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Abstract Features computed as statistics (e.g. histo-

grams) of local filter responses have been reported as the

most powerful descriptors for texture classification and

segmentation. The selection of the filter banks remains

however a crucial issue, as well as determining a relevant

combination of these descriptors. To cope with selection

and fusion issues, we propose a novel approach relying on

the definition of the texture-based similarity measure as a

weighted sum of the Kullback–Leibler measures between

empirical feature statistics. Within a supervised frame-

work, the weighting factors are estimated according to the

maximization of a margin-based criterion. This weighting

scheme can also be considered as a filter selection method:

texture filter response distributions are ranked according to

the associated weighting factors so that the problem of

selecting a subset of filters reduces to picking the first

features only. An application of this similarity measure to

texture recognition is reported. We also investigate its use

for texture segmentation within a Bayesian Markov Ran-

dom Field (MRF)-based framework. Experiments carried

out on Brodatz textures and sonar images show that the

proposed weighting method improves the classification and

the segmentation rates while relying on a parsimonious

texture representation.

Keywords Non-parametric feature statistics �
Feature fusion and selection � Texture recognition �
MRF-based texture segmentation

1 Introduction

Texture describes a visual information which is related to

local spatial variations of color, orientation and intensity in

an image. It is usually described by qualitative adjectives

such as smooth or rough, coarse or fine, homogeneous or

random, and so on. This information is fundamental in

image analysis and interpretation, and it helps in solving a

wide range of applied recognition, segmentation and syn-

thesis problems related to several areas of application

including biomedical image analysis, industrial inspection,

analysis of satellite, sonar or aerial imagery, content-based

retrieval from image databases, scene analysis for robot

navigation, texture synthesis for computer graphics and

animation etc. A basic goal of texture research in computer

vision is to develop automated computational methods for

retrieving textural properties in images and deriving effi-

cient quantitative texture descriptions.

Due to the complexity and the diversity of natural tex-

tures, there is a wide range of texture features used in the

literature. Texture features can however be classified into

four main groups:
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– Statistical approaches that describe a texture via image

signal statistics which describe the spatial distribution

of image;

– filtering methods that extract texture features from the

filter texture response domain;

– structural approaches that consider a texture as a

hierarchy of spatial arrangements of well-defined

texture primitives;

– probability models which describe the underlying

stochastic process that generates textures.

The main comparative studies related to texture features

reported that none of these feature classes outperforms the

others for all textures but have however noted the

effectiveness of the co-occurrence matrices, the wavelet

frames, the quadrature mirror filter-banks and the Gabor

filters [1–7]. Some of these studies [8, 9] stressed that the

fusion of different feature types and parameters may

improve texture characterization. In fact, for example,

Gabor filters, known as good models of the frequency and

orientation sensitivity of the human visual system, are

parametrized by an angle, corresponding to the expected

main orientation of edges and structural elements, and a

variance, associated with the scale at which the structural

elements of the texture are analyzed. Hence, the parameters

of the Gabor function must be varied to describe different

types of textures. Changes in the orientation angle lead to

different sensitivities in edge and texture orientations.

Similarly, co-occurrences [10] are computed as the

frequencies of the image values for pixel pairs at a given

distance in a given direction. The selection of co-

occurrence parameters permits to capture the characteris-

tics of different textures in terms of orientation,

smoothness, coarseness and regularity. Recent studies have

stressed the effectiveness of the marginals of a large set of

filters for characterizing and discriminating texture samples

compared to texture features computed as moments of such

statistical distribution (e.g. Gabor features, Haralick

parameters) [11–15]. For instance, Zhu et al. [16] proposed

a maximum entropy principle for learning probabilistic

texture models from a set of empirical distributions of filter

responses. Gimel’farb used the ‘‘difference co-occurrence’’

statistics to model texture [17] and later, Xiuwen et al. [11]

proposed a local spectral histogram, defined as the

marginal distributions of feature statistics for texture

classification. Motivated by these studies, we describe

texture by a wide set of statistics of texture filter responses

and a set of co-occurrence distributions.

