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Abstract

An important problem in multiresolution analysis of signals or images consists in estimating hidden random variables

x ¼ fxsgs2S from observed ones y ¼ fysgs2S. This is done classically in the context of hidden Markov trees (HMT).

HMT have been extended recently to the more general context of pairwise Markov trees (PMT). In this note, we

propose an adaptive filtering algorithm which is an extension to PMT of the Kalman filter (KF).

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

An important problem in signal and image
processing consists in recursively estimating a set
of hidden variables x ¼ fxsgs2S from a set of
observed variables y ¼ fysgs2S. To that end,
Bayesian estimation algorithms have been devel-
oped, mainly in the framework of hidden Markov
models (HMM).

Now, it is well-known that if ðx; yÞ is a classical
HMM, then the pair ðx; yÞ itself is Markovian.
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Conversely, starting from the sole assumption that
ðx; yÞ is a Markov chain (MC), i.e. that ðx; yÞ is a
so-called pairwise Markov model (PMM), is a
more general point of view which nevertheless
enables the development of similar restoration
algorithms. More precisely, some of the classical
Bayesian restoration algorithms used in hidden
Markov fields (HMF), hidden Markov chains
(HMC) or hidden Markov trees (HMT), have
been generalized recently to the frameworks of
pairwise Markov fields (PMF) [1], pairwise Mar-
kov chains (PMC) with discrete [2] or continuous
[3,4] hidden process, and of pairwise Markov trees
(PMT) with discrete [5,6] or continuous [6,7]
hidden variables.
Let us turn back with more details to some

estimation algorithms used in HMM. In the
d.
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context of linear Gaussian HMC, a classical
adaptive filtering solution is provided by the
celebrated KF. This method was first introduced
in the control engineering community [8]. Since
then, the KF has been extended in various
directions and a rich family of estimation algo-
rithms have been developed (see e.g. [9,10]). The
KF has now become a major tool in signal
processing and automatic control [10] as well as
in the statistical and time series communities (see
e.g. [11–14]).

Efficient restoration algorithms have also been
developed in the context of HMT (see e.g. [15–18],
as well as the tutorial [19]). These smoothing-like
algorithms enable to compute the conditional law
pðxsjfysgs2SÞ of a hidden variable xs at an arbitrary
node s 2 S, given all observations fysgs2S. In
particular, the algorithm which was developed in
[17] in the context of Gaussian HMT is a two-step
procedure: firstly, a filtering sweep in the back-
ward (fine-to-coarse) direction computes the con-
ditional law of the root node xr given fysgs2S; and
then a smoothing sweep in the forward (coarse-to-
fine) direction eventually computes pðxsjfysgs2SÞ,
via a computational procedure which iterates
along the path relating the root node r to node s

(see Fig. 1).
r

S -

S

S2S1 S3

Fig. 1. The tree
In this note, we will see that in the cases where
the laws of interest are the conditional laws of the
last generation leaves, these two sweeps can indeed
be replaced by just one (block) filtering sweep in
the forward (coarse-to-fine) direction. Such a
procedure is feasible because in an MT the
successive subsets of variables belonging to a given
generation Sn (see Fig. 1) form an MC, and one
can thus adapt to tree structures the KF which
originally was derived for HMCs. In general, the
algorithm we get is no longer linear (it however
remains polynomial) in the number of nodes.
However, such a filtering solution presents
the advantage of being adaptive, and is thus
well-suited to situations where the observations
become available progressively, generation after
generation.
In this note, we thus extend the KF to PMT.

More precisely, the algorithm we obtain is an
extension to PMT of the algorithm derived in [3] in
the context of PMC, which itself was an extension
of a particular Kalman-like algorithm. The rest of
this note is organized as follows. In Section 2 we
briefly recall some embedded Markovian models
that are used in tree-based structures. An exten-
sion to the PMT model of the KF is given in
Section 3.
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2. Hidden vs. pairwise Markov trees

Let S be a finite set of indices, and let us
consider a tree structure with nodes indexed on S.
Let us partition S in terms of its successive
generations S1; . . . ;SN . So, S1 is made of the root
node r, S2 gathers the children of node r, and so
on. Each node s (apart from the root node r) has
one father denoted by s�. The children of a node s

are denoted by sþ, and the set of all descendants of
a node s is denoted by sþþ (see Fig. 1).

