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Abstract

Hidden Markov Fields (HMF) are widely applicable to various problems of image processing. In such models, the hidden process of interest X is

a Markov field, which must be estimated from its observable noisy version Y. The success of HMF is due mainly to the fact that X remains Markov

conditionally on the observed process, which facilitates different processing strategies such as Bayesian segmentation. Such models have been

recently generalized to ‘Pairwise’ Markov fields (PMF), which offer similar processing advantages and superior modeling capabilities. In this

generalization, one directly assumes the Markovianity of the pair (X,Y). Afterwards, ‘Triplet’ Markov fields (TMF) have been proposed, in which

the distribution of (X,Y) is the marginal distribution of a Markov field (X,U,Y), where U is an auxiliary random field. So U can have different

interpretations and, when the set of its values is not too complex, X can still be estimated from Y. The aim of this paper is to show some connections

between TMF and the Dempster–Shafer theory of evidence. It is shown that TMF allow one to perform the Dempster–Shafer fusion in different

general situations, possibly involving several sensors. As a consequence, Bayesian segmentation strategies remain applicable.
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1. Introduction

Hidden Markov Fields (HMF) are widely used in various

image-processing problems (see [8,18,37], among others).

They consist in considering two stochastic processes XZ
(Xs)s2S and YZ(Ys)s2S, in which XZx is unobservable and

must be estimated from the observed YZy. The qualifier

‘hidden Markov’ means that the hidden process X has a

Markov distribution. When the distributions p(yjx) of Y

conditional on XZx are simple enough, the pair (X,Y) retains

the Markovian structure, and likewise for the distribution p(xjy)

of X conditional on YZy. The Markovianity of p(xjy) is crucial

if one’s purpose is to estimate XZx from YZy. HMF have then

been generalized to pairwise Markov fields (PMF [21]) and

triplet Markov fields (TMF [1,24]), which are more general and

still allow one to recover XZx from YZy. In particular, PMF

have been proposed to solve the texture modeling problem,

which is rather difficult and needs approximations when using

HMF [17]. Considering that the pair (X,Y) is a PMF consists in

assuming that the pair (X,Y) is a Markov field, which ensures
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the Markovianity of p(yjx) and the Markovianity of p(xjy).

Such a model is not necessarily a HMF because X is not

necessarily a Markov field. Thus compared to HMF, the

Markovianity of p(yjx) allows better modeling, and the

Markovianity of p(xjy) allows the same processing properties.

The generalization of PMF to TMF consists in introducing a

third process UZ(Us)s2S and considering that (X,U,Y) is a

Markov process. The process U needs not have a physical

existence and the problem remains the same as above:

estimating XZx from YZy. The Triplet models are more

general than the Pairwise models because the distribution of

(X,Y), which is a marginal distribution of (X,U,Y), is not

necessarily a Markov distribution. However, the classical

processing methods remain workable in the TMF context, as

long as the set of values of U is not too complex. As specified in

[1], this third random field U can have different meanings.

In particular, it can model the fact that the field X may not be

stationary, which seems to present encouraging perspective [2].

The aim of this paper is to propose new applications of TMF

to the problem of Dempster–Shafer fusion (DS fusion) in a

Markov field context. Although DS fusion is now well known

and widely used in various situations [5,9,11,19,32–34,38], its

use in the Markov field context is very rare; only a few papers

deal with this kind of models [3,6,10,15,31,36]. To be more

precise, we show how the use of TMF allows one to

simultaneously integrate the possibly evidential aspects of
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the prior information and the possibly evidential aspects of the

sensors. The first integration can be of interest when the hidden

scene is non-stationary, and the second one enables one to

extend different classical multisensor images analysis (see

[14,29,35], among others).

Let us mention that similar extensions have been proposed

in the case of Markov chains. In fact, hidden Markov chains

(HMC) have been generalized to pairwise Markov chains

(PMC [23]), and triplet Markov chains (TMC [25]). In

particular, evidential priors have been introduced in HMC

[7,28], resulting in an improvement in the efficiency of the

unsupervised segmentation of non-stationary chains [12].

Moreover, still more complex models, including partially

Markov chains or semi-Markov chains, have been recently

proposed in [26,27]. All these models can be possibly extended

to Markov trees, and some first ideas are presented in [13].

