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Unsupervised Statistical
Segmentation of Nonstationary Images
Using Triplet Markov Fields

Dalila Benboudjema and Wojciech Pieczynski

Abstract—Recent developments in statistical theory and associated computational techniques have opened new avenues for image
modeling as well as for image segmentation techniques. Thus, a host of models have been proposed and the ones which have
probably received considerable attention are the hidden Markov fields (HMF) models. This is due to their simplicity of handling and
their potential for providing improved image quality. Although these models provide satisfying results in the stationary case, they can
fail in the nonstationary one. In this paper, we tackle the problem of modeling a nonstationary hidden random field and its effect on the
unsupervised statistical image segmentation. We propose an original approach, based on the recent triplet Markov field (TMF) model,
which enables one to deal with nonstationary class fields. Moreover, the noise can be correlated and possibly non-Gaussian. An
original parameter estimation method which uses the Pearson system to find the natures of the noise margins, which can vary with the
class, is also proposed and used to perform unsupervised segmentation of such images. Experiments indicate that the new model and
related processing algorithm can improve the results obtained with the classical ones.

Index Terms—Triplet Markov fields, statistical image segmentation, paramater estimation, Pearson system, iterative conditional

estimation, nonstationary images, textures classification.

1 INTRODUCTION

THIS paper adresses the problem of statistical unsuper-
vised image segmentation and its main purpose is to deal
with nonstationary images. The nonstationarity considered
in this paper is understood in the following probabilistic
sense. In the classical Markov field context, the distribution of
the hidden field is defined by some functions specified on
cliques; a field will be considered nonstationary when these
functions depend on the position of the cliques in the set of
pixels. Therefore, nonstationary fields will produce, on
average, nonstationary images in which the visual aspect of
the spatial organization of different labels varies with pixels.
Of course, a nonstationary field can produce a stationary
image and a stationary field can produce a nonstationary
image. However, real images are often nonstationary and,
thus, on average, using nonstationary fields in different
statistical processing should give better results. While doing
so, an important problem arises: How do we estimate the
parameters when they vary with pixels? Answering this
question via the recent “triplet Markov field” model is the
main purpose of the paper. Starting from the classical hidden
Markov fields (HMF), we propose different extensions
allowing one to deal with nonstationary images and possibly
non-Gaussian correlated noise. The classical HMF and
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Bayesian segmantation based on them can be of outstanding
efficiency when dealing with the difficult—and important—
problem of unsupervised image segmentation. Hundreds
papers have been written on the subject since the seminal
articles [14], [22] and a rich bibliography can be seen in [11],
[16], [30], [32], [37], among others. In such models, we have
the hidden Markov field, X = (X;), ¢, and the observed one,
Y = (Y;),cq, and the problem is to estimate X =z from
Y = y. The first models, in which X is a Markov field and the
random variables (Y;) are independent conditionally on X,
can give good results in many situations; however, they turn
out to be too simple when considering very complex images
(nonstationary, textured, strongly noisy, . .. [25]). A pairwise
Markov field (PMF) model has then been proposed, which
consists of directly considering that the pair Z = (X,Y) is a
Markov field [34]. This implies that both conditional
distributions p(y|z) and p(x|y) are Markovian: The former
fact allows one to better model complex noises and the latter
one still enables one to apply Bayesian segmentation. After-
ward, triplet Markov fields (TMF) were proposed in which
one introduces a third random field, U = (U;), s, and
assumes the Markovianity of the triplet T = (X,U,Y) [1],
[35]. This third field can have some physical interpretation or
not; however, when the set of its values is not too large,
analogous Bayesian processing can still be used to estimate
X =z from Y = y. Different ways of defining such TMF are
described in [1], along with a parameter estimation method
making possible unsupervised Bayesian segmentation.

In particular, one possible meaning for U = (Us),g is to
assume that U = u defines different homogeneities of (X, Y").
This means that the Markov field distribution p(z,ylu) is a
nonstationary one and, thus, such models enable one to deal
with nonstationary (X,Y) [2]. Let us mention that a similar
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study related to the use of triplet Markov chains to manage
nonstationary images can be seen in [19].

Otherwise, an important problem is to manage non-
Gaussian and correlated noise. In fact, such noises occur in
many situations, like those related to radar images [5], [6],
[13], [20], [21], [36] or sonar ones [17], [26], among others.
This has not been solved, to our knowledge, in the hidden
Markov fields context and we thus propose here a new
model and a new related parameter estimation method.