Given the variety of the filter types and the associated

parameterizations, the selection and the combination of the

most relevant filters arise as major issues with a view to

improve the classification accuracy and to shorten the

learning time. Existing methods however, generally

employ filter banks consisting of a large set of filters

selected in an ad hoc manner with pre-determined param-

eters [18, 19], and only few studies cope with the filter

selection for texture synthesis and discrimination. In [16,

17] the selection is based on a synthesis criterion. It is

worth noting that this selection may not be appropriate for

texture classification. More broadly, the comparative study

on texture classification conducted by Randen et al. [2]

suggests that it should be preferred to extract texture fea-

tures based on a discrimination criterion rather than on a

characterization criterion.

In the subsequent section, we treat the filter selection

issue using a texture discrimination-based criterion. We

describe textures by a set of distributions of local filter

responses with respect to different predefined filter banks,

and we use the Kullback–Leibler divergence [20] to eval-

uate the similarity for each type of statistics. The texture

similarity measure is then computed as a weighted sum of

these Kullback–Leibler divergences. According to a

supervised strategy, the weights are estimated such that

they lead to the maximization of a margin-based criterion.

The proposed metric serves at texture segregation can

then be used in many fields of image processing like pat-

tern classification, object identification, texture synthesis

etc. In this study we report a texture- based classification

and segmentation of synthetic and natural images based on

the proposed similarity measure.

The paper is organized as follows. The proposed texture-

based similarity measure is introduced in Sect. 2. A mini-

mum distance classification and a Bayesian Markov

Random Field (MRF)-based segmentation method using

this similarity measure are detailed in Sect. 3, and some

experiments are reported in Sect. 4.

2 Texture-based similarity measure

We characterize each texture sample T by a set of F first-

order statistics of filter texture responses Qf ðTÞ
� �

f¼1:F
:

Note that F accounts both for given filter and associated

parameterizations. In the subsequent, filter type will refer

to a given filter category with some parameterization. The

computation of these first-order statistics is issued from a

Parzen non-parametric estimation [21]. We focus on

supervised texture characterization and discrimination such

that each texture type k is associated with a texture sample

Tk characterized by Qk ¼ Qk
f

n o

f¼1:F
:

Here, we propose to use the Kullback–Leibler diver-

gence to compare texture features. The Kullback–Leibler

divergence (KL) between two distributions, a and b, is

defined as in [20]:
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KLða; bÞ ¼
Z

aðxÞlog
aðxÞ
bðxÞ

� �
dx ð1Þ

For an unlabeled texture sample T, we compute the set of

similarity measures KLðQk
f ;Qf ðTÞÞ

n o

f¼1:F
for each tex-

ture type Tk. Our goal is to determine a relevant

combination of these measures to ensure a better discrimi-

nation from the resulting similarity measure.

Algorithms for feature selection can be categorized into

two classes according to their tie to the induction algo-

rithm: ‘‘Filter methods’’ and ‘‘Wrapper methods’’ [22].

‘‘Filter methods for feature selection’’ [22] are independent

on any induction algorithm, because irrelevant features are

filtered out of the data before induction takes place.

‘‘Wrapper methods for feature selection’’ rely on the

induction algorithm along with a statistical re-sampling

technique, such as cross-validation, to evaluate feature

subsets. The latter methods, generally outperform Filter

methods in terms of prediction accuracy, but are generally

more complex and more time consuming. We propose a

‘‘Filter method’’ [22] based on a weighting scheme. In

opposition to classical ‘‘Filter methods for feature selec-

tion’’, our method fits the characteristics of our similarity

measure based on the use of the Kullback–Leibler diver-

gence [20]. The method relies on weighting each filter type

according to its relative relevance for the discrimination

task. For a given weighting vector w, the similarity mea-

sure between two distribution sets: Q ¼ Qf

� �
f¼1:F

and

R ¼ Rf

� �
f¼1:F

is defined as follows:

KLwðQ;RÞ ¼
XF

f¼1

w2
f KLðQf ;Rf Þ ð2Þ

We aim at determining weights w2
f, f = 1,...,F that

maximize the feature space separation. To this end, the

proposed procedure comes to the maximization of the

global margin expressed by Eq. (4). Given a texture sample

T characterized by Q ¼ Qf

� �
f¼1:F

; a set of prototypes

Qk
� �

k¼1:K
and a weight vector w, the margin of T is

defined as:

MwðTÞ ¼ KLwðQDT ;QðTÞÞ � KLwðQST ;QðTÞÞ ð3Þ

where ST is the texture class of T and DT is the texture type

different from ST the closest to T with respect to KLw:

DT ¼ arg min
k 6¼ST

KLwðQk;QðTÞÞ: Unlike existing margin

based ‘‘Filter methods for feature selection’’ [31–34] that

estimate the quality of attributes according to how well

their values distinguish between samples that are near to

each other with respect to the euclidean distance, we

compute the margin according to Kullback-Leibler and we

evaluate the margin with respect to pre-defined prototypes.