However, although these very general ideas have inspired the

main ideas of the present paper, the Markov field models—and

the related problems such as, for instance, parameter

estimation—are very different from the Markov chain models

and the related problems. Therefore, below we will concentrate

on Markov fields with no further consideration of Markov

chains.

The organization of the paper is as follows. The basic

notions and calculations relating to the theory of evidence are

recalled in Section 2, while Section 3 is devoted to the

introduction of evidential priors in the context of Markov

fields. The use of evidential sensors is discussed in Section 4,

and the general model, including evidential priors and

evidential sensors, is specified in Section 5. Section 6 contains

conclusions and some future prospects.
2. Theory of evidence

Let us consider a finite set of classes UZ{u1,.uk}, and its

power set P(U)Z{A1,.Aq}, with qZ2k. A function M from

P(U) to [0,1] is called a ‘basic belief assignment’ (bba) if

M(:)Z0 and
P

A2PðUÞ MðAÞZ1. A bba M defines a

‘plausibility’ function Pl from P(U) to [0,1] by

PlðAÞZ
P

AhBs: MðBÞ, and a ‘credibility’ function Cr from

P(U) to [0,1] by CrðAÞZ
P

B3A MðBÞ. For a given bba M, the

corresponding plausibility function Pl and credibility function

Cr are linked by Pl(A)CCr(Ac)Z1. So, each of them

defines the other. Conversely, Pl and Cr can be defined

by some axioms, and each of them defines an unique

corresponding bba M. More precisely, Cr is a function

from P(U) to [0,1] verifying Cr(:)Z0, Cr(U)Z1, and

Cr gj2J Aj

� �
R
P

Is:I3J ðK1ÞjIjC1Cr hj2I Aj

� �
, and Pl is a func-

tion from P(U) to [0,1] verifying analogous conditions, with %
instead of R in the third one. A credibility function Cr

verifying such conditions is also the credibility function

defined by the bba MðAÞZ
P

B3A ðK1ÞjAKBjCrðBÞ.

Finally, each of the three functions M, Pl, and Cr can be

defined in an axiomatic way, and each of them defines the two

others. Furthermore, when M is null outside singletons, the

corresponding Pl and Cr are equal and become a classical
probability. Thus a probability is obtained for a particular M,

which will be called ‘probabilistic’ in the following.

When two bbas M1, M2 represent two pieces of evidence, we

can combine—or fuse—them using the so-called ‘Dempster–

Shafer combination rule’, or ‘Dempster–Shafer fusion’ (DS

fusion) which gives MZM14M2 defined by:

MðAÞ Z ðM14M2ÞðAÞ

Z

1

1KH

X
ðB1;B2Þ2U2=B1hB2ZA

M1ðB1ÞM2ðB2Þ; for As:;

0; for A Z :

8><
>:

(2.1)

Let us notice that the constant

H Z 1K
X
A3U

X
ðB1;B2Þ2U2=B1hB2ZAs:

M1ðB1ÞM2ðB2Þ

2
4

3
5

Z
X

ðB1;B2Þ2U2=B1hB2Z:

M1ðB1ÞM2ðB2Þ

has an intuitive meaning and can be interpreted as the degree of

conflict between the two pieces of evidence modeled by the

bbas M1 and M2.

In the following, we will use the proportionality symbol ‘f‘

which is very practical to manipulate the DS fusion. Therefore,

(2.1) will be written as:

MðAÞ Z ðM14M2ÞðAÞf
X

B1hB2ZA

M1ðB1ÞM2ðB2Þ (2.2)

knowing that As: and M(A)Z(M14M2)(A) is obtained by

dividing the r.h.s. of (2.1) by the sum

X
A3U

X
ðB1;B2Þ3U2=B1hB2ZAs:

M1ðB1ÞM2ðB2Þ

2
4

3
5

As mentioned above, we will say that a bba M is

‘probabilistic’ when, being null outside singletons, it defines

a probability and we will say that it is an ‘evidential’ bba when

it is not probabilistic. As can be seen easily, when either M1 or

M2 is probabilistic, the fusion result M is probabilistic.

