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Abstract

Hidden Markov chains (HMC) are widely applied in various problems occurring in different areas
like Biosciences, Climatology, Communications, Ecology, Econometrics and Finances, Image or Sig-
nal processing. In such models, the hidden process of interest X is a Markov chain, which must be
estimated from an observable Y, interpretable as being a noisy version of X. The success of HMC is
mainly due to the fact that the conditional probability distribution of the hidden process with respect
to the observed process remains Markov, which makes possible different processing strategies such
as Bayesian restoration. HMC have been recently generalized to ‘‘Pairwise’’ Markov chains (PMC)
and ‘‘Triplet’’ Markov chains (TMC), which offer similar processing advantages and superior mod-
eling capabilities. In PMC, one directly assumes the Markovianity of the pair (X, Y) and in TMC,
the distribution of the pair (X, Y) is the marginal distribution of a Markov process (X, U, Y), where
U is an auxiliary process, possibly contrived. Otherwise, the Dempster–Shafer fusion can offer inter-
esting extensions of the calculation of the ‘‘a posteriori’’ distribution of the hidden data.

The aim of this paper is to present different possibilities of using the Dempster–Shafer fusion in
the context of different multisensor Markov models. We show that the posterior distribution remains
calculable in different general situations and present some examples of their applications in remote
sensing area.
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1. Introduction

Hidden Markov chains (HMC) are widely used in various problems comprising two sto-
chastic processes X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn), in which X = x is unobservable
and must be estimated from the observed Y = y. The qualifier ‘‘hidden Markov’’ means
that the hidden process X has a Markov distribution. When the distributions p(yjx) of Y

conditional on X = x are simple enough, the pair (X, Y) retains the Markovian structure,
and likewise for the distribution p(xjy) of X conditional on Y = y. The Markovianity of
p(xjy) is crucial because it allows one to estimate the unobservable X = x from the observed
Y = y even in the case of a large n. There are countless papers dealing with numerous prob-
lems in various areas like Biosciences [19,27], Climatology [39], Communications [8], Ecol-
ogy [23], Econometrics and Finance [40], Image or Signal processing [7–9,35]. Let us also
mention [2,14] as pioneering papers. More recently, HMC have been extended to ‘‘pair-
wise’’ Markov chains (PMC [30]) and ‘‘triplet’’ Markov chains (TMC [31,32]) and different
recent studies show that these extensions can be useful in practical applications [6,13,21,22].

As this paper also address readers little familiar with HMC, let us illustrate their inter-
est by considering the following simple situation, which will be used as an example
through the whole paper. The points (1, . . . ,n) are pixels of a line of a digital image,
and each Xi takes its values in X = {x1, x2}, where x1 is ‘‘forest’’ and x2 is ‘‘water’’.
Otherwise, each Yi takes its values in R and thus Y = (Y1, . . . ,Yn) = (y1, . . . ,yn) is the
observed line of the observed digital image. We wish to estimate X = x from Y = y in such
a way that the proportion of wrongly estimated xi would be minimal (an estimator veri-
fying this property will be called ‘‘optimal’’). The simplest way is to consider the distribu-
tion p(xijyi), called ‘‘posterior’’ distribution. Having the proportions of forest p(xi = x1)
and water p(xi = x2), and having the two likelihoods p(yijxi = x1), p(yijxi = x2),
the posterior distribution p(xijyi). is computed by the Bayes rule pðxijyiÞ ¼

pðxiÞpðyi jxiÞ
pðxi¼x1Þpðyijxi¼x1Þþpðxi¼x2Þpðyijxi¼x2Þ

. The optimal estimator x̂ ¼ ŝðyÞ is then given by

x̂i ¼ ŝðyiÞ ¼ arg max
x2X

pðxi ¼ xjyiÞ, for each i = 1, . . . ,n. This ŝ minimizes the error probabil-

ity ER = P[(Xi = x1, ŝ(Yi) = x2) [ (Xi = x2, ŝ (Yi) = x1)]. In other words, when xi is
searched from yi in some way, the error probability (and thus, via the large numbers
law and for n large enough, the proportion of wrongly estimated pixels) must be superior
or equal to ER. We can notice that this optimal method is relatively an intuitive one which
consists of taking for x̂i the class whose probability conditional to the observation yi is
maximal. How to diminish ER? When the random variables Y1, . . . ,Yn are dependent,
one can search xi from (yi, yi+1) by computing p(xijyi, yi+1), or from (yi�1, yi, yi+1) by com-
puting p(xijyi�1, yi, yi+1), . . ., and so on. The drawback is that the computational problems
arise when the number of yj used to estimate xi increases, and it is difficult to exceed about
a dozen. Here we arrive at the interest of the hidden Markov models: they define a distri-
bution p(x, y) = p(x1, . . . ,xn, y1, . . . ,yn) of all the variables X1, . . . ,Xn, Y1, . . . ,Yn in such a
way that the distributions p(xijy) = p(xijy1, . . . ,yi�1,yi, yi+1, . . . ,yn) are computable (for
every i = 1, . . . ,n), even for very large n (one million, or more . . .). The estimator
x̂ ¼ ðx̂1; . . . ; x̂nÞ ¼ ŝMPMðyÞ, with x̂i ¼ arg max

x2X
pðxi ¼ xjyÞ, is then workable and can pro-

duce significantly better results than x̂i ¼ ŝðyiÞ ¼ arg maxpðxi ¼ xjyiÞ above. For example,
we can simultaneously have the optimal ER of about 45% and the error produced by
ŝMPM of about 1%. The distributions p(xijy) are called ‘‘posterior marginal distribu-
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tions’’, and ŝMPM is called ‘‘Bayesian maximum of posterior marginals’’, or ‘‘Bayesian
MPM’’.