Finally, the paper contains the following contributions:

1. The first ideas related to the use of triplet Markov
fields in nonstationary images presented in [2] are
extended and some new experiments are provided;

2. Anew pairwise Markov field model, enabling one to
deal with non-Gaussian and correlated noises, is
proposed and validated by some experiments;

3. Points 1 and 2 are considered simultaneously,
resulting in a new nonstationary model with non-
Gaussian and correlated noise;

4. A new parameter estimation method which is based
on the Pearson system and extends to the model in
item 3 above, the methods proposed in [1] and [5]
(some first results concerning this new model are
presented in [3]).

2 TRIPLET MARKOV FIELDS AND NONSTATIONARY
IMAGES

2.1 The m-Markov Nonstationary Fields

Let S be the set of pixels. The Hidden Markov field (HMF)
model contains two stochastic processes, X = (X;),.¢ and
Y = (Y;),cq, in which X = z is unobservable—or hidden—
and has to be recovered from the observed Y = y. Therefore,
Y = ycanbeseenasanoisy versionof X = x.Inthis paper, we
consider the problem of digital image segmentation: In the
whole paper, each X, takes its values from a finite set of
classes Q = {w1,...,w;}, whereas each Y takes its values
from the set of real numbers R. The possible nonstationarity of
the distribution p(z, y) of the pairwise field (X, Y) is managed
by introducing a third random field U = (U,),.4, each U,
taking its values from a finite set A = {A,..., A, }. Thus, the
idea is to interpret the m possible values of U, as m different
possible stationarities of (X,Y) = (x,y). The triplet T =
(X,U,Y) being assumed Markovian, the posterior margins
p(xs, us|y) are classically estimable and, thus, p(z;|y) is given
by p(xs, |y) = > _,en P(Ts, usly). Having p(x|y) enables us to
perform MPM segmentation as in classical HMF.

To be more precise, let us consider a pairwise Markov
field (PMF) Z = (X,Y), which is Markovian with respect
to the neighborhood system corresponding to a set of
cliques C. Thus, the distribution of Z = (X,Y) is given by
p(x,y) = vexp[— > .o fe(te,ye)] and Z is currently said
“to be stationary” when f. does not depend on the
position of ¢ in S. Z is “nonstationary” when there can be
some c such that f. do depend on the position of ¢ in S.
Such a definition is quite satisfying; however, as the
parameters in f. does depend on the position of ¢ in S,
their estimation can be difficult to perform. As an
alternative, we propose a different definition of the
nonstationarity based on triplet Markov fields (TMEF).

Definition. Let Z = (X,Y) = (X,,Y}),c4 be a pairwise random
field. We will say that Z has an “m-Markov nonstationarity”
(or is “m-Markov nonstationary,” which will be denoted by
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“m-MNS") if there exists a random field U = (Us) g, each U,
taking its values in a finite set A = {\,..., \,,}, such that
the triplet T = (X,U,Y) is a stationary Markov field.

Let us note the following link between the two kinds of
stationarity mentioned above. If Z is an m-MNS, T =
(X,U,Y) is a Markov field and, thus, we can say that p(z|u)
is a Markov nonstationary distribution. Therefore, the
distribution of Z conditional on U = u is “nonstationary”
in the former “classical” meaning. Finally, we can say that
an m-MNS field Z, is nonstationary (in the classical
meaning) conditionally on U. However, an m-MNS field
Z being not necessarily Markovian, is not nonstationary in
the classical meaning.

Anyway, it is important that T'= (X,U,Y) is stationary
and, thus, all of its parameters can be estimated from ¥ =y
(see [1]). As a consequence, nonstationary images can be
segmented in an unsupervised way and, as shown below,
such methods can significantly improve the efficiency of the
classical method. Let us mention here a recent model, based
on a tree structured MRF, which models the nonstationarity
in a somewhat different way [31].

2.2 Experiments
In all of the experiments in this paper, we will consider the
Markovianity with respect to four nearest neighbors, which
is the simplest one. In fact, our aim is to study what the new
models contribute with respect to the classical one rather
than search for their best efficiency. Therefore, we chose to
directly define rather simple energies so far to not obscure
the message by too complex writing. However, more
complex Markov fields can be viewed with no additional
theoretical difficulties with respect to the classical hidden
Markov fields. Of course, the number of parameters to be
estimated and the different computation times can strongly
increase when considering more complex models.
Therefore, let us consider a Markov field, X = (), o,
whose distribution is classically defined by the energy