In particular, one can see that the classical calculus of the

posterior probability is a Dempster–Shafer fusion (DS fusion) of

two probabilistic bbas. For example, let us consider two random

variables X and Y taking their values in UZ{u1,u2} and R,

respectively. Let M0 be the law of X (which is a probability on U,

and thus also a bba null outside singletons), and let p(yjxZu1),

p(yjxZu2) be the distributions of Y conditional on XZu1 and

u2, respectively. For observed YZy, let M1 the probability on U
defined by M1ðu1ÞZpðyjxZu1Þ=ðpðyjxZu1ÞCpðyjxZu2ÞÞ

and M1ðu2ÞZpðyjxZu2Þ=ðpðyjxZu1ÞCpðyjxZu2ÞÞ (which

can be written M1(x)fp(yjx), where p(yjx) is the distribution of

Y conditional on XZx). Then a very simple calculus shows that

the posterior distribution of X, i.e. its distribution conditional on

YZy, is the Dempster–Shafer fusion of M0 with M1. This simple

fact opens numerous perspectives of extension of the posterior
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distribution of X: if we replace either M0 or M1 by a bba which is

not null outside singletons, then the fusion M0 and M1 gives a

probability which is an extension of the posterior distribution of

X. Such a fusion result can then be used, in a strictly same

manner as the classical one, in different Bayesian techniques for

estimating X from YZy. Studying these different extensions in

the Markov fields context is the very aim of the paper.

Let us consider the following two examples, which briefly

describe how the DS fusion can be used in the image analysis

context.

Example 2.1. Let us consider the problem of satellite or

airborne optical image segmentation into two classes UZ{u1,

u2} ‘forest’ and ‘water’. Thus we have two random fields XZ
(Xs)s2S and YZ(Ys)s2S, each Xs taking its values in UZ{u1,

u2} and each Ys taking its values in R. Let us assume that there

are clouds and let us denote by uc the ‘clouds’ class. Thus, in

the classical probabilistic context, there are three conditional

distributions on R:p(ysjxsZu1), p(ysjxsZu2) and p(ysjxsZuc).

This classical model admits the following ‘evidential’

interpretation. If we are only interested on the classes

UZ{u1,u2}, the class uc brings no information about them,

and thus uc models the ignorance and is assimilated to U.

Finally, the classical probability qys defined on {u1,u2,uc} by

qys ðu1ÞfpðysjxsZu1Þ, qys ðu1ÞfpðysjxsZu2Þ, and qysðu1Þf
pðysjxsZucÞ is interpreted as a bba M2 defined on P(U)Z{u1,

u2,U} by M2({u1})fp(ysjxsZu1), M2({u2})fp(ysjxsZu2),

and M2(U)fp(ysjxsZU). In other words, M2(U) models the

ignorance attached with the fact that one cannot see through

clouds. An interesting result states that when M1 is a Markov

probabilistic field distribution, its DS fusion with M2 remains a

Markov distribution, which generalizes the classical calculus

of Markov posterior distribution [3]. Furthermore, when clouds

disappear, M(U) becomes null, and such a ‘generalized’

Markov model becomes a classical HMF. So, the generaliz-

ation we obtain embeds HMF particular case. Different

Bayesian processing methods can then be based on the fused

Markov distribution obtained this way. Roughly speaking,

when the prior distribution is a Markov probabilistic bba, its

fusion with a more general evidential bba does not pose

problem and Bayesian processing remains workable in this

more general context.

Example 2.2. Let us consider the problem of segmentation of

an observed bi-sensor image YZ(Y1,Y2)Z(y1,y2) into three

classes. So, we have UZ{u1,u2,u3}. Imagine that the first

sensor Y1 is sensitive to u1,u2,u3 and {u1,u2,u3} (to fix ideas,

it is an optical satellite sensor and there are clouds, modeled as

in Example 2.1). Imagine that the second sensor Y2 is sensitive

to {u1,u2} and u3 (to fix ideas, it is an infrared satellite sensor

and u1, u2 are ‘hot’, while u3 is ‘cold’). Let L1Z
{{u1},{u2},{u3},{u1,u2,u3}}, L2Z{{u1,u2},{u3}}, and