Otherwise, the theory of evidence [1,11,12,16–18,36–38,42] provides models which can
be seen, in some situations, as extensions of probabilistic models and ensure some elegant
formulations and solutions of different classification problems. For example, in image pro-
cessing area we focus our examples on in this paper, this theory allows one to deal with
medical images classification [5], radar and optical images fusion [15,24], change detection
[25], or still different detectors fusion in SAR images [41]. To make a first link between the
Bayesian classification and the theory of evidence, let us consider the posterior distribution
p(xijyi) mentioned in the ‘‘forest and water’’ example above. It can be seen as the ‘‘Demp-
ster–Shafer’’ fusion (DS fusion) of two distributions: the ‘‘prior’’ distribution p(xi), and the
distribution pyiðxiÞ ¼ pðyijxiÞ

pðyi jxi¼x1Þþpðyijxi¼x2Þ
, defined by the observation yi and the likelihoods

p(yijxi) (note that pyiðxiÞ is not the posterior distribution p(xijyi)). Such a DS fusion
remains valid in more general context of the ‘‘theory of evidence’’, where the probabilities
p(xi) and pyiðxiÞ are extended to ‘‘belief functions’’. Therefore, the result of the DS fusion
of two belief functions, which is a probability distribution or not, can be seen as an exten-
sion of the posterior distribution p(xijyi), and used to estimate xi from yi. Such an exten-
sion is of interest in numerous situations as, for example, in the following example drawn
from [22]. Let us consider the example of ‘‘water’’ and ‘‘forest’’ above. Let us assume that
pi = p(xi = x1) depends on i, but the two distributions p(yijxi = x1) and p(yijxi = x2) do
not depend on i. Moreover, imagine that for each i = 1, . . . ,n the probability pi =
p(xi = x1) is sampled in [0,1] with respect to some law whose expectation is 0.5. Imagine
that we can not know the parameters p1, . . . ,pn, and thus we consider them as being equal
and their common value is estimated in some way. So, we will use a false s = P[Xi = x1]
instead of p1, . . . ,pn, which gives for each i = 1, . . . ,n an error probability ER(s). According
to the theory of evidence, we can replace the false s = p(xi = x1), 1 � s = p(xi = x2) by a
‘‘weakened’’ mass function m({x1}) = s � w, m({x2}) = 1 � s � w, m({x1, x2}) = 2w. The
DS fusion m� pyi is then a probability distribution on X and its use instead of p(xijyi)
based on s = p(xi = x1), 1 � s = p(xi = x2) can diminish the classification error [22].

The aim of this paper is to answer the following question. Is it possible to simulta-
neously benefit from Markov models and theory of evidence? More precisely, we will focus
on the following question: is it possible to extend the calculus of the posterior marginals
p(xijy), that is classical in the hidden Markov chains context, to a theory of evidence con-
text? We provide different results specifying how the DS fusion can be performed in mult-
isensor HMC and PMC.

Let us notice that similar problems have been recently considered in the context of pair-
wise [28] and triplet [3] Markov fields and different results, somewhat similar to the results
of the present paper, are described in [33]. However, although the ideas are similar, the
practical solutions are very different in Markov fields context considered in [33], and in
Markov chains context considered here. In fact, p(xijy) have to be estimated by some
Monte Carlo Markov chains (MCMC) method in the Markov field context, while they
can be, as specified in the present paper, explicitly computed in the Markov chains one.

The organization of the paper is the following. Classical HMC, PMC, and TMC are
recalled in the next section, with a slight novelty concerning the characterization of sta-
tionary HMC. Basic notions of the theory of evidence are specified in Section 3. Section
4 is devoted to the case of ‘‘evidential priors’’ and contains an extension to PMC of the
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results presented in the case of HMC in [22]. The ‘‘evidential observations’’ and the general
case are dealt with in Section 5, while Section 6 contains concluding remarks and some
perspectives.

2. Triplet Markov chains (TMC)

2.1. Pairwise Markov chains

Let us briefly present the Pairwise Markov chains (PMC) model introduced in [30]. Let
X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be two stochastic processes, where each Xi takes its
values in a finite set X = {x1, . . . ,xk} and each Yi takes its values in R. Let Z = (Z1, . . . ,Zn)
be the ‘‘pairwise’’ process, with Zi = (Xi, Yi). The processes X and Y are said to be a PMC
when Z is a Markov process, which means that its distribution is written

pðzÞ ¼ pðz1Þpðz2jz1Þ � � � pðznjzn�1Þ ð2:1Þ
The classical ‘‘hidden Markov chain’’, which will be denoted by CHMC in the whole
paper, then appears as the following particular case of (2.1):

pðzÞ ¼ pðx1Þpðx2jx1Þ � � � pðxnjxn�1Þpðy1jx1Þ � � � pðynjxnÞ ð2:2Þ
The greater generality of PMC over CHMC can be seen at a ‘‘local’’ and at a ‘‘global’’
level. Recalling that zi = (xi, yi), the general form of the transitions in (2.1) is p(zi+1jzi) =
p(xi+1jxi, yi)p(yi+1jxi+1, xi, yi), and in (2.2) this form is p(zi+1jzi) = p(xi+1jxi)p(yi+1jxi+1).
Therefore the CHMC is a PMC in which p(xi+1jxi, yi) = p(xi+1jxi) and p(yi+1jxi+1,
xi, yi) = p(yi+1jxi+1), which shows the greater generality of PMC at the ‘‘local’’ level. Con-
cerning the ‘‘global’’ level we remark that p(yjx) is a Markov chain in PMC, while it is
given by the very simple formula p(yjx) = p(y1jx1) � � � p(ynjxn) in CHMC. Other differences
between stationary CHMC and stationary PMC are specified in Proposition 2.1 below.

The large success of CHMC is due to the fact that p(xjy) is a Markov chain, with com-
putable transitions p(xi+1jxi, y). This remains true in PMC; in fact, the following
‘‘forward’’ a(xi) = p(y1, . . . ,yi�1, zi) and ‘‘backward’’ b(xi) = p(yi+1, . . . ,ynjzi) probabilities
(which give the classical ones when PMC is a CHMC) are calculable recursively with the
formulas (2.3) and (2.4). This makes possible the calculation of the transitions p(xi+1jxi, y)
and the marginals p(xijy) associated with the distribution of X conditional on Y = y via
formulas (2.5) and (2.6).

aðx1Þ ¼ pðz1Þ; and aðxiþ1Þ ¼
X
xi2X

aðxiÞpðziþ1jziÞ for 2 6 i 6 n ð2:3Þ

bðxnÞ ¼ 1; and bðxiÞ ¼
X

xiþ12X
bðxiþ1Þpðziþ1jziÞ for 1 6 i 6 n� 1 ð2:4Þ

pðxiþ1jxi; yÞ ¼
pðziþ1jziÞbðxiþ1Þ

bðxiÞ
ð2:5Þ

pðxijyÞ ¼
aðxiÞbðxiÞP

x0i2X
aðx0iÞbðx0iÞ

ð2:6Þ

The formulas (2.3)–(2.6) are generalizations of the well known CHMC formulas, which
are obtained by taking p(z1) = p(x1)p(y1jx1) and p(zi+1jzi) = p(xi+1jxi)p(yi+1jxi+1).
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So, roughly speaking, PMC are more general than CHMC, but the interesting proper-
ties that are at the origin of the CHMC’s success are retained. Let us notice that this the-
oretical greater generality of PMC over CHMC can imply significant practical superiority
of PMC based unsupervised segmentation methods over the CHMC-based ones [13].