Let now x ¼ fxsgs2S and y ¼ fysgs2S be two sets
of random variables indexed on S. Each xs (resp.
ys) belongs to Rp (resp. to Rq). Let pðxsÞ (resp.
pðysÞ) denote the probability density function (pdf)
of xs (resp. of ys) w.r.t. Lebesgue measure, and let
pðxsjfysgs2SÞ denote the conditional pdf of xs given
fysgs2S. Other pdf’s or conditional pdf’s of interest
are defined similarly.

The classical HMT model is widely used for
modeling pðx; yÞ. In this model, x is a Markov tree
(MT), and conditionally on x, the variables ys are
independent and satisfy pðysjxÞ ¼ pðysjxsÞ. For
reasons to become clear below, in the sequel we
will no longer call such a model an HMT, but
rather a hidden Markov tree with independent
noise (HMT-IN). In an HMT-IN the pdf of the
pair ðx; yÞ can thus be written as

pðx; yÞ ¼ pðxrÞ
YN
i¼2

Y
s2Si

pðxsjxs�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pðxÞ

�
Y
s2S

pðysjxsÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
pðyjxÞ

.

(1)

Now, let us introduce the pair zs ¼ ðxs; ysÞ, and let
z ¼ fzsgs2S. A PMT is a model in which we only
assume that z is an MT:

pðzÞ ¼ pðzrÞ
YN
i¼2

Y
s2Si

pðzsjzs�Þ. (2)

One can check easily that (1) implies (2), so any
HMT-IN is a PMT. However, the converse is not
true. More precisely, in a PMT the transition pdf
pðzsjzs�Þ reads

pðzsjzs�Þ ¼ pðxs; ysjxs� ; ys�Þ

¼ pðxsjxs� ; ys�Þpðysjxs; xs� ; ys�Þ;
so an HMT-IN is a particular PMT in which
pðxsjxs� ; ys�Þ reduces to pðxsjxs�Þ and pðysjxs;xs� ;
ys�Þ to pðysjxsÞ. These simplifications are rather
rough, and we can see that a lot of information is
lost when making use of an HMT-IN rather than
of a PMT.
Let us also mention an intermediate model,

which we call a hidden Markov tree (HMT), in
which both x and ðx; yÞ are MT but the observa-
tions ys are not necessarily independent condition-
ally on x. Of course, any HMT-IN is an HMT,
and any HMT is a PMT. However, PMT are
more general than HMT, because if (2) holds, x is
not necessarily an MT, as we see from the
following result, proved in [7] (an analogous
result for the case where x is discrete can be found
in [5]):

Proposition 1. Let z be a PMT satisfying (2).
Assume that the tree is dyadic, (i.e., that each node

s 2 SnSn has exactly two children s1 and s2), and

that

For all s 2 SnS1; pðxsjxs� ; ys�Þ ¼ pðxsjxs�Þ. (3)

Then x is an MT. Conversely, assume that z and x

are MT, and that for all s 2 SnSn, pðzs1 jzsÞ ¼

pðzs2 jzsÞ, i.e. that conditionally on the father, the

laws of the children are equal. Then (3) holds.
3. Linear Gaussian PMT and Kalman filtering

In this section, we develop a Kalman-like
adaptive filtering algorithm for PMT. To that
end, we gather all variables xs belonging to
a same level Sn into a vector Xn. Let also
X1:n ¼

def
ðX1; . . . ;XnÞ, and let Yn, Y1:n, Zn and Z1:n

be defined similarly. Since z ¼ fzsgs2S is an MT,
the time-varying sequence fZng1pnpN is an MC.
This observation enables us to adapt to PMT the
Kalman filtering methodology which is valid in the
context of HMC. More precisely, our aim consists
in recursively estimating (as new data become
available) the pdf of the last leaves Xn given all
observed variables up to level n, i.e. we want to
compute pðXnþ1jY1:nþ1Þ in terms of pðXnjY1:nÞ and
of Ynþ1.
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Our hypotheses are as follows. We assume that
the model is linear and Gaussian1:

xs

ys

" #
|fflffl{zfflffl}

zs

¼
F1

s F2
s

H1
s H2

s

" #
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Fs

xs�

ys�

" #
þ

us

vs

" #
|fflffl{zfflffl}

ws

, (4)

in which fwsgs2SnS1
are random vectors which are

zero-mean, independent and independent of zr. We
also assume that the process w ¼ fwsgs2SnS1

is
Gaussian and that pðzrÞ�Nðzr;PrÞ. Then Z is
Gaussian and consequently the pdf pðXnjY1:nÞ

and pðXnþ1jY1:nÞ are also Gaussian. Let us set

pðXnjY1:nÞ�NðbXnjn;PnjnÞ, (5)

pðXnþ1jY1:nÞ�NðbXnþ1jn;Pnþ1jnÞ, (6)

and let

Eðwsw
T
s Þ ¼ Qs ¼

Q11
s Q12

s

Q21
s Q22

s

" #
. (7)