L1,2Z{{u1},{u2},{u3},{u1,u2}}. As above, y1 defines a

probability M1 on L1 and, in a similar way, y2 defines a

probability M2 on L2. As M1 and M2 are also bbas on P(U), we

can fuse them, and the result M3ZM14M2 is a probability on

L1,2. Finally, M3 can be fused with a probabilistic Markov
field, resulting in a Markov distribution which extends the

classical posterior distribution.
3. Triplet Markov fields with evidential priors

Let S be the set of pixels, and X,Y two random fields defined

on S as specified in Section 1. Thus for each s2S, the variables

Xs and Ys take their values in UZ{u1,.,uk} and R,

respectively. The problem is to estimate X from Y, with

immediate application to image segmentation. Considering a

triplet Markov field (TMF), consists in introducing a third

random field UZ(Us)s2S, where each Us takes its values in

LZ{l1,.,lm}, and in assuming that TZ(X,U,Y) is a Markov

field. The distribution of TZ(X,U,Y) is then a classical Gibbs

one:

pðtÞ Z g exp K
X
c2C

4cðtcÞ

" #
(3.1)

Classically, (3.1) means that the distribution of T verifies

p(tsjtr,rss)Zp(tsjtr,r2Ws), where (Ws)s2S is some neighbor-

hood system (Ws is the set of neighbors of s). C is the set of

cliques associated with (Ws)s2S (a clique is either a singleton,

or a set of mutually neighbors pixels).

In this model, X and Y are interpreted as usual, as for U, it

can have physical meaning or not. More precisely, there are at

least three situations in which U models some reality: (i) the

noise densities are unknown, and are approximated by

Gaussian mixtures; (ii) there are subclasses in at least one

class among u1,.,uk; and (iii) U models different stationa-

rities of the field X (see [1] for (i) and (ii), and [2] for (iii)).

Important is that (X,U) can be classically simulated

according to the Markov distribution p(x,ujy), which enables

to implement their different Bayesian estimations methods. For

example, the classical Maximum Posterior Mode (MPM)

method gives x̂Z ðx̂sÞs2S such that for each s2S

pðx̂sjyÞZmaxxs2U pðxsjyÞ. This estimate can be computed

once the posterior marginal distributions p(xsjy) are known:

as p(xs,usjy) can be classically estimated from a simulated

sample, p(xsjy) is given by pðxsjyÞZ
P

us2L pðxs; usjyÞ. Of

course, U can be estimated similarly if it is of interest [2].

We now deal with the main point of this paper, i.e. we want

to explain how the classical computing of the posterior

distribution in hidden Markov fields can be extended to DS

fusion when the hidden data become ‘evidential’. Let us

consider the classical hidden Markov field, with pðxÞZ
g exp K

P
c2C 4cðxcÞ

� �
and pðyjxÞZ

Q
s2S pðysjxsÞ. Then the

distribution of (X,Y) is defined by

pðx; yÞ Z g exp K
X
c2C

4cðxcÞC
X
s2S

Log½pðysjxsÞ�

" #
(3.2)

The key point is to use the observation that p(xjy) given by

(3.2) can be seen as the result of the DS fusion of pðxÞZ
g exp K

P
c2C 4cðxcÞ

� �
with the probability distribution qy(x)

(y is fixed) obtained by normalizing p(yjx). More precisely,

putting



W. Pieczynski, D. Benboudjema / Image and Vision Computing 24 (2006) 61–6964
qyðxÞ Z
Y
s2S

ðpðysjxsÞÞ=
X
u2U

pðysjxs Z uÞ

 !" #

(we will write qyðxÞf
Q

s2S pðysjxsÞ in the following), we have

p(xjy)Z(p4qy)(x) (where p is the Markov distribution of X).

This provides numerous possibilities of extension of p(xjy), by

replacing in p4qy either p or qy by a mass function. In this

section we shall show that when the Markov probability

distribution p is replaced in p4qy by a ‘Markov’ mass function

M, the M4qy can be seen as a marginal distribution of a

particular TMF. An important consequence of this observation

is that M4qy can be used to estimate X from Y. Now, let us

consider a set of classes U and the power set P(U). Let nZ
Card(S) and M0 be a bba defined on [P(U)]n by

M0ðAÞ Z g exp K
X
c2C

jcðAcÞ

" #
(3.3)

where C is the set of cliques corresponding to a given

neighborhood defining the Markovianity, AZ(As)s2S, and

AcZ(As)s2c. Such a bba will be called ‘evidential Markov

field’ (EMF). We see that an EMF extends the classical Markov

field, the latter being obtained when M0 is null outside {{u1},

.,{uk}}n. Both EMF M0 and the probability distribution qy

(given by pðyjxÞZ
Q

s2S pðysjxsÞ) define a ‘hidden’ EMF

(HEMF). We have the following result.