Let us call ‘‘hidden Markov chain’’ (HMC) every PMC Z = (X, Y) in which X is a Mar-
kov chain (thus CHMC are HMC in which, in addition, p(yjx) = p(y1jx1) � � � p(ynjxn)). The
greater generality of stationary PMC over HMC is stated in the following proposition (the
equivalence of (i) and (ii) is showed in [30], while the condition (iii) is new).
Proposition 2.1. Let Z = (X, Y) be a PMC verifying

(a) p(zi, zi+1) does not depend on 1 6 i 6 n � 1;

(b) p(zi = a, zi+1 = b) = p(zi = b, zi+1 = a) for each 1 6 i 6 n � 1, a, and b.

Then the three following conditions

(i) X is a Markov chain (i.e., Z = (X, Y) is a HMC);

(ii) for each 2 6 i 6 n, p(yijxi, xi�1) = p(yijxi);

(iii) for each 1 6 i 6 n, p(yijx) = p(yijxi)

are equivalent.
Proof. The equivalence of (i) and (ii) is showed in [30]; let us show the equivalence between
(ii) and (iii).

(ii) implies (iii). The distribution of Z = (X, Y) can be written

pðzÞ ¼ pðz1; z2Þ � � � pðzn�1; znÞ
pðz1Þ � � � pðzn�1Þ

¼ pðx1; x2Þ � � � pðxn�1; xnÞ
pðx2Þ � � � pðxn�1Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

aðxÞ

pðy1; y2jx1; x2Þ � � � pðyn�1; ynjxn�1; xnÞ
pðy2jx2Þ � � � pðyn�1jxn�1Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bðx;yÞ

ð2:7Þ

As p(yjjxj�1, xj) = p(yjjxj,xj+1) = p(yjjxj), the integration of b(x, y) with respect to
y1, . . . ,yi�1, yi+1, . . . ,yn gives p(yijxi). Thus pðyijxÞ ¼

pðx;yiÞ
aðxÞ ¼

aðxÞpðyi jxiÞ
aðxÞ ¼ pðyijxiÞ. Conversely,

(iii) implies that p(x, yi) = p(yijxi)p(x) and so, integrating the latter with respect to
x1, . . . ,xi�2, xi+1, . . . ,xn, we obtain p(xi�1, xi, yi) = p(yijxi)p(xi�1, xi). As p(xi�1, xi, yi) =
p(yijxi�1, xi)p(xi�1, xi), we have p(yijxi, xi�1) = p(yijxi), which ends the proof. h

Let us briefly comment the interest of Proposition 2.1 by remarking the following
points:

(i) The equality (2.7) is always true, in any PMC. Thus when the PMC Z = (X, Y) is a
HMC, we have a(x) = p(x) and b(x, y) = p(yjx). The interesting point is to remark
that when the PMC Z = (X, Y) is not a HMC, then a(x) 5 p(x) and b(x, y) 5 p(yjx),
but every p(xi, xi+1) in a(x) is the distribution of (Xi, Xi+1) and every
p(yi, yi+1jxi, xi+1) in b(x, y) is the distribution of (Yi, Yi+1) conditional on (Xi, X-

i+1) = (xi, xi+1) (similarly, every p(xi) in a(x) is the distribution of Xi and every
p(yijxi) in b(x, y) is the distribution of Yi conditional on Xi = xi).
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(ii) The CHMC have been extended in different directions in many papers; however, at
our knowledge, except the PMC proposed in [30] (also see [32] for continuous hidden
chain) all the extensions are HMC. Therefore, accordingly to Proposition 2.1, none
of these extensions can take into account the fact that the aspect of the noise
p(yijxi, xi�1) can depend on both xi and xi�1 (at least, under hypotheses (a) and
(b)). Considering again the example of ‘‘water’’ and ‘‘forest’’ given in Introduction,
we can imagine that for xi = ‘‘forest’’, its visual aspect of the observed yi, whose var-
iability is modelled by the distribution p(yijxi, xi�1), also depends on xi�1. In fact,
trees beside ‘‘water’’ (xi�1 = ‘‘water’’) can have different aspect from the trees else-
where. More generally, we see that PMC can model the fact that the ‘‘noise’’ can
be different on frontiers, while HMC cannot.

(iii) It is possible to show that in PMC p(yijx) can depend on all x1, . . . ,xi�1, xi,
xi+1, . . . ,xn, which means that the noise at a given point can be modelled in a very
complete manner.
2.2. Triplet Markov chains

Let X = (X1, . . . ,Xn), Y = (Y1, . . . ,Yn), and Z = (Z1, . . . ,Zn), with Zi = (Xi, Yi), be sto-
chastic processes as above, with X the hidden process and Y the observed one. The prob-
lem remains the same: estimate X from Y. Considering a Triplet Markov Chain (TMC)
consists of introducing a third process U = (U1, . . . ,Un) such that the triplet
T = (X, U, Y) is a Markov chain. Assuming that the variables Xi, Ui, and Yi take their val-
ues in X = {x1, . . . ,xk}, K = {k1, . . . ,km}, and R, respectively, let us thus assume that
T = (X, U, Y) is a Markov chain. Putting Vi = (Xi, Ui), V = (V1, . . . ,Vn), we can say that
(V, Y) is a PMC, and thus all results of the previous subsection remain valid, with vi =
(xi, ui) instead of xi. In particular, the distributions p(vi+1jvi, y) and p(vijy) are calculable
by formulas (2.3)–(2.6), with variables linked with x replaced by variables linked with v,
and variables linked with z replaced by variables linked with t. This means that
pðxijyÞ ¼

P
ui2Kpðxi; uijyÞ ¼

P
ui2KpðvijyÞ is calculable, which makes possible the use of

the Bayesian MPM restoration method. We also immediately see than TMC are more gen-
eral than PMC, as the latter are obtained by taking K = X and X = U.