We shall also need the following notation (see Fig.
1): for n fixed, let Sn ¼ ðs1; . . . ; skðnÞÞ, and let sþi ¼

fsþi;pg
jðiÞ
p¼1 (i.e., sþi;p is the pth son of node si). For

l;m 2 f1; 2g, let

Fl
sþ

i
¼

Fl
sþ

i;1

..

.

Fl
sþ

i;jðiÞ

2666664

3777775; Hl
sþ

i
¼

Hl
sþ

i;1

..

.

Hl
sþ

i;jðiÞ

2666664

3777775 and

Q
l;m
sþ

i

¼

Q
l;m
sþ

i;1
0

. .
.

0 Q
l;m
sþ

i;jðiÞ

2666664

3777775, ð8Þ

and let F l
nþ1, Hl

nþ1 and Ql;m
nþ1 be the following

block-diagonal matrices:

Fl
nþ1 ¼ diagðFl

sþ
1
; . . . ;Fl

sþ
kðnÞ

Þ, (9)
1Our algorithm could of course also be obtained as a

recursive linear minimum mean square error restoration

procedure; we chose to adopt the Gaussian point of view

because the proofs are obtained in a simpler and more direct

way.
Hl
nþ1 ¼ diagðHl

sþ
1
; . . . ;Hl

sþ
kðnÞ

Þ, (10)

Ql;m
nþ1 ¼ diagðQl;m

sþ
1

; . . . ;Ql;m
sþ

kðnÞ

Þ. (11)

The following algorithm is an extension of the
classical KF [8,9]:

Proposition 2 (KF for PMT). Let us assume that z

is a PMT and that model (4) holds. Suppose that

pðzrÞ�Nðzr;PrÞ and that pðwsÞ�Nð0;QsÞ for

s 2 SnS1. Assume that

Pr and fQsgs2S are positive definite. (12)

Then ðbXnþ1jnþ1;Pnþ1jnþ1Þ can be computed from

ðbXnjn;PnjnÞ and Ynþ1 via:
Time-update equations:

bXnþ1jn ¼ F1
nþ1
bXnjn þ F 2

nþ1Yn, (13)

Pnþ1jn ¼ Q11
nþ1 þ F 1

nþ1PnjnðF
1
nþ1Þ

T. (14)

Measurement-update equations:

eYnþ1 ¼ Ynþ1 �H1
nþ1
bXnjn �H2

nþ1Yn, (15)

Lnþ1 ¼ Q22
nþ1 þH1

nþ1PnjnðH
1
nþ1Þ

T, (16)

Knþ1jnþ1 ¼ ðQ
12
nþ1 þ F 1

nþ1PnjnðH
1
nþ1Þ

T
ÞL�1nþ1, (17)

bXnþ1jnþ1 ¼ bXnþ1jn þ Knþ1jnþ1
eYnþ1, (18)

Pnþ1jnþ1 ¼ Pnþ1jn � Knþ1jnþ1Lnþ1K
T
nþ1jnþ1, (19)

Proof 1. Since z ¼ fzsgs2S is a PMT, the time-
varying sequence fZng1pnpN is an MC. So

pðXnþ1;Ynþ1jY1:nÞ

¼

Z
pðXnþ1;Ynþ1jXn;Y1:nÞpðXnjY1:nÞdXn

¼

Z
pðXnþ1;Ynþ1jXn;YnÞpðXnjY1:nÞdXn. ð20Þ

On the other hand, from (4) and (7) we get

pðzsjzs�Þ�NðFszs� ;QsÞ. (21)
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Since z is a PMT,

pðZnþ1jZnÞ ¼ pðzsþ
1
; . . . ; zsþ

kðnÞ
jzs1 ; . . . ; zskðnÞ

Þ

¼
YkðnÞ
i¼1

YjðiÞ
p¼1

pðzsþ
i;p
jzs1 ; . . . ; zskðnÞ

Þ

¼
YkðnÞ
i¼1

YjðiÞ
p¼1

pðzsþ
i;p
jzsi
Þ. ð22Þ

Injecting (22), (21) and (5) into (20), and using
Proposition 4 (see the Appendix), we get