Proposition 3.1. Let M0 be an EMF defined on [P(U)]n by

(3.3), and M1 a probability over Un defined from the observed

field YZy2Rn by M1ðxÞZqyðxÞf
Q

s2S pðysjxsÞ. Let LZP(U)

and D3U!L such that (u,l)2D if and only if u2l.

Then the probability distribution MZM04M1 is the

marginal distribution pðxjyÞZ
P

u2½PðUÞ�n pðx; ujyÞ, where p(x,

ujy) is a Markov distribution obtained from the TMF TZ(X,U,

Y), the distribution of which is defined on (D!R)n by (3.1),

with

4cðtcÞ Z 4cðxc; uc; ycÞ

Z
jcðucÞ; for Card ðcÞO1;

jcðucÞKLogðpðysjxsÞÞ; for c Z fsg

(
(3.4)

Proof. We have

MðxÞ Z ðM04M1ÞðxÞf
X
x2u

exp K
X
c2C

jcðucÞ

" #Y
s2S

pðysjxsÞ

Z
X
x2u

exp K
X
c2C

jcðucÞC
X
s2S

logðpðysjxsÞÞ

" #

In the sum above xZ(xs)2S is fixed and uZ(us)2S varies in

[P(U)]n in such a way that xs2us for each s2S, which means

that uZ(us)2S varies in such a way that (x,u)2Dn. This means
that M(x) can be written as

MðxÞf
X

u=ðx;u;yÞ2Dn!Rn

exp K
X
c2C

jcðucÞC
X
s2S

logðpðysjxsÞÞ

" #

Z
X

u=ðx;u;yÞ2Dn!Rn

exp½4cðxc; uc; ycÞ�

which completes the proof.

,

Example 3.1.. One possible application of the HEMF above is

inspired by the successful use of the similar hidden evidential

Markov chains in the situations where the unknown process has

unknown parameters and is not stationary [12]. Thus, let us

consider the problem of segmenting an observed image YZy

into two classes UZ{u1,u2}, and let us assume that the hidden

class image XZx is strongly heterogeneous and can hardly be

modeled by a stationary Markov field. As HEMF is a particular

TMF, the parameter estimation method proposed in [1] can be

applied and thus unsupervised segmentation is workable. One

can then compare two unsupervised methods: the classical

HMF based method, and the new HEMF one.

Two examples of unsupervised segmentation performed

with the classical HMF and the proposed HEMF are presented

in Fig. 1. We consider two classes UZ{u1,u2}, and assume

that both HMF and HEMF are Markovian with respect to the

four nearest neighbors. Therefore, we have an EMF on (L)n,

with LZP(U)Z{{u1},{u2},{u1,u2}}Z{l1,l2,l3}, the distri-

bution of which is given by (3.3). We then consider a simple

energy function given by the following potential functions. For

horizontal cliques cZ(t,s), we take jc(l1,l2)ZKa1H, jc(l1,-

l3)ZKa2H, jc(l2,l3)ZKa3H, and jc(l1,l1)Zjc(l2,l2)Z
jc(l3,l3)Z0. The same is done for vertical cliques, with aIV,

a2V a3V instead of a1H, a2H, and a3H. Moreover, jc is null for

the cliques singletons.