This scheme is more appropriate to our application because

texture prototypes (empirical non-parametric marginal

distributions) are estimated on a larger support than

samples, and this parsimonious representation is faster

than classical methods. For a training set T ; the total

margin is given by:

MTw ¼
X

T2T
MwðTÞ ð4Þ

The maximization of criterion MTw is carried out using a

gradient-based approach. For filter type f, the first-order

derivative of MTw with respect to wf is given by:

ðrMTw Þf ¼
oMTw
owf

¼
X

T2T

oMwðTÞ
owf

¼ 2wf

X

T2T
KLðQDT

f ;Qf ðTÞÞ � KLðQST

f ;Qf ðTÞ
� �

ð5Þ

Rather than exploiting a purely deterministic gradient

ascent, we adopt a stochastic framework with a view to

improving convergence performance. It relies on iteratively

updating weight vectors with respect to the gradient

direction associated with one randomly selected texture

sample. More precisely, we proceed as follows:

1. Initialization w = [1,1,...,1];

2. For t = 1,...,maxITer

(a) Pick randomly an instance T from T ;

(b) Determine DT with respect to the weighting

vector w;

(c) For f = 1,...,F, calculate Df ¼ 2wt�1
f KL QDT

f ;
��

Qf ðTÞÞ � KL QST

f ;Qf ðTÞ
� �

Þ
(d) wt = wt-1 + cD;

3. wt ¼ ðwtÞ2= ðwtÞ2
�� ��; where ððwtÞ2Þf ¼ ððwtÞf Þ

2:

The resulting weighting factors are exploited on the one

hand for filter selection keeping only the distributions

corresponding to the greatest weights, and, on the other

hand, for the definition of an optimized texture-based

similarity measure KLw given the selected distributions.

3 Application to distance-based texture recognition

and Bayesian-based MRF texture segmentation

3.1 Distance-based texture recognition

We first consider an application of the proposed texture-

based metric to texture recognition. It aims at determining the

class of unlabeled texture samples. Considering a supervised

issue, texture types Tk
� �

k¼1:K
are characterized by a set of

labeled prototypes Qk
� �

k¼1:K
: Texture classification can be

Pattern Anal Applic (2008) 11:425–434 427

123



applied to further image processing and analysis, for instance,

to object recognition and image retrieval.

The classification of a texture sample T with respect to the

set of reference classes is based on the comparison of the

feature statistics through our similarity measure KLw between

texture prototypes Qk
� �

k¼1:K
; and the statistics estimated on

the texture sample and denoted by: QðTÞ ¼ Qf ðTÞ
� �

f¼1:F
:

We assign a sample T to class labelT that minimizes

KLw Qk;QðTÞ
� 	

: labelT ¼ arg mink KLw Qk;QðTÞ
� 	

3.2 Bayesian MRF-based texture segmentation

The second proposed application of the use of the similarity

measure KLw is a Bayesian textured image segmentation.

Similar to classification, segmentation of texture also

involves extracting features and deriving metrics to segre-

gate textures. However, segmentation is generally more

difficult than classification, because boundaries that sepa-

rate different texture regions have to be detected in addition

to recognizing texture in each region. Results of segmen-

tation can be applied to further image processing and

analysis, for instance, to object recognition, lesion detection

in biomedical imaging, acoustic image segmentation.

We propose a statistical segmentation based on KLw.

Let S be a 2D lattice of pixels, Y the set of observations and

X the hidden (unobserved) label field, defined on the same

lattice S. Realizations of fields Y and X will be denoted as y

and x, respectively. The segmentation issue then comes to

estimating x from the observation of the field y. Segmen-

tation considered in this paper is based on the Markovianity

of the posterior distribution P(X/Y). The latter Markovianity

is obtained from a Markov field PX, a prior on the region

label map, and P Y=Xð Þ the distribution of Y conditional to

X = x. Under some assumptions on P Y=Xð Þ, the posterior

distribution is a Markov distribution and different Bayesian

segmentation techniques like the Maximum Posteriori

Mode (MPM) [23], Maximum A Posteriori (MAP) [24] or

Iterated Conditional Mode (ICM) [25] can be applied.