The following lemma will be very useful in Sections 4 and 5.

Lemma 2.1. Let V = (V1, . . . ,Vn) be a random chain, each Vi taking its values in the same

finite set V. Then V is a Markov chain if and only if there exist n � 1 positive functions
q1, . . . , qn�1 such that the law of V is proportional to the product q1(v1, v2) · � � � ·
qn�1(vn�1, vn):

pðvÞ / q1ðv1; v2Þ � � � � � qn�1ðvn�1; vnÞ ð2:8Þ
If (2.8) is verified, p(v1) and the transitions p(vijvi�1) of the Markov chain V are given by

pðv1Þ ¼
b1ðv1ÞP

v0
1

b1ðv01Þ
; pðvijvi�1Þ ¼

qi�1ðvi�1; viÞbiðviÞ
biðvi�1Þ

for 2 6 i 6 n� 1 ð2:9Þ

where b1(v1), . . . ,bn(vn) are calculated from q1, . . . , qn�1 by the recursive formulas

bnðvnÞ ¼ 1; and bðvi�1Þ ¼
X

vi

biðviÞqi�1ðvi�1; viÞ for 2 6 i 6 n� 1 ð2:10Þ
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Having p(v1) and the transitions p(vijvi�1), the margins p(vi) are classically calculated by the

recursive formulas

pðv1Þ given; and pðviÞ ¼
X
vi�1

pðvi�1Þpðvijvi�1Þ for 2 6 i 6 n ð2:11Þ
Proof. If V is a Markov chain, we can take q1(v1, v2) = p(v1, v2), q1(v2, v3) =
p(v3jv2), . . . ,qn�1(vn�1, vn) = p(vnjvn�1). Then (2.8) is verified with p(v) = q1(v1,v2) · � � � ·
qn�1(vn�1, vn), and both (2.9) and (2.10) are verified with all bi(vi) are equal to 1.

Conversely, let us assume that (2.8) is verified. Let p(v) = q1(v1, v2) · � � � · qn�1(vn�1, vn)/
S, where S ¼

P
v1;...;vn

q1ðv1; v2Þ � � � � � qn�1ðvn�1; vnÞ. V is a Markov chain if for every
3 6 i 6 n p(vijv1, . . . ,vi�1) does not depend on (v1, . . . ,vi�2). We have

pðvijv1; . . . ; vi�1Þ ¼
pðv1; . . . ; vi�1; viÞ

pðv1; . . . ; vi�1Þ

¼
P

viþ1;...;vn
q1ðv1; v2Þ � � � � � qn�1ðvn�1; vnÞ=SP

vi ;...;vn
q1ðv1; v2Þ � � � � � qn�1ðvn�1; vnÞ=S

¼
qi�1ðvi�1; viÞ

P
viþ1;...;vn

qiðvi; viþ1Þ � � � � � qn�1ðvn�1; vnÞP
vi ;...;vn

qi�1ðvi�1; viÞqiðvi; viþ1Þ � � � � � qn�1ðvn�1; vnÞ
ð2:12Þ

On the one hand, we see that p(vijv1, . . . ,vi�1) only depends on vi�1 and thus (2.12) gives
p(vijvi�1). On the other hand, we can calculate the sum

P
viþ1;...;vn

qiðvi; viþ1Þ � � � � �
qn�1ðvn�1; vnÞ beginning with vn, continuing with vn�1, . . . and so on until vi+1. Doing so
we see, according to (2.10), that

P
viþ1;...;vn

qiðvi; viþ1Þ � � � � � qn�1ðvn�1; vnÞ ¼ biðviÞ. Doing
the same in the denominator of (2.12) until vi, we obtain (2.9), which ends the proof. h

We will be interested on p(xijy), and thus, according to this lemma, all we have to do
is to show that p(vjy) verifies (2.8), where y is a constant. p(vijy) is then calculable with
(2.9)–(2.11), and p(xijy) is given by pðxijyÞ ¼

P
ui2Kpðxi; uijyÞ ¼

P
ui2KpðvijyÞ.

Remark 2.1. Let us denote by r the number of elements in the finite set V. According to
(2.10), calculating all b1(v1), . . . ,bn(vn) needs r(n � 1) additions and r(n � 1) multiplications.
Then, according to (2.9), making r(n � 1) divisions gives p(v1) all the a posteriori transitions
p(vijvi�1) for 2 6 i 6 n � 1. Otherwise, according to (2.11), r(n � 1) further additions and
r(n � 1) additional multiplications give the margins p(vi). Finally, all p(vi) are computed after
5r(n � 1) elementary operations and important is that their number is linear in n. When
Vi = (Xi,Ui) takes its values in V � X · K, with X = {x1, . . . ,xk} and K = {k1, . . . ,km}, we
have r 6 km and thus the computation of all the margins p(xijy) needs no more than nm

further additions. As a result, all margins p(xijy) are calculated by less than
5km(n � 1) + nm = (5k + 1)mn � 5km elementary operations. Important is that this total
number increases proportionally to n and thus remains generally workable for very large n.
3. Theory of evidence

Let us consider X = {x1, . . . ,xk}, and its power set P(X) = {A1, . . . ,Aq}, with q = 2n. A
function M from P(X) to [0, 1] is called a ‘‘basic belief assignment’’ (bba) if M(;) = 0 and
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P
A2PðXÞMðAÞ ¼ 1. A bba M defines then a ‘‘plausibility’’ function Pl from P(X) to [0, 1]

by PlðAÞ ¼
P

A\B6¼;MðBÞ, and a ‘‘credibility’’ function Cr from P(X) to [0, 1] by
CrðAÞ ¼

P
B�AMðBÞ. For a given bba M the corresponding plausibility function Pl and

credibility function Cr are linked by Pl(A) + Cr(Ac) = 1, so that each of them defines
the other. Conversely, Pl and Cr can be defined by some axioms, and each of them defines
then an unique corresponding bba M. More precisely, Cr is a function from P(X) to [0, 1]
verifying Cr(;) = 0, Cr(X) = 1, and Crð

S
j2J AjÞP

P
I�J
I 6¼;
ð�1ÞjI jþ1Crð

T
j2IAjÞ, and Pl is a

function from P(X) to [0,1] verifying analogous conditions, with 6 instead of P in the
third one. A credibility function Cr verifying such conditions also is the credibility func-
tion defined by the bba MðAÞ ¼

P
B�Að�1ÞjA�BjCrðBÞ.