According to Proposition 3.1, we have to consider the triplet

Markov field defined by

4cðtcÞ Z 4cðxc; uc; ycÞ Z
jcðucÞ; for c Z ðs; tÞ;

KlogðpðysjxsÞÞ; for c Z fsg

(

where (xs,us) are in DZ{(u1,{u1}),(u1,{u1,u2}),(u2,{u2}),(u2,{-

u1,u2})}Z{d1,d2,d3,d4}. Thus, putting vsZ(xs,us), we have a

standard hidden Markov field (V,Y) and for each s2S, the

probability p(vsjy) on DZ{d1,d2,d3,d4} can be estimated by using

the Gibbs sampler. The estimates obtained this way enable us to

compute p(xsZu1jy)Zp(vsZd1jy)Cp(vsZd2jy) and p(xsZ
u2jy)Zp(vsZd3jy)Cp(vsZd4jy), which are then used to perform

the Bayesian MPM segmentation. Concerning the classical hidden

Markov field used, the potential functions are jc(u1,u2)ZKaH for

horizontal cliques, jc(u1,u2)ZKaV for vertical cliques,

jc(u1,u1)Zjc(u2,u2)Z0 for horizontal and vertical cliques, and

jc is null for the cliques singletons. The estimates of all parameters

in both models are presented in Table 1, and the different images

are presented in Fig. 1.



Fig. 1. Two class images corrupted by Gaussian noise N1(0,1) and N2(2,1), and unsupervised segmentation results based on classical HMF and new HEMF.

The estimates, obtained with ICE, are presented in Table 1.
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Let us mention a more general model, in which both p(x)

and p(yjx) are Markov fields (see examples of such models in

[1]). In particular, we can chose a model generalizing the

classical model (3.2), in which pðyjxÞZ
Q

s2S pðysjxsÞ is

replaced with pðyjxÞZg exp K
P

c2C ccðxc; ycÞ
� �

. As above,

we can then consider

M1ðxÞ Z qyðxÞ Z
exp K

P
c2C ccðxc; ycÞ

� �
P

x2Un exp K
P

c2C ccðxc; ycÞ
� �

fexp K
X
c2C

ðxc; ycÞ

" #

which here is a Markov field.

Then we have the following result:

Proposition 3.2. Let M0 be an EMF defined on [P(U)]n

by (3.3), and M1 a classical Markov field defined over
Table 1

Parameters estimates and error ratios of the unsupervised segmentation methods base

(HEMF)

Parameters Real Image 1

HMF

m1 0.00 -0.3

m2 2.00 1.86

s1 1.00 0.85

s2 1.00 1.05

a1H, aIV

a2H, a2V

a3H, a3V

aH, aV 0.65, 0.82

Error ratio 11.0%

See Fig. 1 for visual results.
Un from the observed process YZy2Rn by

M1ðxÞfexp K
P

c2C ccðxc; ycÞ
� �

. Let LZP(U) and D2U !L
such that (u,l)2D if and only if u2l.

Then the probability distribution MZM04M1 is the

conditional distribution p(xjy)Zp(x,y)/p(y), where p(x,y) is a

TMF. More precisely, TZ(X,U,Y) is a Markov field defined on

(D!R)n by (3.1), with 4c(tc)Z4c(xc,uc,yc)Zjc(uc)Ccc(xc,yc).

The proof is analogous to the proof of Proposition 3.1

above.

4. Triplet Markov fields with evidential sensors

In this section we will consider that the prior information on

the hidden field X is given by a probabilistic classical Markov

distribution pðxÞZg exp K
P

c2C 4cðxcÞ
� �

, and the information

provided by the observations (one sensor Ys or numerous

sensors Y1
s ;.;Ym

s ) can be ‘evidential’. Let UZ{u1,.,uk} and

LZP(U) as above. We will say that a sensor Y
j
s ‘is sensitive’ to
d on classical hidden Markov fields (HMF) and hidden evidential Markov fields

Image 2

HEMF HMF HEMF

0.02 0.88 0.02

2.03 2.01 2.02

1.00 1.36 0.94

0.97 0.99 0.67

0.25, 0.31 0.29, 0.33

0.38, 0.44 0.47, 0.55

0.01, 0.01 0.02, 0.02

0.41, 0.50

5.40% 12.8% 6.7%
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B2L if the knowledge t hat xs2B modifies its probability law

(see also Examples 2.1 and 2.2).
4.1. The case of one sensor

We first recall the extension of the classical HMF (3.2)

which has been proposed in [3], and then we propose two new

extensions: one for the HMF with spatially correlated noise,

and another for the PMF. Therefore, let UZ{u1,.,uk}, LZ
P(U) as above, and let L13L such that each Ys is sensitive to

the elements of L1.