Here, each texture type Tk is characterized by a set of

features Qk and each pixel s is associated with a set of

features Q Wsð Þ ¼ Qf Wsð Þ
� �

f¼1:F
estimated according to a

Parzen estimation method [21], within a square window Ws

centered at s. Then we consider Y ¼ Q Wsð Þf gs2S and we

propose to consider that the likelihood of each pixel xs to

each class k is defined from the similarity measure KLw by:

p ys=xs ¼ kð Þ ¼ exp�KLw Qk ;Q Wsð Þð Þ
PK

k¼1 exp�KLw Qk ;Q Wsð Þð Þ
ð6Þ

We use as a prior PX, a Markov model associated to an

8-neighborhood system with potential functions given by:

U2 xð Þ ¼
X

s2S

X

t2cs

ac 1� d xs; xtð Þð Þ ð7Þ

where d is the delta function, ac 2 aH ; aV ; aDf g are real

parameters assigned, respectively, to horizontal, vertical

and diagonal cliques.

Using Bayes rule the posterior distribution is expressed

as follows:

PX=Y x=yð Þ ¼ 1

Z
exp

P
s2S
�
P

t2cs
ac 1�d xs;xtð Þð Þþlog p ys=xsð Þð Þ ð8Þ

where Z is a normalization function. According to the

general Bayesian theory, the MPM segmentation method is

optimal with respect to the classification error rate (the

number of misclassified pixels). The decision rule

associated to the MPM segmentation strategy is defined

for each pixel s [ S as follows [23]:

x̂MPM
s ¼ arg min

k2K
pX=Y xs ¼ k=ysð Þ ð9Þ

where K = {1,...,K}.

Therefore we have:

x̂MPM
s ¼ arg max

k2K
�
X

t2cs

ac 1� d xs ¼ k; xtð Þð Þþ
 

KLw Qk;Q Wsð Þ
� 	

� log
XK

k¼1

exp�KLw Qk ;Q Wsð Þð Þ
! ð10Þ

Model parameters are Qk
� �

k¼1:K
and ac 2 aH ; aV ; aDf g are

estimated according to Iterative Conditional Estimation

(ICE) method [26].

4 Experimental results

Reported experiments have been carried out using 219

texture-related features as follows: a set of 121 distribu-

tions issued from co-occurrence statistics [10] computed

for the eight main directions h 2 kp=8f gk¼0:7 and for

displacements varying between 0 and 10 pixels; a set of

50 distributions of the magnitude of Gabor filter respon-

ses, computed for several parameterizations (six

normalized radial frequencies
ffiffiffi
2
p

=2k
� �

k¼1:6
; and five

orientations: h 2 kp=4f gk¼0:4Þ and a set of 48 distribu-

tions of the energy of the image wavelet packet

coefficient computed for different bands for three wavelet

types: Haar, Debauchies and Coiflet. The computation of

the co-occurrence distributions is issued from a k-means

[27] based quantization of the images into 10 gray levels,

where 100 bins are exploited for Gabor and wavelet-based

distributions.
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4.1 Distance-based texture recognition

Texture recognition experiments for test images of various

complexities have been carried out to evaluate the perfor-

mance of the proposed texture-based similarity measure.

Here, we show the results of the classification of 32 9 32

texture samples belonging to ten different classes issued

from the Brodatz album [28] (D3, D4, D6, D21, D24, D49,

D68, D71, D82 and D87) (Fig. 1). The chosen textures are

of different types: D3, D6, D21 and D82 are regular tex-

tures formed by regular tiling organized into periodic

patterns, but with different scales. D4 and D24 are sto-

chastic textures without noticeable structures, displaying

rather random patterns. D49 is an homogeneous texture

with accurate orientation. D6 and D21 are fine textures and

D68 and D71 are coarse textures.