Finally, each of the three functions M, Pl, and Cr can be defined in an axiomatic way,
and each of them defines the two others. Furthermore, a probability function p can be seen
as a particular case in which Pl = Cr = p.

When two bbas M1, M2 represent two pieces of evidence, we can combine – or fuse –
them using the so called ‘‘Dempster–Shafer fusion’’ (DS fusion), which gives
M = M1 �M2 defined by:

MðAÞ ¼ ðM1 �M2ÞðAÞ /
X

B1\B2¼A

M1ðB1ÞM2ðB2Þ ð3:1Þ

We will say that a bba M is ‘‘Bayesian’’ when, being null outside singletons, it defines a
probability and we will say that it is an ‘‘evidential’’ bba when it is not a Bayesian one.
One can then see that when either M1 or M2 is Bayesian, then the fusion result M is Bayes-
ian. In fact, for M1 Bayesian M1(B1) is null outside singletons, and thus M1(B1)M2(B2) in
(3.1) also is null outside singletons. This means that M(A) in (3.1) is null outside singletons
because if A is not a singleton, all M1(B1) such that A = B1 \ B2 (for some B2) are null.
Otherwise, as mentioned in Introduction, one may see that the calculus of the posterior
probability is a DS fusion of two Bayesian bbas. Note that the different extensions of
the present paper are based on this very important point.

Example 3.1. Let X = (X1, . . . ,Xn), Y = (Y1, . . . ,Yn) be a CHMC, with p(x, y) given
by (2.2). The posterior distribution p(xjy) of X can then be seen as a normalized
product of the probability p1(x) = p(x1)p(x2jx1) � � � p(xnjxn�1) and the probability py

2ðxÞ ¼
pðy1jx1Þ...pðynjxnÞP

x02Xn pðy1jx01Þ...pðynjx0nÞ
. As the probabilities p1 and py

2 are equivalent to Bayesian bba M1 and

My
2 (we have p1(x1, . . . ,xn) = M1({x1}, . . . , {xn}) and py

2ðx1; . . . ; xnÞ ¼ My
2ðfx1g; . . . ; fxngÞ,

we can consider that the Bayesian bba My equivalent to the probability p(xjy) is the result
of DS fusion of M1 and My

2 : My ¼ M1 �My
2.
Example 3.2. Let us consider the problem of satellite or airborne optical image segmenta-
tion into two classes X = {x1, x2} ‘‘forest’’ and ‘‘water’’, as considered in Introduction.
However, let us imagine that there are clouds. Thus, at pixel i, we have a random variable
Xi taking its values in X = {x1, x2}, whose distribution is p1(xi). The observed Yi = yi 2 R

possibly follows three distributions: p(yijx1), p(yijx2), and p(yijc), with c for ‘‘clouds’’.
Thus yi defines on {x1, x2, c} the probability pyiðx1Þ ¼ pðyijx1Þ=a, pyiðx2Þ ¼ pðyijx2Þ=a,
pyiðcÞ ¼ pðyijcÞ=a, with a = p(yijx1) + p(yijx2) + p(yijc). Therefore, we have two probabil-
ity distributions: p1 on X = {x1, x2}, and pyi on {x1, x2, c}, and the problem is to fuse
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them to obtain a probability on X which would be an extension of the classical posterior
distribution, and which could be used to perform some Bayesian classification. One pos-
sible way of performing such a fusion, that we will consider in this paper, uses the theory
of evidence in the following way. Consider the bba M1 defined on {{x1}, {x2}, {x1, x2}}
by M1({x1}) = p1(x1), M1({x2}) = p1(x2), M1({x1, x2}) = 0 (note that M1 simply is the
Bayesian bba associated with p1), and the bba Myi

2 defined on {{x1}, {x2}, {x1, x2}} by
Myi

2 ðfx1gÞ ¼ pyiðx1Þ, Myi
2 ðfx2gÞ ¼ pyiðx2Þ, Myi

2 ðfx1;x2gÞ ¼ pyiðcÞ. The fused bba
M ¼ M1 �Myi

2 is a probability on X and can be seen as an extension of the classical pos-
terior probability p(xi jyi); in fact, when there are no clouds, Myi

2 is defined on {{x1}, {x2}}
and the bba MyiðxiÞ ¼ ½M1 �Myi

2 �ðxiÞ is equivalent to the classical posterior distribution
p(xijyi). Moreover, it is possible to attach an intuitive meaning to Myi

2 ðXÞ: as we are only
interested on ‘‘water’’ and ‘‘forest’’, Myi

2 ðXÞ models the ignorance attached with the fact
that one can not see through clouds. How to pass from one pixel i to a Markov model
defined on a line (1, . . . ,n)? Let p1(x) = p(x1)p(x2jx1) � � � p(xnjxn�1) be a Markov chain
distribution and let M1 be the Bayesian bba associated with p1 as in Example 3.1 above.
Let us consider My

2ðu1; . . . ; unÞ ¼ My1
2 ðu1Þ � � � � �Myn

2 ðunÞ, where each ui is in
P(X) = {;,{x1}, {x2}, X}and My1

2 ; . . . ;Myn
2 are the bba Myi

2 defined above. We see that if
there are no clouds, My

2ðu1; . . . ; unÞ simply is My
2ðfx1g; . . . ; fxngÞ in Example 3.1 above.

Therefore MyðxÞ ¼ ½M1 �My
2�ðxÞ generalizes the Markov distribution p(xjy) (probability

distribution and Bayesian bba being equivalent, we note My(x1, . . . ,xn) instead of
My({x1}, . . . , {xn}) in order to simplify). Moreover, My ¼ M1 �My

2 is itself a Markov
law. In fact, we have M1 �My

2½ �ðxÞ /
P

x2uM1ðxÞMy
2ðuÞ on the one hand (the sum is taken

over u = (u1, . . . ,un) such that for the fixed x = (x1, . . . ,xn) one has x1 2 u1, . . . ,xn 2 un),

and
P

x2uM1ðxÞMy
2ðuÞ ¼ M1ðxÞ

Qn
i¼1

P
xi2ui

Myi
2 ðuiÞ

h i
, on the other hand. Therefore the DS

fusion does not destroy the Markovianity in the simple case considered here; however,
as we will see in the following, it often does.