The classical HMF (3.2) will be called below ‘HMF-IN’ (IN

for ‘independent noise’), and we will call HMF a PMF such

that the hidden field is a Markov one. Therefore, there are three

models of increasing generality: HMF-IN, HMF, and PMF.

The interest of such distinction will appear below.

So, the extension of HMF-IN, proposed in [3] and validated

by different applications, is the following. In HMF-IN, the

posterior distribution p(xjy) is the DS fusion p(xjy)Z(p4qy)(x)

of pðxÞZg exp K
P

c2C 4cðxcÞ
� �

with qyðxÞf
Q

s2S pðysjxsÞ. As

the considered sensor is only sensitive to the elements of L1, let

us consider qy;*ðx*Þf
Q

s2S pðysjx
*
s Þ, where x* Z ðx*

s Þs2S and

each x*
s varies in L1. Then one can see that p(xjy)Z(p4qy*)(x)

remains a Markov field, written as

pðxjyÞ Z g0 exp K
X
c2C

4cðxcÞC
X
s2S

Log
X
xs2x*

s

pðysjx
*
s Þ

2
4

3
5

2
4

3
5

(4.1)

where the sum
P

xs2x*
s

pðysjx
*
s Þ is taken over x*

s , xs being fixed.

To consider the first new extension, let p*ðx* ; yÞZ
g exp K

P
c2C 4*

c ðx*
c ; ycÞ

� �
be an HEMF distribution on

(L1)n!Rn, which means that its marginal distribution p*(x*)

is a Markov one: p*ðx*ÞZg0 exp K
P

c2C 4
0*
c ðx*

c Þ
� �

. As a

consequence, p*(yjx*) is written

p*ðyjx*Þ Z g00 exp K
X
c2C

4*
c ðx

*
c ; ycÞC

X
c2C

40*
c ðx*

c Þ

" #
(4.2)

Then (4.2) defines

qy;*ðx*Þ Z
p*ðyjx*ÞP

x*2ðL1Þ
n p*ðyjx*Þ

� �
fpðyjx*Þ

and one sees from (4.2) that qy;*ðx*ÞZgðyÞexp

K
P

c2C 4*
c ðx*

c ; ycÞC
P

c2C 4
0*
c ðx*

c Þ
� �

is a Markov field. Then

fusing pðxÞZg exp K
P

c2C 4cðxcÞ
� �

with qy,*(x*) is a prob-

ability which extends the classical posterior p(xjy) (which is

obtained again for L1 reduced to singletons). Therefore, we can

state:

Proposition 4.1. Let us consider:

(i) a classical probabilistic Markov field M0 on Un, defined

by M0ðxÞZg exp K
P

c2C 4cðxcÞ
� �

, which classically

models a prior information;

(ii) an HEMF distribution p*ðx* ; yÞZg exp K
P

c2C

�
4*

c ðx*
c ; ycÞ�, which means that the marginal distribution
p*(x*) is a Markov one: p*ðx*ÞZg0 exp K
P

c2C

�
4
0*
c ðx*

c Þ�; and

(iii) the bba M1 defined on (L1)n, for fixed y2Rn, by

p*(yjx*) given by (4.2);

(iv) and the set DZ{(u,A)2U !L1ju2A}.

Then the DS fusion (M04M1)(x) is the probability p(xjy),

which is the marginal probability of p(x,x*jy) defined from the

distribution of the TMF TZ(X,X*,Y) given on Dn!Rn by

pðx; x* ; yÞ

fexp K
X
c2C

4cðxcÞK
X
c2C

4*
c ðx

*
c ; ycÞC

X
c2C

40*
c ðx*

c Þ

" #
(4.3)

As a consequence, different Bayesian segmentation tech-

niques can be implemented.

Proof. We have

ðM04M1ÞðxÞ

f
X
x2x*

exp K
X
c2C

4cðxcÞ

" #
exp K

X
c2C

4*
c ðx

*
c ;ycÞC

X
c2C

40*
c ðx

*
c Þ

" #" #

Z
X
x2x*

exp K
X
c2C

4cðxcÞC4*
c ðx

*
c ;ycÞK

X
c2C

40*
c ðx

*
c Þ

" #" #

Z
X
x2x*

pðx;x* ;yÞ

which completes the proof.