In order to test for texture discrimination regardless of

local gray level means or variances, we used two test sets:

original texture images and globally histogram-equalized

images. Within the training stage, the distributions of the

filter responses for each filter type are first estimated for

each texture class, as well as the estimation of optimal

weighting factors w using the proposed separability-based

criterion. We then test for classification performances on

sub-images which are not part of the training samples.

For the experiments reported subsequently, we first report

the plot of the estimated weighting factors ranked according

to the filter type (from 1 to 121 for co-occurrence distribu-

tions, from 122 to 171 for Gabor distributions and from 172

to 219 for wavelet distributions). Besides, the classification

error rate is used as the evaluation criterion of the relevance

of the proposed approach. The proposed margin-based

weighting criterion is compared to two random selection

procedures (two random feature permutations) and reverse

order ranking with respect to w. Figure 3 presents these

results for the experiments with the ten Brodatz samples of

Fig. 1.

The reported classification error rates (s) are very good

compared to the results given in the literature (s = 15% for

the ten histogram equalized Brodatz texture). As expected,

the best results are obtained by the proposed discriminant

ranking and weighting of the computed feature statistics.

Only less than 15% of the features have a total weight

greater than 80% of the sum of weights of all features (see

Figs. 2, 4). In addition, the optimized similarity measure

leads to better discrimination performance compared to a

simple filter selection step: we notice a decrease in the

error rate classification if we use only the selected set of

50 100 150 200 250

100

200

300

400

500

600

D3

D4

D6

D21

D24

D49

D68

D71

D82

D87

Fig. 1 Test image: 10-Brodatz texture mosaic (D3, D4, D6, D21,

D24, D49, D68, D71, D82 and D87)

1 121 171 219
0

0.1

0.2

0.3

0.4

0.5

0.6

Feature indexes

w
f2

Co−occurrence

Gabor

Wavelet

Fig. 2 Estimation of {wf
2} for the definition of KLw (Eq. 2) for the

histogram equalized mosaic of Fig. 1. Feature indexes are as follows.

Indexes from 1?121 we refer to co-occurrence distributions, from

122?171 to Gabor energy distributions and from 172?219 to

wavelet energy distributions. Co-occurrence distribution computed

for parameters (d,h) = (3,0) and two Gabor magnitude distributions

computed for parameters f0; hð Þ 2 2�6
ffiffiffi
2
p

; 0
� 	

; 2�5
ffiffiffi
2
p

;p=2
� 	� �

have

a weight sum more than 80% of the total weight sum

50 100 150 200
10

20

30

40

50

60

70

80

90
KLw
Inverse ranking
Random selection (1)
Random selection(2)

Fig. 3 Comparison of the evolution of classification error rates of the

histogram equalized mosaic of Fig. 1 w.r.t to the number of exploited

features, respectively, for the proposed similarity measure KLw, two

random feature selections and a selection according to the inverse

feature ranking w.r.t w

Pattern Anal Applic (2008) 11:425–434 429

123



features compared with the case when we use all distri-

butions with constant weights (from s = 22.5% to

s = 15% for the normalized Brodatz samples and from

s = 6.25% to s = 3.75% for non-histogram equalized

mosaic). It is worth noting that if we do not equalize the

texture histograms, we get different weights in favor of the

co-occurrence matrices and an improvement of the classi-

fication results (a gain of 11.25%) (see Figs. 4, 5).

Let us further stress that the larger misclassification rates

do not always refer to the reserve ranking strategy. This

illustrates that the proposed approach does not assign a

weight to each feature type independently, contrary to

classical methods based on independent and individual

ranking criteria [29, 30]. The computation of the weights of

the Kullback–Leibler divergences is issued from a global

margin-based criterion, which leads to an efficient feature

combination evaluating the redundancy or the comple-

mentary properties of the considered statistics.

4.2 Bayesian texture-based segmentation

The segmentation algorithm described in Sect. 3.2 is

applied to a set of Brodatz mosaics and real sonar images.