Let us remark that in Example 3.2 above, the Markov chain p1(x) = p(x1)
p(x2jx1) � � � p(xnjxn�1) can be replaced with a Markov field, and such a model has been suc-
cessfully applied in synthetic and real image segmentation in [4].
4. Evidential priors in PMC

Let us return to the situation described in Example 3.1 above. When wishing to model the
prior information M1 by a ‘‘Markov’’ evidential distribution, things become less direct than
in Example 3.2 because the DS fusion, even with a simple probabilistic My

2 defined by a obser-
vation Y = y, destroys the Markovianity. However, Bayesian processing can still be applied
because, as we are going to see in the following, the margins p(xijy) remain computable.

Let us remark that the main interest of the TMC models T = (X, U, Y) lies in the fact
that the distribution of V = (X, U) conditional on Y = y is a Markov chain distribution.
In other words, p(x, ujy) is a PMC distribution. Therefore, the main problem is to show
that for fixed Y = y we are faced with some PMC p(x, ujy). This is the reason that we
will directly concentrate on this problem in this section, and in the following one as well.
Thus TMC ‘‘disappear’’ and only PMC are dealt with; however, the content of both sec-
tions is valid for every fixed Y = y, and thus the stated properties are true because
T = (X, U, Y) is a Markov chain. Moreover, having in mind that T = (X, U, Y) is a
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Markov chain is determining when dealing with the parameter estimation problem; for
example, this allowed us to use the ‘‘Expectation-Maximization’’ (EM) method in
[22].

In this Section we specify the possibility of extending the CHMC and PMC, with along
the corresponding Bayesian restorations, to the evidential priors case. We begin by CHMC
(Proposition 3.1), which have already been studied [22]. However, we present here a rapid
proof based on Lemma 2.1, and the same lemma is then used to present original result con-
cerning PMC.

Definition 4.1. A bba M defined on P(Xn) will be called ‘‘Evidential Markov chain’’
(EMC) if it is null outside [P(X)]n and if it can be written

MðA1;A2; . . . ;AnÞ ¼ MðA1ÞMðA2jA1Þ; . . . ;MðAnjAn�1Þ ð4:1Þ

where for each i = 2, . . . ,n and Ai 2 P(X), M(jAi) is a bba on P(X). Let us remark that a
Bayesian EMC (which is null outside A = (A1, A2, . . . ,An) such that all A1, A2, . . . ,An

are singletons) is equivalent to the classical Markov chain, which is obtained according
to p(x) = p(x1)p(x2jx1) � � � p(xnjxn�1) = M({x1})M({x2}j{x1}), . . . ,M({xn}j{xn�1}).
Proposition 4.1. Let M1 be an EMC on [P(X)]n, and My
2 a probability on Xn defined from the

observed process Y = y 2 Rn by My
2ðx1; . . . ; xnÞ / pðy1jx1Þ � � � pðynjxnÞ. Then the time

requested to compute marginal distributions My(xi) of the probability distribution

My ¼ M1 �My
2 is linear in the number of observations.
Proof. Let K = P(X), and vi = (xi,ui), where ui 2 K. For fixed y = (y1, . . . ,yn), let
q1, . . . ,qn�1 be functions defined on (X · K)2 by

q1ðv1; v2Þ ¼ 1½x12u1�M1ðu1Þpðy1jx1Þ1½x22u2�M1ðu2ju1Þpðy2jx2Þ;

q2ðv2; v3Þ ¼ 1½x32u3�M1ðu3ju2Þpðy3jx3Þ;

. . .

qn�1ðvn�1; vnÞ ¼ 1½xn2un�M1ðunjun�1ÞpðynjxnÞ:

On the one hand, q1(v1, v2)q2(v2, v3) � � � qn�1(vn�1, vn) defines a Markov chain
V = (V1, . . . ,Vn) by virtue of Lemma 2.1. On the other hand, the DS fusion
Myðx1; . . . ; xnÞ ¼ ½M1 �My

2�ðx1; . . . ; xnÞ can be seen as the calculation of the distribution
p(x), which is the marginal distribution obtained by summing p(x, u) with respect to
u = (u1, . . . ,un), of the Markov distribution p(v) = p(x, u). Therefore the margins My(xi)
are computable from q1, . . . ,qn�1 as specified in Lemma 2.1, and the requested time is
linear in the number of observations. h
Proposition 4.2. Let M1 be an EMC on [P(X)]n, and My
2 a probability on Xn defined from the

observed process Y = y 2 Rn by My
2ðx1; . . . ; xnÞ / pðy1;y2jx1;x2Þ���pðyn�1;ynjxn�1;xnÞ

pðy2jx2Þ���pðyn�1jxn�1Þ (see (2.6)).

Then the time requested to compute marginal distributions My(xi ) of the probability

distribution My ¼ M1 �My
2 is linear in the number of observations.
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The proof is similar to the proof of the Proposition 4.1, with

q1ðv1; v2Þ ¼ 1½x12u1�M1ðu1Þ1½x22u2�M1ðu2ju1Þ
pðy1; y2jx1; x2Þ

pðy2jx2Þ
;

q2ðv2; v3Þ ¼ 1½x32u3�M1ðu3ju2Þ
pðy2; y3jx2; x3Þ

pðy3jx3Þ
;

. . . ;

qn�2ðvn�2; vn�1Þ ¼ 1½xn�12un�1�M1ðun�1jun�2Þ
pðyn�2; yn�1jxn�2; xn�1Þ

pðyn�1 j xn�1Þ
;

qn�1ðvn�1; vnÞ ¼ 1½xn2un�M1ðun j un�1Þpðyn�1; yn j xn�1; xnÞ:

Finally, knowing that the extension of CHMC specified in Proposition 4.1 is of interest
(reference [22]), and knowing that the extension of CHMC to PMC also is (reference
[13]), we can conjecture that there are some situations in which the extension of PMC spec-
ified in Proposition 4.2 would be of interest.

