548 distance cells and 8 azimuth
cells which gives us a total of 8 1548 cells. During the
measurement campaign, weather conditions were rainy and
so we attempted to recognize in the radar environment four
classes: a class corresponding to the dominancy of sea return, a
class to the dominancy of rain return, another to thermal noise
and the last probably being the blind area of the radar (close
to the radar). In the Fig. 4(a), we have represented as a color
graduation the return’s intensities , even if we don’t use
these data as observations in the hidden Markov model, they
let us visualize the nature of the radar signal in terms of inten-
sity. The hidden Markov model was detailed in the previous
paragraph with . In the Fig. 4(b), the segmentation using
independent copulas is represented and the segmentation using
Gaussian copulas is represented in the Fig. 4(c).
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From Fig. 4, we can see that the Gaussian copula gives more
homogeneous classes than the independent copula. So in guise
of conclusion from these results, it can be important to notice
that the radar return are widely likely to be spatially correlated.
It can be interesting, in the future, to compare different copulas
based models and select the most suitable dependence model in
the context of this experiment. Regarding the different classes,
in Fig. 4.(c), the light blue class seems to correspond to the blind
area of the radar, the yellow one to thermal noise (targets being
negligible compared to noise), the dark blue class to a domi-
nancy of sea returns and the brown class to rain speckle.

V. CONCLUSION

In this paper we have introduced a general model of multi-
variate density and we have applied it in the setting of classi-
fication, in particular with hidden Markov chains. We also in-
troduced a related parameter estimation method as well so that
unsupervised classification is allowed with this model.

The model is based on copulas and multivariate “hidden
Markov chains” (HMC), which enables one to consider corre-
lated sensors and noise margins of any form. In particular, the
model contains extensions of the classical “spherically invariant
random vectors” (SIRV) models, such as asymmetric and

laws, reusing the expression of Fang et al. in [15]. Hence,
the model introduced should be of particular interest for the
classification of radar signals, but the model is quite versatile,
thanks to the generality and flexibility of copulas. Otherwise,
the model proposed can also be seen as an extension of the
models introduced in [19], [22], where the sensors are assumed
to be independent.

The proposed parameter estimation method is an iterative al-
gorithm based on the “inference functions for margins” (IFM)
principle for the estimation of hidden Markov models. It does
not correspond to the classical maximization of the likelihood,
and it appears as a slight modification of the classical EM al-
gorithm [23], [28]. In particular, despite a common feature with
the general ECM algorithm proposed in [30] which consists in a
sequential estimation of the parameters, the IFM algorithm does
not perform a systematic increase of the log-likelihood. We per-
form instead a sequential search of the roots of the estimating
equations defining the IFM estimator. Nevertheless, in practice,
one can see a “nearly” monotone increase of the log-likelihood
after each step of the IFM algorithm, as the normal equations of
MLE remains quite close the IFM equations.

For the estimation of HMC with SIRV based on EM, we have
shown that our algorithm enables each sensor to be decoupled,
so that we could consider the case of different textures for dif-
ferent sensors. Nevertheless, the complexity of the algorithm is
not increased significantly, and it gives similar estimates. The in-
terest of the proposed algorithm also lies in the fact that it makes
it possible to derive estimation methods for recent multivariate
models proposed in [8], or for generalizations of HMCs such as
pairwise Markov chains [7], [14], [32], or triplet Markov chains
[33].

Possible extensions of this work concern the development
of various copulas, and of criteria for the choice of copulas in
image and signal processing, in order to fully exploit the gen-
erality of copula-based models. We considered HMC but other

hidden Markov models, like trees or fields, could be used in a
similar way: the first results obtained with hidden Markov trees
seem very promising [17].

Let us also mention that other general estimation methods
would have been well-suited in the hidden data setting, as “iter-
ative conditional estimation” (ICE [14], [19]).
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