W(z) = Z ap (1l —26(zs, 1))
(s,t)ECU (2 1)
+ Y ar(l = 28w, a), '
(s,t)eCy

where Cpy is the set of couples of pixels horizontally
neighbors, Cy is the set of couples of pixels vertically
neighbors, and 6(z;, z;) verifies §(x,, ;) = 1 for z; = z; and
8(xg,x¢) = 0 for x, # x;. The field X = (X,), ¢ is classically
a Markov one with respect to four nearest neighbors.
Furthermore, let us consider, classically, that the random
variables (Y), ¢ are independent and Gaussian condition-
ally on X = (X,),.g. Assuming, in addition, that p(y,|z) =
p(ys|zs) for each s and z;, (X,Y) is a very classical HMF
whose distribution is written

p(x,y) = yexp |[=W(z) + > Log(p(ys|z,)) |-

seS

(2.2)

Let us imagine that this very classical model is not
stationary and there are two different stationarities. There-
fore, we propose to model this nonstationarity by the
following m-MNS. As m = 2, let us put A{a,b} and let us
consider that the Markov distribution of T'= (X,U,Y) is
obtained by assuming that (X, U) is a Markov field and by
considering that the distribution of Y conditional on (X, U)
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Fig. 1. (a) and (c) Simulated images using the new TMF model and (d) and (e) two MPM based on TMF and classical HMF unsupervised
segmentation results. (a) X = z. (b) U = u field. (c) Y = y field. (d) New TMF-based MPM error ratio = 14.12 percent. (e) Classical HMF-based MPM

error ratio = 18.6 percent.

verifies the classical condition p(y|z,u) = [[,cqp(ys|zs).
Otherwise, the distribution of the Markov field (X,U) we
propose to consider is defined by the energy

W(x,u)= Z ag (1 — 2(5(:08,wl))—(aiHé*(us,uL,a)
(s,t)eCh

+ap 6 (s, ur, 0)) (1 = 8(xs, 1))

+ Z oz%/(l —26(xs, 1)) — (azvﬁ*(us,ut,a)
(s,t)eCy

agy 6 (us, ug, b)) (1 — 8(xs, 7)),

with 6*(us,ut,a) =1 for us =u; =a and 6*(us,us,a) =0,
otherwise; 6(us, ut, b) = 1 for us = up = b and 6* (us, ug, b) = 0
otherwise.

Finally, let us define the distribution of the triplet
(X,U,Y) by

(2.3)

p(z,u,y) =vyexp | -W(z,u) + Z Log(p(ys|zs))|-
seS

Thus, (2.4) defines an m-MNS (with m = 2) and, condi-
tionally on U = u , it defines a nonstationary Markov field
of the kind (2.2). In fact, for fixed U = u, the distribution
p(z|u) is Markovian with the energy ... f“(z.), where
c¢=(s,t) is either a horizontal or vertical clique. For
horizontal cliques, we have f%(z.) = ol (1 — 26(zs, 1)) —
02y (1= 8(ag,@1)) if (ugyur) = (a,0), f4(z.) = by (1 - 20(a,,
'7;7)) - Q%H(l - 6(:537330) if (US, ut) = (ba b)/ and fcu(x(‘) = Oé}{
(1 —26(zs, ) if us # v A similar formula being valid for
vertical cliques, we see how f! varies with c.

Both models HMF given by (2.2) and TMF given by (2.4)
enable one to estimate p(z;|y). In HMF, this is classically done
from (2.2) using the Gibbs sampler and, in (2.4), this is done in
two steps: 1) estimate p(xs, us|y) by the Gibbs sampler and
2) calculate p(zsly) = >, cp P(s, us|y). Therefore, the Baye-
sian Maximum Posterior Mode (MPM) can be used in both
HMF and TMF given by (2.2) and (2.4), respectively.

(2.4)

Remark 2.1. Let us remark that, when k& = m (the number of
classes is equal to the number of different stationarities),
taking = u in the energy (2.3) again gives the energy
W(z) in (2.1). Therefore, when z = u, the model (2.1)-
(2.2) can be seen as a particular case of the (2.3)-(2.4).
We give below four examples of using the TMF model

given by (2.4) in unsupervised image segmentation. All

parameters are estimated from Y =y by a particular
algorithm belonging to the so-called “ICE” family of

methods, which is described in detail in [1].

The two first examples concern simulations with respect
to the new model (2.3)-(2.4).