5. Evidential observation information in PMC

Let us first consider the case of one sensor. Considering again (2.7), let us consider the
case in which a(x) remains a probability distribution (it is equivalent to an EMC M0) and
in which the Markov chain induced on Xn by b(x, y) (for fixed y) is replaced by an EMC
My

1. Likely to what is said in the previous Section, the DS fusion of M0 with My
1 generalizes

then the posterior distribution induced by (2.7). Such generalization can be well suited to
several physical situations; for example, see Example 3.2 in Section 3 and a similar exam-
ple in [4]. The aim of this Section is to extend such modeling to the PMC context. We have:

Proposition 5.1. Let X = {x1, . . . ,xk} be the set of classes and P(X) be the power of X. Let

M0 be a Bayesian bba equivalent to the Markov chain a(x) in (2.7), and let My
1 be an EMC

defined on [P(X)]n from the observed process Y = y 2 Rn by My
1ðu1; . . . ; unÞ /

pðy1;y2ju1;u2Þ...pðyn�1;ynjun�1;unÞ
pðy2ju2Þ...pðyn�1jun�1Þ (which extends b(x, y) in (2.7) to an EMC).

Then the margins My(xi) of the probability distribution given on Xn by the Bayesian bba
My ¼ M0 �My

1 are calculable with a number of elementary operations inferior or equal to

N = (5k + 1)2kn � 5k2k. Therefore, the Bayesian MPM segmentation is workable for

convenient n and k.

The proof is similar to the proof of the Proposition 4.1, with

q1ðv1; v2Þ ¼ 1½x12u1�M1ðx1Þ1½x22u2�M1ðx2jx1Þ
pðy1; y2ju1; u2Þ

pðy2ju2Þ
;

q2ðv2; v3Þ ¼ 1½x32u3�M1ðx3jx2Þ
pðy2; y3ju2; u3Þ

pðy3ju3Þ
;

. . . ;

qn�2ðvn�2; vn�1Þ ¼ 1½xn�12un�1�M1ðxn�1jxn�2Þ
pðyn�2; yn�1jun�2; un�1Þ

pðyn�1jun�1Þ
;

qn�1ðvn�1; vnÞ ¼ 1½xn2un�M1ðxnjxn�1Þpðyn�1; ynjun�1; unÞ:
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As the number of sets in P(X) is 2k, we find the maximal number of elementary operations
N = (5k + 1)2kn � 5k2k by applying Remark 2.1 to r = 2k and m < 2k.

Finally, let us consider the case of numerous sensors: each Y i ¼ ðY 1
i ; . . . ; Y m

i Þ takes its
values in Rm. In the probabilistic framework, when the sensors are independent condition-
ally on X, (2.7) is extended to

pðx; yÞ ¼ pðx1; x2Þ . . . pðxn�1; xnÞ
pðx2Þ . . . pðxn�1Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}aðxÞ

� pðy1
1; y

1
2jx1

1; x
1
2Þ . . . pðy1

n�1; y
1
njx1

n�1; x
1
nÞ

pðy1
2jx1

2Þ . . . pðy1
n�1jx1

n�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} Þb1ðx;y1Þ
� � � �

� pðym
1 ; y

m
2 jxm

1 ; x
m
2 Þ . . . pðym

n�1; y
m
n jxm

n�1; x
m
n Þ

pðym
2 jxm

2 Þ . . . pðym
n�1jxm

n�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}bmðx;ymÞ
ð5:1Þ

In this general probabilistic model we can either extend a(x) or one of b1(x, y1), . . . ,
bm(x, ym) to a bba, as described above. So, let us denote by M0 the possible extension
of a(x), and M1, . . . ,Mm the m possible extensions of b1(x, y1), . . . ,bm(x, ym). Therefore
when all the bbas M0,M1, . . . ,Mm are Bayesian, M = M0 �M1 � � � � �Mm is Bayesian
and is equivalent to the posterior distribution p(xjy) of the probabilistic model (5.1).
Moreover, we can consider such extensions simultaneously knowing that if one at least
among the bbas is Bayesian, then M = M0 �M1 � � � � �Mm is Bayesian. However, we
will consider the most general case, in which no hypothesis is made on any bba
M0,M1, . . . ,Mm (each of them can be Bayesian or not). We have:

Proposition 5.2. Let X = {x1, . . . ,xk} be the set of classes and K = P(X) be the power of X.

Let M0, M1, . . . ,Mm be EMCs, where M0 (possibly) extends a(x) and M1, . . . ,Mm (possibly)

extend b1(x, y1), . . . , bm(x, ym) in (5.1).

Then the number of elementary operations required for calculation of the margins M(ui) of
the bba M = M0 �M1 � � � � �Mm is linear in observations. More precisely, it is inferior or

equal to N = 5(2k(m+2))(n � 1).
Proof. The EMCs Mj are of the form Mjðuj
1; . . . ; uj

nÞ ¼ Mjðuj
1ÞMjðuj

2ju
j
1ÞMjðuj

nju
j
n�1Þ. As

above, we will use the Lemma 2.1. Let us consider q1,q2, . . . ,qn�1 defined on [K · Km+1]2

(each vi = (ui, wi) 2 K · Km+1, with wi ¼ ðu0
i ; . . . ; um

i ÞÞ by

q1ðv1; v2Þ ¼ 1½u1¼u0
1
\���\um

1
�

Ym

j¼0

Mjðuj
1Þ

" #
1½u2¼u0

2
\���\um

2
�

Ym

j¼0

Mjðuj
2ju

j
1Þ

" #
;

q2ðv2; v3Þ ¼ 1½u3¼u0
3
\���\um

3
�

Ym

j¼0

Mjðuj
3ju

j
2Þ

" #
;

. . .

qn�1ðvn�1; vnÞ ¼ 1½un¼u0
n\���\um

n �

Ym
j¼0

Mjðuj
nju

j
n�1Þ

" #
:

By virtue of Lemma 2.1, the functions q1, q2, . . . ,qn�1 define a Markov chain on
[K · Km+1]n, such that M(vi) = M(ui, wi) is computable and the number of elementary
operations requested is linear in observations. Then M(ui) is obtained by MðuiÞ ¼P

wi
Mðui;wiÞ.
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Concerning the number of elementary operations, each qi takes its values in
[K · Km+1]2, where K is the power set of X = {x1, . . . ,xk}. Therefore K · Km+1 contains
r = 2k(m+2) elements. Knowing that the calculation of all p(vi) requires N = 5r(n � 1)
elementary operations (see Remark 2.1), the total number of elementary operations
requested is inferior to N = 5(2k(m+2))(n � 1). h