Figure 7 shows several MPM- based segmentations

respectively of the image of Fig. 6 using a window of size

TW = 11 9 11 and the selected features (we use only

features that the weighting sum exceeds 80% of the total

weight sum). The image is composed of five textures with

different types (D6, D24, D16, D92 and D29) but with

some visually close textures. For this image, the selected

features are the co-occurrence distribution computed for

parameters (d,h) = (7,0) and two Gabor magnitude

distributions computed for the parameters f0; hð Þ 2
2�6

ffiffiffi
2
p

; p=4
� 	

; 2�5
ffiffiffi
2
p

; p=2
� 	� �

: Figure 7a shows the seg-

mentation of the image with the selected features; in

Fig. 7b, we report the segmentation obtained when the co-

occurrence distribution with the highest weight

(d,h) = (7,0) is only used and Fig. 7c represents the seg-

mentation using one magnitude Gabor distribution

computed for Gabor filter having the highest weight among

the used Gabor parameters f0; hð Þ ¼ 2�6
ffiffiffi
2
p

; p=4
� 	� 	

: The

best classification rate are obtained using all the selected

features (see Table 1).

In Fig. 8, we show the results for the segmentation of a

complex mosaic composed of 16 Brodatz texture [28] with

wide variability (D3, D4, D5, D6, D9, D21, D24, D29,

D32, D33, D54, D55, D57, D68, D77 and D84): regular,

weakly-homogeneous, oriented, coarse, fine and stochastic

w
f2

1 121 171 219
0

0.1

0.2

0.3

0.4

0.5

0.6

Feature indexes

Co−occurrence
Gabor
Wavelet

Fig. 4 Estimation of {wf
2} for the definition of KLw (Eq. 2) for the

non-histogram equalized mosaic of Fig. 1. Feature indexes are as

follows. Indexes from 1?121 we refer to co-occurrence distributions,

from 122?171 to Gabor energy distributions and from 172?219 to

wavelet energy distributions. Co-occurrence distribution computed

for parameters (d,h) = (3,p/4) and 1 Gabor magnitude distributions

computed for the parameters f0; hð Þ 2 2�5
ffiffiffi
2
p

;p=4
� 	� �

have a weight

sum more than 80% of the overall weight sum

50 100 150 200 250

50

100

150

200

250

Fig. 6 5-Brodatz texture mosaic (D6, D24, D16, D92 and D29)

50 100 150 200

5

10

15

20

25
KLw
Inverse ranking
Random selection (1)
Random selection (2)

Fig. 5 Comparison of the evolution of classification error rates of the

non-histogram equalized mosaic of Fig. 1, w.r.t to the number of

exploited features, respectively, for the proposed similarity measure

KLw, two random feature selections and a selection according to the

inverse feature ranking w.r.t w
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textures. The segmentation is done using a window of size

TW = 33 9 33. For this image, only three co-occurrence

distributions computed for parameters d; hð Þ 2
3; p=2ð Þ; 6; p=2ð Þ; 2; p=4ð Þf g are selected. The segmenta-

tion error rate is about 16.3% which is a very good rate

compared with results reported in the comparative study

carried out by Randen et al. [1, 2] (the best classification

error rate for the compared methods is about s = 37%)

In Fig. 9, we show MPM-based segmentation of a real

sidescan image further used in seafloor cartography. The

image is composed of three seafloor types [31]: a coarse

texture of rock, an homogeneous class of mud and ori-

ented texture associated to sand ripples. The co-

occurrence distribution computed for d; hð Þ ¼ 1; p=4ð Þ is

the only selected and exploited texture feature. For this

image, we use the geologist segmentation as a reference

and we compute the classification error rate. It is about

12%.

5 Conclusion

In this study, we proposed a simple effective histogram

selection algorithm for supervised texture discrimination

problems. The proposed method is based on a weighted

sum of Kullback–Leibler measure of similarity between

different texture filter response distributions, where the

weights are computed to maximize the feature space

separation. We used the proposed similarity measure with a

minimum distance classifier on the one hand, and with a

hidden Markov field- based segmentation, on the other

hand. Different experiments, whose results show the

effectiveness and the performance of the news models and

related processing methods, have been provided.

As perspectives for further works, we can mention that

our study open different ways for other applications based

on segmentation or analysis techniques involving filter

response statistics. Making the proposed methods unsu-

pervised, is undoubtedly among the most important issues

to be addressed in further investigations.