In each of the two cases considered, (X,U) is first
simulated according to p(z,u) = yexp[—W(z,u)] and then

X =z is corrupted with Gaussian white noise with means

my = 0., my = 2., and variances o} = 05 = 1. Fig. 1 corre-

spondstoal; = al, = 1,02, = a2, =0.5,a}, = aj, = —04,
whereas Fig. 2 corresponds to af; =ai, =1, o2, =1,
a2y, =—0.3, ajy = —0.3, ajy, = 1. In both cases, the image

Y = yis segmented in two unsupervised Bayesian ways: the
new one (TMF-based MPM) and the classical one (HMF-
based MPM). We can see that the new method gives better
results and, according to Fig. 2, the difference can be striking.
Of course, as the data correspond to the new model, these
results are not surprising; however, they show the following
interesting behavior. As the classical model is known to be
very robust, it was necessary to verify the existence of
situations in which it is not sufficient to deal with nonsta-
tionary data obtained with the new model. In other words,
these first experiments show that the new model will
possibly be of interest in real situations.

The third example concerns a hand-drawn image z, noisy
as above with m; = 0., my = 1.6, and 0 = 03 = 1. Such an
image is neither TMF nor HMF and we can see, according to
the results shown in Fig. 3, that the new method is of interest.

Finally, the fourth example concerns an application of the
proposed model to a real image. Fig. 4 compares results
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Fig. 2. Simulated images using the new TMF model and two MPM based on TMF and classical HMF unsupervised segmentation results. (a) X = x field.
(b) U = ufield. (c) Y = y field. (d) New TMF-based MPM error ratio = 14.21 percent. (e) Classical HMF-based MPM error ratio = 18.6 percent.

y |"|"uul

Fig. 3. (a) Hand-drawn class image z, (b) u corresponding to z, (c) its noisy version, (e) estimated u, (d) new method unsupervised segmentation
result, and (f) classical method one. (a) Class image z. (b) True u. (c) Observed Y = y. (d) MPM based on TMF error ratio = 6.41 percent.
(e) Estimated u. (f) MPM based on classical HMF error ratio = 10.37 percent.

obtained with the new TMF model-based unsupervised Remark 2.2. We focus in this paper on recovering X =z

segmentation and the classical HMF-based one. This 430 x from Y =y; however, U = u can also have a physical
430 radar image represents a part of The Netherlands and interpretation and its estimation can be of interest. For
contains four classes. As we have no ground truth, it is example, let us imagine that there are two classes,

“houses” and “trees.” Otherwise, half of the image X =z
is a “town” and the other half is “outside town.”
Furthermore, let us assume that there are trees in the
town and there are houses outside town. As the

difficult to draw rigorous conclusions; however, in some
spots, we better recover some details like connections
between canals, which are represented by the black lines in

the image. . distribution of X is different in “town” and “outside
A_H of the segmented images presented above hav.e bee.n town,” these two possibilities will be modeled, according
obtained after 100 MPM samples, each of which is to our model, by two stationarities, A, Ao. Therefore, for

performed by 20 Gibbs sampler iterations. a given pixel s € S, we can say that z, is “house” or
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Fig. 4. Real image segmentation (four classes) with the new method and a classical one. (a) Flevoland. (b) Estimated U = w. (c) MPM based on

HMF. (d) MPM based on TMF.

“trees” and u, is “town” or “outside town” and both of
them are of interest. As p(us|y) is computable from
p(@s, usly) by plusly) = >, cop(as, usly), U=u can be
estimated from Y =y by MPM. One such example is
provided in Fig. 3.

3 NON-GAUSSIAN m-NONSTATIONARY MARKOV
FIELD

The aim of this section is to propose a workable extension of
the m-MNS field above in which the random variables (Y;)
would no longer be independent conditionally on X, the
distributions p(ys|z;) would no longer be necessarily
Gaussian, and their form could vary with the class z,. For
example, for two classes 2 = {wy,w,}, we wish to have two
different forms for the distributions p(ys|zs =w;) and
p(ys|xs = we), as it can occur in real situations [6]. Moreover,
we present an original parameter estimation method, which
can be seen as a simultaneous extension of both methods
proposed in [1] and [5], and present some experiments
showing its interest in unsupervised segmentation of
nonstationary images.

We consider two successive extensions. In the next
section, we consider the stationary case and the associated
m-MNS field is introduced in Section 3.2.

3.1 Hidden Markov Fields with Non-Gaussian

Correlated Noise

Let us remark that when dealing with the parameter
estimation problem, it is useless to consider U. In fact, the
problem of parameter estimation is strictly the same for a
pairwise Markov field (X,Y) than for a triplet Markov field
(X,U,Y). This comes from the fact that the TMF (X, U, Y') can
beseenasa PMF (V,Y), withV = (X, U).So, we will consider
(X,Y) in this section, but it remains valid for (V,Y), with
V=(X,U).