pðXnþ1;Ynþ1jY1:nÞ

�N
F 1

nþ1
bXnjn þ F2

nþ1Yn

H1
nþ1
bXnjn þH2

nþ1Yn

24 35; Q1;1
nþ1 Q1;2

nþ1

Q2;1
nþ1 Q2;2

nþ1

24 35
0B@
þ

eF 1

nþ1eH1

nþ1

264
375Pnjn½ðeF1

nþ1Þ
T
ð eH1

nþ1Þ
T
�

1CA, ð23Þ

whence (13) and (14). Lastly, by conditioning with
respect to Ynþ1 (see Proposition 3) we get (15)–(19)
(note that condition (12) is a simple suffi-
cient condition ensuring that all equations are
valid). &

Remarks.
�
 It was implicitly assumed in the proof that each
node has at least one child. In case some node(s)
has(ve) no child, one can check easily that Eqs.
(13)–(19) still hold, provided however that when
defining the internal variables, only the reduced
set of nodes which have at least one child are
taken into account. More precisely, let fsai

g be
the subset of fsig

kðnÞ
i¼1 made of the indices of the

nodes which have at least one child. Then,
F l

nþ1 (and similarly Hl
nþ1) should be replaced

by F l;red:
nþ1 ¼ diagðFl

sþai

Þ, bXn ¼ ½Eðxsi
jY1:nÞ�

kðnÞ
i¼1 bybXred:

n ¼ ½Eðxsai
jY1:nÞ� (and consequently Pnjn by

Pred:
njn ), and Yn ¼ ½ysi

�
kðnÞ
i¼1 by Yred:

n ¼ ½ysai
�.
�
 If each node (beginning with root node r) has
exactly one child, then the PMT reduces to a
particular case of the PMC Model introduced
in [20] (see also [3, Corollary 1, p. 72]), and
the algorithm of Proposition 1 reduces to the
algorithm of Lipster and Shiryaev (see [3,
Eqs. (13.56) and (13.57)]) which has been
developed for that model.

�
 The algorithm is valid in the general case where
each node s has an arbitrary number of children,
and is well-suited to asymmetric tree structures
since the number of children may vary from
node to node.

�
 The algorithm requires the inversion of the
square matrix Lnþ1 defined in (16), the dimen-
sion of which is proportional to the number of
variables in generation nþ 1 of the tree. This
can become a severe computational bottleneck
in trees where each node has at least two
children, in which case the number of variables
in Sn grows exponentially with n. However, this
full-size matrix inversion can easily be avoided
by conditioning w.r.t. each variable in Ynþ1 one
after the other, which is another aspect (but now
within the last generation) of the adaptive
character of the algorithm; in terms of matrix
computations, this amounts to sequentially
using the quotient property of Schur comple-
ments, see e.g. [21]. More precisely, we can
compute pðXnjY1:nÞ from pðXnjY1:n�1Þ by con-
ditioning w.r.t. each variable ysi

in Yn ¼ fysi
g

kðnÞ
i¼1 ,

one after the other: we first compute
pðXnjY1:n�1; ys1

Þ from pðXnjY1:n�1Þ, then incor-
porate the measure ys2

by computing
pðXnjY1:n�1; ys1

; ys2
Þ from pðXnjY1:n�1; ys1

Þ, and
so on until we get pðXnjY1:n�1; fysi

g
kðnÞ
i¼1 Þ ¼

pðXnjY1:nÞ. If this procedure is used, the inver-
sion of a kðnÞ � ny square matrix is replaced by
the inversion of kðnÞ ny � ny square matrices
(assuming a constant size ny of the random
vectors ysi

), which is of interest, in particular in
the case of large kðnÞ and small ny.

Appendix

The following two properties of Gaussian
random variables are recalled for convenience of
the reader.

Proposition 3. Let pðu1; u2Þ�Nð½m1m2
�; ½R1;1

R2;1

R1;2

R2;2
�Þ.

Then pðu1ju2Þ�Nðm1j2;R1j2Þ, with m1j2 ¼ m1 þ R1;2

R�12;2ðu2 � m2Þ, R1j2 ¼ R1;1 � R1;2R
�1
2;2R2;1.
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Proposition 4. Let pðu1Þ�Nðm1;R1Þ and pðu2ju1Þ�

NðAu1 þ b;R2j1Þ. Then

pðu1; u2Þ

�N
m1

Am1 þ b

" #
;

R1 R1A
T

AR1 R2j1 þ AR1A
T

24 350@ 1A.
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