6 Originality and contribution

The originality of this work lies in the use of a simple and

effective similarity measure between textures in the space of
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Fig. 8 MPM MRF-based

segmentation of the 16-texture

mosaic, TW = 33 9 33,

âH ; âV ; âDð Þ ¼ 3; 2; 0:5ð Þ
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(a) (b) (c)Fig. 7 MPM MRF-based

segmentation of the 5-texture

mosaic of Fig. 6.

a Segmentation with the

selected features,

b segmentation with a

co-occurrence distribution,

c segmentation with a

magnitude Gabor distribution

Table 1 Classification error rates

Selected features 1 Co-occurrence 1 Gabor

MPM 3.1% 4.45% 22.87%
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probability distributions within a supervised framework.

This similarity measure leads to the fusion and the selection

of the most discriminant features. This method is different

from the existing feature selection methods in the sense that:

– It does not exploit classical texture features: it relies on

empirical marginal distributions of local texture fea-

tures (co-occurrence distributions, Gabor magnitude

distributions, etc.) which have been reported to outper-

form other texture features (Haralick parameters, mean

Gabor magnitude, etc.).

– In contrary to many feature selection approaches, the

method is not restricted to one type of features but it is

able to deal at the same time with features of different

types and parameterizations (e.g. Gabor, wavelet, co-

occurrence, etc.).

– The proposed method is an extension of margin-based

selection methods (Relief, RelieF, Simba, etc. [32–34])

to probability distribution features and to non-euclidean

distances. Unlike the existing methods, we do not

compute the margin according to the nearest neighbor

classifier within a learning sample set but according to

the proposed similarity measure between pre-defined

prototypes and samples. Our scheme is more parsimo-

nious and subsequently faster than other methods. In

fact, for classical methods, to compute the margin for a

sample according to a training set of N samples, we

have to compute the similarities between the sample

and all the other samples of the set, whereas in our case

we simply compute the similarities between the sample

and only the K prototypes. Besides, our method is more

robust with respect to noise because the similarity

between efficient prototypes and samples is more

reliable than similarity between samples. Finally,

thanks to the non-parametric feature aspect, the method

allows to deal with multi-modal features.

– The method is a ‘‘Filter method’’ because feature

subsets selection is based on a general criterion (margin

maximization), and the features are filtered out of the

data before induction takes place. However, unlike

classical ‘‘Filter methods’’, the selection is related to the

induction algorithm in the sense that we use the same

similarity measure to evaluate the margin criterion and

to proceed to the classification or to the segmentation.

In this work, only textural features are considered. The

extension to other type of features, e.g. color would be

straightforward. Similarly, the Kullback–Leibler diver-

gence has been chosen as the measure between statistical

distributions, but other statistical distances can also be

considered, such as Bhattacharya, v2, etc.

Many segmentation, clustering, classification, image

retrieval and analysis techniques involving filter response

statistics will benefit from this approach. This similarity

measure is exploited for texture recognition and Bayesian

Markov Random Field (MRF)-based segmentation.

Reported results show the relevance and the effectiveness

of the method.

References

1. Randen T (1997) Filter and filter bank design for image texture

recognition. Thesis Report, Norwegian University of Science and

Technology, Stavanger College

2. Randen T, Husoy J (1999) Filtering for texture classification: a

comparative study. IEEE Trans Pattern Anal Mach Intell

21(4):291–310

3. Kashyap RL (1984) Characterization and estimation of two-

dimensional ARMA models. IEEE Trans Inf Theory 30:736–745

4. Ohanian PP, Dubes RC (1992) Performance evaluation for four

class of texture features. Pattern Recognit 25(8):819–833

5. Conners RW, Harlow CA (1980) A theoretical comparison of

texture algorithms. IEEE Trans Pattern Anal Mach Intell

2(3):204–222

6. Strand J, Taxt T (1994) Local frequency features for texture

classification. Int Conf Pattern Recognit 27(10):1397–1406

(a)

50 100 150 200 250 300

50

100

150

200

250

300

350

400

(b)

50 100 150 200 250 300

50

100

150

200

250

300

350

400

Fig. 9 Sidescan sonar image segmentation (Project Rebent, Ifremer),

the boundaries of the different regions given by the segmentation map

are superimposed on the original image. a Geologist segmentation, b
MPM-based segmentation: TW = 9 9 9, Tmax = 100 and

aH ; aV ; aDð Þ ¼ 0:99; 1:18; 0:14ð Þ (s = 12%)