The main idea consists of using a hidden Gaussian
Markov field, in which (Y;) are dependent conditionally on
X and Gaussian and transform it to obtain any form of
margins. More precisely, the model is inspired from the
classical (2.2) model as follows.

We can say that the classical model (2.2) can be obtained
in the following way:

1. take a Markov field X with the energy W;
2. consider the set (Y]), ¢ of independent Gaussian
variables zero-mean and with variance one;
3. foreachse S, putY, =0, Y/ +m,,.
In fact, one can show in a quite classical way that the
distribution of (X,Y’), which verifies Points 1 and 2, is
exactly of the form (2.2).
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Let us assume that there are k classes Q = {wy, ..., w;} and
we want to have k densities hy, ..., hy, possibly of different
forms, for the k distributions p(ys|zs = w1), . .., p(ys|zs = wi).

Let G be the cumulative distribution function of Gaussian
zero-mean variable with variance one and let Hy, ..., H; be
the cumulative distribution functions corresponding to
hi,..., hy.

Let us consider the following hidden Markov field (X, Y"):

4. take a Markov field X with the energy W;
5. considerY’ = (Y]),.s Gaussian Markov random field,
where each Y! zero-mean and, with variance one,

p(y) = vexp —% > W) +Z — By,

s€S (s,t)

= yexp[-W'(y)];

(3.1)

6. foreach se S, putY, = H_'oG(Y)).

As it is well-known that the distribution of Y, =
H' o G(Y]) is given by the cumulative distribution function
H; (or, equivalently, by the density h;), we see that the model
1-3 above verifies the desired properties: The random
variables (Y;),.g are correlated conditionally on X, each

p(ys|zs = w;) has the desired density h;, and (X,Y) is a
Markov field. We can also see that Points 4, 5, and 6 are a
double extension of items 1, 2, and 3; in fact, items 1, 2, and 3
are obtained for §; =0 in (3.1) and for Hj,..., H; being
Gaussian.

Moreover, one can classically show that the distribution
of (X,Y) verifying items 4, 5, and 6 are

p(x,y) =7yexp [ - W(z) = W (p(z,y))

-I-ZLog—OH s ))H
seS
where ¢(z,y) =y = (Y]),.g such that Y =G o H, (y;)
for each s € S.
We see again how (3.2) is a double generalization of (2.2).
In fact, when (Y7), ¢ are independent, Gaussian, zero-mean
and, with variance equal to one, (3.1) becomes p(y') =
yexp[—1 (3 (Y)’] and (3.2) becomes

(3.2)

)

ses
p(z,y) =7€Xp[ z)+ Y (—— o H, (y.))?
B se8 (3.3)
s |
Ays

When, in addition, h,..., h; are Gaussian, (3.3) gives (2.2).

3.2 Parameter Estimation

Let us now tackle the problem of items 4, 5, and 6 of model
learning, which we propose to solve by a new “generalized”
mixture estimation method. The word “generalized” means
that, for each class w;, the form of h; is not known, but it is
known that this form belongs to a given set of forms
F'={F},...,F},}. For example, we can know that h is
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either Gaussian or Gamma, hs is either Gamma or Beta, hs is
Gaussian, Exponential, or Beta, etc. For each i = 1,.. .k, the
families F},... ,F]'."(i) are parameterized by £, ... 7[3;'(7:)' re
spectively. Therefore, estimating the noise in a “generalized”
mixture consists of solving a double problem: For each i, find
the right family Fin {F7, ..., Fj, } and estimate (.. Different
methods of “generalized” mixtures estimation have been
proposed in the case of independent (Y!) in [5], [15], [23], [27];
thus, the novelty here is to extend these methods to the case of
aMarkov Y’ = (Y]),.s-

Finally, to learn the items 4, 5, and 6 of the model, we
have to estimate « defining the Markov distribution of X, '
defining the Markov distribution of Y”, find, for each i, the
right family F}in {F},...,Fj,}, and estimate 3. All of this
is done using the two followmg points:

1. Let us imagine that both X and Y are observable.
Then « is estimated from X =z by Derin et al.’s
method as described in [1]. Otherwise, Y’ = ¢/ can be
calculated from (X,Y) = (z,y) by Y/ = G~ o H,_(ys)
(for each s € S) and, thus, 3! can be estimated from
Y’ = ¢/ by the method described in [1]. Finally, there
are numerous methods enabling one to find, for each
i=1,...,k the right family F} in {F},..., F}; } and
to estlmate i. One possible general method 1s based
on the Kolmogorov distance, as described in [15].
Another method, less general but simpler and faster,
is based on the Pearson system. As it will be used in
experiments in the next section, let us briefly recall
its principle. We assume that all families F" are equal
and contain the eight distributions of the Pearson
system. This system is the set of pdf f on R verifying

z+a

) @)

dx co + c1x + cpx?