Therefore, the result M(u1, . . . ,un) in Proposition 5.2 is not necessarily a probability
measure. However, it is still possible to perform statistical segmentation using one among
different possible decision rules (see [12]). For example, the so-called ‘‘maximum of plau-
sibility’’ works as follows. Once M(ui) is computed, we calculate the plausibility of each
xi = x 2 X by Plðxi ¼ xÞ ¼

P
x2ui

MðuiÞ, and then the estimated x̂ ¼ ðx̂1; . . . ; x̂nÞ is given
by x̂i ¼ arg maxxPlðxi ¼ xÞ. We obtain a compatible extension as when M(u1, . . . ,un) is
a probability distribution, the maximum of plausibility x̂ ¼ ðx̂1; . . . ; x̂nÞ is the Bayesian
MPM solution.

Remark 5.1. The number r = 2k(m+2) of elements in K · Km+1 strongly increases with km,
which can pose problems. However, in practice different bba can be null on numerous
elements of K · Km+1 and thus the number of elements effectively used can be much
smaller than 2k(m+2). In fact, the EMCs M0,M1, . . . ,Mm can take their values in
(K0)n, (K1)n, . . . , (Km)n, respectively, where K0 � K, K1 � K, . . . ,Km � K. Then qi�1(vi�1, vi)
is non-null only for vi = (ui, wi) 2 K · Km+1, with wi ¼ ðu0

i ; . . . ; um
i Þ, such that

u0
i 2 K0; . . . ; um

i 2 Km, and ui ¼ u0
i \ . . . \ um

i . In different examples specified in the paper,
we can see that the number of elements in K0,K1,. . . effectively used is much smaller than
2k(m+2).
Example 5.1. Let us consider the following example, already mentioned in [33] in the con-
text of Markov fields. Let us imagine a satellite image representing a scene containing a
river (x1), a sea (x2), urban area (x3), and forest (x4). Let X = {x1, x2, x3, x4},
K = P(X), and let n be the number of pixels. Imagine that we have some prior knowledge
about the probabilistic distribution of ‘‘water’’, which is {x1, x2}, and ‘‘land’’, which is
{x3, x4}, and that this distribution is a Markov chain. Thus M0 is a Markov chain on
(K0)n, with K0 = {{x1, x2}, {x3, x4}}, and can be seen as an EMC on Kn. Furthermore,
there are two sensors: an optical sensor Y1, and an infrared sensor Y2. The optical sensor
can not see any difference between the river (x1) and the sea (x2), and there are
some clouds hiding a part of the scene. Thus this sensor is sensitive to
K1 = {{x1, x2}, {x3}, {x4}, X} and, for every 2 6 i 6 n and u1

i�1, u1
i in K1, this sensitivity

is given by a likelihood pðy1
i�1; y

1
i ju1

i�1; u
1
i Þ. This defines the function b1(u1, y1) as in (5.1),

with x 2 Xn replaced by u1 2 (K1)n. The infrared sensor mainly detects temperature differ-
ences and can only detect a difference between the urban area and other classes; thus it is
sensitive to K2 = {{x3}, {x1, x2, x4}}. As above, this sensitivity is given by a likelihood
pðy2

i�1; y
2
i ju2

i�1; u
2
i Þ, which defines b2(u2,y2), with u2 2 (K2)n. Then b1(u1, y1) defines Markov

chain M1 on (K1)n, and b2(u2, y2) defines a Markov chain M2 on (K2)n (both M1 and M2

are EMC on Kn). Finally, we have three EMC M0, M1, M2 defined on Kn and, according to
the Lemma 2.1, the margins M(ui) of the bba M = M0 �M1 �M2 are computable. Let us
see on which sets A 2 K the margins M(ui = A) are non-null. M(ui = A) is non-null if there
exist (A0,A1,A2) 2 K0 · K1 · K2 such that A = A0 \ A1 \ A2 and M0(A0)M1(A1)M2(A2) is
non-null. Given the forms of K0, K1, and K2 specified above, we find that M(ui = A) is



14 W. Pieczynski / Internat. J. Approx. Reason. 45 (2007) 1–16
non-null on K* = {{x1, x2}, {x3}, {x4}}. Finally, having M(ui = A) on K*, the corre-
sponding plausibility on X = {x1, x2, x3, x4} is computed by Pl(xi = x1) =
Pl(xi = x2) /M(ui = {x1, x2}), Pl(xi = x3) /M(ui = {x3}), and Pl(xi = x4) /M(ui =
{x4}), which is then used to estimate x̂ ¼ ðx̂1; . . . ; x̂nÞ by x̂i ¼ maxxPlðxi ¼ xÞ for each
1 6 i 6 n.
6. Conclusions and perspectives

We dealt in this paper with different models allowing one simultaneously benefit from
the hidden Markov chains (or their recent extensions) and the theory of evidence. We
showed the calculability of the posterior marginal distributions, with immediate applica-
tion to Bayesian hidden signal restoration. More precisely, we considered two cases: (i)
the prior distribution of the hidden process becomes a ‘‘basic belief assignment’’ (bba);
(ii) the distribution of the hidden process defined by the observed one becomes a bba.
In both cases the Dempster–Shafer fusion generalizes the classical calculus of the posterior
distribution, and thus is quite interesting in different restoration problems.

Let us mention some possible perspectives for further studies. The parameter estimation
problem, whose solution is preliminary to unsupervised restoration methods, is undoubt-
edly among the most important, and difficult, problems. First applications of the ‘‘Expec-
tation-Maximization’’ (EM [20]) or ‘‘Iterative Conditional Estimation’’ (ICE [4,10]) in
triplet Markov models seem promising [3,21,22] and thus their applications in the general
model proposed in the paper could be of interest. Otherwise, the independent sensors con-
sidered here could be extended to correlated sensors, as suggested in a simpler case in [29].
Finally, Markov chain model can be extended to a Markov tree model in a relatively
straight manner [26,34], and thus the different results of the present paper could possibly
be generalized to such models, with application to segmentation of multisensor and mul-
tiresolution data.
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