432 Pattern Anal Applic (2008) 11:425–434

123



7. Sharma M, Singh S (2001) Evaluation of texture methods for

image analysis. In: 7th Australian and New Zealand intelligent

information systems conference, pp 117–121

8. Singh M, Singh S (2002) Spatial texture analysis: a comparative

study. Int Conf Pattern Recognit 1:676–679

9. Clausi A, Deng H (2004) Feature fusion for image texture seg-

mentation. Int Conf Pattern Recognit 1:580–583

10. Haralick R (1979) Statistical and structural approaches to texture.

Proc IEEE 67(5):786–804

11. Xiuwen L, DeLiang W (2003) Texture classification using

spectral histograms. IEEE Trans Image Process 12(6):661–670

12. Cula OG, Dana K (2003) 3D texture recognition using bidirec-

tional feature histograms. IEEE Trans Pattern Anal Mach Intell

25(12):1619–1624

13. Nammalwar P, Ghita O, Whelan PF (2005) Integration of feature

distributions for color texture segmentation. Conf Pattern Rec-

ognit 1:716–719

14. Xu Q, Yang J, Ding S (2004) Texture segmentation using LBP

embedded region competition. Electron Lett Comput Vis Image

Anal 5(1):41–47

15. Fablet R, Bouthemy P (2003) Motion recognition using non-

parametric image motion models estimated from temporal and

multiscale cooccurrence statistics. IEEE Trans Pattern Anal Mach

Intell 25(12):1619–1624

16. Zhu XLSC, Wu Y (1998) Filters, random fields and maximum

entropy (frame): toward a unified theory for texture modeling. Int

J Comput Vis 27(2):107–126

17. Gimel’farb G (1996) Texture modeling by multiple pairwise pixel

interactions. IEEE Trans Pattern Anal Mach Intell 18(11):1110–

1114

18. Jain A, Farrokhania F (1991) Unsupervised textures segmentation

using gabor filters. Pattern Recognit 24(12):1167–1186

19. Chang T, kuo C (1993) Texture analysis and classification with

tree-structured wavelet transform. IEEE Trans Image Process

2(4):429–441

20. Kullback S (1959) Information theory and statistics. Wiley, New

York

21. Parzen E (1962) On the estimation of a probability density

function and the mode. Ann Math Stat 33:1065–1076

22. Kohavi R, John G (1997) Wrappers for feature subset selection.

Artif Intell 97(12):273–324

23. Marroquin J, Mitter S, Poggio T (1987) Probabilistic solution of

ill-posed problems in computational vision. J Am Stat Assoc

82:76–89

24. Geman S, Geman G (1984) Stochastic relaxation, Gibbs distri-

butions and the Bayesian restoration of images. IEEE Trans

Pattern Anal Mach Intell 6(6):721–741

25. Besag J (1986) On the statistical analysis of dirty pictures. J R

Stat Soc Ser B 48:259–302

26. Pieczynski W (1992) Statistical image segmentation. Mach

Graph Vis 1(2):261–268

27. Duda RO, Hart PE (1973) Pattern classification and scene anal-

ysis. Wiley, New York

28. Brodatz P (1966) Textures: a photographic album for artists and

designers. Dover, New York

29. Jensen CA, El Sharkawi MA, Marks RJ (2001) Power system

security assessment using neural networks: feature selection

using Fisher discrimination. IEEE Trans Power Syst 16(4):757–

763

30. Lianantonakis M, Petillot YR (2005) Sidescan sonar segmenta-

tion using active contours and level set methods. In: Conference

proceedings OCEANS ’05. 1:719–724

31. Ehrhold A, Hamon D, Guillaumont B (2006) The Rebent moni-

toring network, a spatial integrated acoustic approach to survey

nearshore macrobenthic habitats: application to the bay of Con-

carneau (South Brittany, France). ICES J Mar Sci 63:1604–1615

32. Kira K, Rendell L (1992) A practical approach to feature selec-

tion. Proc Int Conf Mach Learn 1:249–256

33. Robnik-Sikonja M, Kononenko I (2003) Theoretical and empir-

ical analysis of ReliefF and RReliefF. J Mach Learn Res 53

(1-2):23–69

34. Gilad-Bachrach R, Navot A, Tishby N (2004) Margin based feature

selection—theory and algorithms. ACM Int Conf Proc Ser 69:43

Author Biographies

Imen Karoui received the Engi-

neering degree in Telecom-

munications from the ‘‘École
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