(3.4)

and contains some current distributions like Gaus-
sian, Gamma, inverse Gamma, Beta of the first kind,
and Beta of the second kind distributions. The first
four moments of p(ys|zs =w;) give, by analytic
formulas, both the right family F' in F’ and the
parameters 3. The exact calculations, which can be
seen in [15], are rather complicated and, thus, are not
recalled here. It is important that the right family F!
in F' and the parameters 3\ can be estimated, for
eachi=1,...,k from (X,Y) = (z,y). In fact, having
X=u let S;={s€S/r,=w} As all (ys),g are
realizations of Y; according to p(ys|zs = w;), we can
use them to estimate the first four moments, which
gives F' and the parameters (3.

2. As X is not observable, we have to use the sole
Y =y. We propose the following iterative method,
which is an extension of the Iterative Conditional
Estimation (ICE) based method used in [1]. The
proposed method runs as follows:

a. Initialize the searched parameters and the den-
sities associated with the classes (which can be
assumed, for example, to be Gaussian) by some
simple method, specific to a given application.

b. At each iteration ¢, the next parameters and
densities associated with the classes are obtained
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Fig. 5. Unsupervised segmentation using (d) Gaussian laws and (e) Beta and Gamma laws. (a) Class Image X = z. (b) Noisy Image Y = y.
(c) U = u field. (d) Guassian error ratio = 19.14 percent. (e) Non-Gaussian error ratio = 8.81 percent. (f) estimated u.

bl BB | | [ aed.. 3 Y
MPM based on classical Gaussian HMF MPM based on Non Gaussian HMF
Error ratio: 40.71% Error ratio:30.64%

&5

Fig. 6. Unsupervised segmentation results obtained with “Gaussian” and “non-Gaussian” (based on the Pearson system), classical HMF, and the
new TMF-based unsupervised segmentation.
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MPM based on Gaussian TMF
Error ratio: 33. 5%

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,

VOL. 29, NO. 8, AUGUST 2007

MM ased on non Gaussmn TMF
Error ratio: 21.3%

Estlmated U =u with Gaussian TMF

Estimated U = u with non Gauss1an TMF

Fig. 6. (continued).

from Y = yand current parameters and densities
in the following way:

- Simulate 27" according to p(z|y) based on
the current parameters.

- Use 27! to estimate o, which gives the next
adtl,

- Foreachi=1,... .k putS={sec §/zi"" =
w; } and use (yq+ ) seset tO calculate the four
moments of p(y5|:cs = w;). Use the Pearson
system to find F“*! and calculate the
parameters 3911,

- Use the densities h!™' (y,) = p(ys|zs = wz) to
calculate the cumulatlve functions H!™' and
Yyt =G o H(y,). Use y*! = (1),
to estimate 4!, which gives the next g4+,

c. Stop the procedure when the estimates become
steady, according to some criterion specific to a
given application dealt with.

Let us remark that the use of the Pearson system has
already been used in different hidden Markov models and
gave satisfactory results [6], [8], [9], [10]. Therefore, the
originality of the present paper lies in the fact that we take
spatial correlations into account, which generalize the
previous models. Its use is also quite practical because the
four first moments give the form and the parameters of the
searched density; however, in the general case, any families
Fi ..., F}l(b) (fori=1,...,k) can be used. The calculation of

the four first moments is replaced by some other method,
allowing one to chose F'*! from S!™' = {s € §/2¢"" = w;}
and (y!™'),_g+. For example, F-*! can be chosen by
minimizing the Kolmogorov distance to the histogram
obtained from S;”l, as described in [15].

Let us notice that the ICE method, first proposed in [33],
is more flexible and may be better suited to the framework
we are in than the well-known EM method [24]; in fact, ICE
does not use the likelihood, which is difficult to handle in
Markov field context (some relationships between ICE and
EM can be seen in [7]). Other learning methods can be seen
in [18], [30].

We do not present any experiments here as a more
complex case, including nonstationary images, will be
studied in the next section.

3.3 Parameter Estimation in m-MNS with
Non-Gaussian Correlated Noise

Passing from the model (3.2) above to an m-MNS is similar
to the method described in Section 2, which extends (2.2) to
(2.4). Therefore, let us consider the following model,
similar to the model items 4, 5, and 6 defined by (3.2),
except item 4 which becomes: Item 4’, take a Markov field

(X,U) with the energy W.
Then, the distribution of the m-MNS related to items 4/,

5, and 6 is
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TABLE 1

Parameter Estimation and Unsupervised Segmentation Results Obtained with Classical HMF
(in Both the Gaussian and “Pearson” Cases) and New “Nonstationary” TMF (in Both the Gaussian and “Pearson” Cases)

Parameters HMF NS TMF
Gaussian Pearson Gaussian Pearson

a (0.55,0.76) (0.55,0.76) (0.58,0.68) (0.58,0.68)
(0.53,0.55) (0.53,0.55)
(0.63,0.69) (0.63,0.69)

q -0.08

o, distribution’s N, (32.01,340.57)  B(4.83,5.80) N,(37.01,320.41)  B(5.13,6.10)

@, distribution’s N, (68.61,548.74)  1'(10.7,5.50) N, (70.62,538.24) TI'(11.37,6.10)

@, distribution’s N, (86.79,1827.16)  B(0.92,2.00) N, (89.46,1820.72) B(1.01,2.10)

Error ratio 40.71% 30.64% 33.50% 21.30%
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p($, u, y) =7y €xp |:_ W(I‘, u) - Wl((p(:L’7 y))

-I—ZLog

seS

(3.5)

A(G" o H,,(y,)) H
0ys '

The extension of the parameter estimation procedure above
to the m-MNS defined by (3.5) does not pose a particular
problem. The difference is that o are now the parameters
defining the Markov field (X,U), instead of the Markov
field X in the previous section. Thus, the two first items in
item 2 are replaced by:

e simulate (29, u?™) according to p(z,uly) based on
the current parameters;

e use (z771 u?™) to estimate o, which gives the next
aitl,

Remark 3.1. We assumed in (3.5) that p(ys|zs, us) = p(ys|zs),
but the general case in which p(y;|zs, us) depends on both
x, and u, does not pose particular problems. For k classes,
there would be for an associated m-MNS, k x m distribu-
tions p(ys|zs, us). This means that the third field U can
model different stationarities of X, different stationarities
of Y, or even, in the general case, different stationarities of
both (X,Y). Moreover, the dependence of p(ys|zs, us),
which depends on u,, can have an intuitive justification:
In the example in Remark 2.2, one can imagine that the
aspect of trees is not the same in town and outside town.
Another example could be the presence of clouds produ-
cing two kinds of illumination and, thus, two kinds of
stationarities of p(ys|zs, us).

3.4 Experiments

We present below two experiments: simulated image and
real image segmentation. In the case of simulated image, we
consider two classes and three different stationarities. In the
case of real image, we consider three classes and two
different stationarities.

The aim of the first experiment is to show that there
exist situations in which the use of correct margins instead
of incorrect Gaussian margin can improve the unsuper-
vised segmentation accuracy. To be more precise, we
simulate a nonstationary correlated hidden Markov field
as described above such as p(ys|lzs =wi) =T(1,2) and
p(yslzs = we) = B(2,1). Then, we segment the noisy image

using the MPM method in two ways. On the one hand,
we suppose that the margins of each class are Gaussian.
On the other hand, we use the Person system to find the
nature of the class margins and use them rather than
Gaussian margins. A comparison between these two
approaches is depicted in Fig. 5.

The real image considered, shown in Fig. 6, is a radar
one. It is an image of Istres city, France, which can be
divided into three classes: 1) Water (in black), 2) Forest and
cultivation (in gray), and 3) Houses (in white). We dispose
of the ground truth, also presented in Fig. 6.

Our aim is twofold:

1. Is there any interest in using the Pearson system
instead of classical Gaussian distributions? According

HMF

Histogram
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Fig. 7. Histogram of the image Istres compared to Gaussian and
Pearson estimates in (a) the HMF case and (b) the TMF case.
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=u (two stationarities)

Estimated U
B! L \ .'A;- .

A

Fig. 8. Real airborne image of the city of Toulouse, estimated U = u, and HMF and TMF-based unsupervised segmentation results.

to Table 1 and Fig. 6, we see that using Pearson system
improves the unsupervised segmentation results in
the classical HMF-based case and in the new TMF case
as well.

2. Is there any interest in using the new TMF instead of
classical HMF? According to Table 1 and Fig. 6, we
see that using the new TMF improves the unsuper-
vised segmentation results in the classical Gaussian
case and in the “Pearson system”based case as well.

Finally, we see that simultaneously using the new TMF
and the Pearson system gives the best results and the
difference from those obtained with the classical Gaussian
HMF is quite significant.

Finally, let us specify that the Gaussian triplet model used
is the model given by (2.4), while the general triplet model is
given by (3.5). In the former case, the parameters are
estimated by the classical ICE, while, in the latter case, they
are estimated by the “generalized” ICE above, based on the
Pearson system. The estimates of the parameters obtained by
these two methods are presented in Table 1. The unsuper-
vised segmentation results obtained by both the “Gaussian”
and “Pearson” methods are presented in Fig. 6 and we can see
that the latter significantly improves the result: The error ratio
passes from 33.5 percent to 21.3 percent. We also show the

estimated realizations of U, which models two different
stationarities considered.

We have used 30 iterations in ICE and the posterior
marginal distributions, used in the MPM segmentation, are
estimated from 100 samples, each of which was sampled with
20 Gibbs sampler iterations. Concerning the computation
time, unsupervised TMF-based segmentation takes about
50 seconds in the Gaussian case and about 350 seconds in the
non-Gaussian one.

Let us notice that the error ratio varies very little when
performing numerous times the same experiments. We
performed the four unsupervised segmentations in Table 1
10 times and the means of these ratios for HMF Gaussian,
HMF Pearson, TMF Gaussian, and TMF Pearson were
40.60 percent, 30.61 percent, 33.68 percent, and 21.28 percent,
respectively, while the variance was about 0.01 for the four
series of experiments.

Remark 3.2. Let us notice that one possible interpretation of
different values of U can be the presence of different
textures. This is particularly striking in the examples given
in Fig. 3 and Fig. 5. In such cases, searching U can play a
role comparable to searching X and, finally, the problem
can be to find both X and U. Otherwise, different kinds of
nonstationarities can be simultaneously present in a given
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MPM TMF segmenttln 1nto three classes

MPM HMF - segmentat1on mto three classes

Fig. 9. Collage of Brodatz textures Y = y, estimated U = u, and TMF-based segmentation into three classes and the classical HMF one.

image and, thus, simultaneously modeled by numerous
fields Uy, . .., U,. For example, we can have U = (U;, Uy),
where U; models different textures and U; models the
presence of clouds, as described in Remark 3.1 above.

Concerning the computation time, unsupervised TMF-
based segmentation takes about 390 seconds in the Gaussian
case and about 1,350 seconds in the non-Gaussian one. While
using HMF, these times are about 350 and 1,060 seconds,
respectively.

According to Fig. 7, we see that the estimated mixture
based on Gaussian estimates encounters some difficulties in
fitting the histogram and this is true in both the HMF and
TMF cases. Using Pearson system gives a very good fit in
the TMF case, while it slightly improves the Gaussian fit in
the HMF case.

In Fig. 8, we present another example of segmentation of a
real airborne image of the city of “Toulouse” into five classes.
In the new TMF model, we consider two different stationa-
rities and the estimated U = u seems to indicate two kinds of
areas really corresponding to two visually different stationa-
rities. The differences between TMF and HMF-based seg-
mentation results are not easy to clearly differentiate;
however, some details, like the four bright squares, seem to
be better represented when using TMF.

Finally, let us remark that the random field U can
possibly be more interesting than the random field X. We

present in Fig. 9 an image Y = y obtained by the collage of
two Brodatz textures. On the one hand, the estimated U = «
can be seen as a textures classification result. On the other
hand, the three classes segmentation provided by TMF is
visually closer to the real image than the segmentation
obtained with the classical HMF.

4 CONCLUSIONS

We proposed in this paper some extensions of the classical
hidden Markov field model and some original related
parameter estimation methods. The most general extension
allows one to deal with nonstationary images and possibly
non-Gaussian correlated noise. Moreover, the form of the
noise corresponding to different classes can vary with the
underlying class. Such a general model can then be learned
by a new method proposed in the paper which is based on
the Pearson system and the general Iterative Conditional
Estimation (ICE) algorithm. The interest in the unsuper-
vised statistical segmentation based on both new models
and parameter estimation method is attested to via different
experiments conducted on synthetic and real images.
Asperspectives, let us make two points. We can notice that
the proposed model can be seen as a particular case of a
Gaussian copula adapted to a Markov field. In this context,
we can thus envisage the adaptation of other kinds of copulas,
whose general theory can be seen in [29], to the Markov field
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models considered in this paper. In fact, the recent use of
copulas in Markov chains [4] or multiband Markov trees [12]
has provided encouraging results. Otherwise, multispectral
or hyperspectral imagery, as in [28], among others, also offers
further possibilities for development of the models and
related processing proposed in this paper.
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