,

To consider the second new extension, let p*ðx*ÞZg exp

K
P

c2C 4*
c ðx*

c ; ycÞ
� �

be a pairwise evidential Markov field

(PEMF) distribution. p*(x*,y) is not necessarily an HEMF

and thus the form of the marginal distribution p*(x*)

is not necessarily known. However, p*ðx* jyÞfexp

K
P

c2C 4*
c ðx*

c ; ycÞ
� �

is Markovian one. We can then develop

all calculations above concerning the first new example with

p*(x*jy) instead of qy,*(x*). Finally, we can state:

Proposition 4.2. Let us consider:

(i) a classical probabilistic Markov field M0 on Un defined

by M0ðxÞZg exp K
P

c2C 4cðxcÞ
� �

, and modeling some

‘prior’ information;

(ii) a PEMF distribution p*ðx* ; yÞZg exp K
P

c2C

�
4*

c ðx*
c ; ycÞ�;

(iii) the bba M1 defined on (L1)n by p*(xjy);

(iv) the set DZ{(u,A)2U!L1ju2A}.

Then the DS fusion (M04M1)(x) is the probability p(xjy),

which is the marginal probability of p(x,x*jy) defined from the

distribution of the TMF TZ(X,X*,Y) given on Dn!Rn by

pðx; x* ; yÞfexp K
X
c2C

4cðxcÞK
X
c2C

4*
c ðx

*
c ; ycÞ

" #
(4.4)
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As a consequence, different Bayesian segmentation tech-

niques can be implemented.

Let us notice that an HEMF is also a PEMF, and thus when

considering an HEMF we have the choice between two

different ways of using some ‘prior’ information modeled by a

classical probabilistic Markov field.
4.2. The case of numerous sensors

Let us consider r sensors: YsZ ðY1
s ;.Yr

s Þ. We take rZ2 for

the sake of simplicity (the extension to rO2 is immediate, see

also the next section). So, we have YsZ ðY1
s ; Y

2
s Þ and ysZ

ðy1
s ; y

2
s Þ denote its realization. We will assume that the sensors

are independent, which means that in the classical case that we

are going to generalize, the random fields Y1, Y2 are

independent conditionally on X.

As above, let us consider the same UZ{u1,.,uk}, LZ
P(U), and L13L, L23L such that each Y1

s is sensitive to

the elements of L1 and each Y2
s is sensitive to the elements

of L2. Furthermore, let L1,23L be the set of sets A3L
such that there exists A13L1 and A23L2 verifying

AZA1hA2.

As in the previous subsection, let us first recall the

extension of the classical bi-sensor HMF-IN proposed in [3].

The first sensor produces qy1;	ðx*Þf
Q

s2S pðy1
s jx

*
s Þ, the

second produces qy2;*ðx*Þf
Q

s2S pðy2
s jx

*
s Þ, and the infor-

mation provided by the observation (Y1,Y2)Z(y1,y2) is given

on (L1,2)n by
qðy1;y2Þ;	ðx*Þ Z ðqy1;	4qy2;	Þðx*Þ

f
Y
s2S

X
x*;1

s hx*;2
s Zx*

s

pðy1
s jx

*;1
s Þpðy2

s jx
*;2
s Þ

2
4

3
5 (4.5)
Then p(xjy) is given by a formula similar to (4.1), obtained

by replacing pðysjx
*
s Þ with

P
x*;1

s hx*;2
s Zx*

s
pðy1

s jx
*;1
s Þpðy2

s jx
*;2
s Þ. We

see that the sensors can be fused ‘pixel by pixel’, which is the

reason why there is no need for triplet Markov fields when the

extensions of HMF-IN are considered.

Let us now consider the new case of spatially correlated

sensors. As above, we have two cases: (X*,Y) is an HEMF

with known Markovian p(x*), or (X*,Y) is a PEMF with

unknown p(x*). In the first case we apply (4.2) to each

sensor to get qy1;*
ðxÞ and qy2;*ðx*Þ, and we have the following

proposition.

Proposition 4.3. Let M0 be the Markov field on Un defined by

M0ðxÞZg exp K
P

c2C 4cðxcÞ
� �

, and let M1, M2 be bba’s

defined on (L1)n and (L2)n, for fixed y2Rn, by qy1;*ðx*Þ and

qy2;*ðx*Þ. Let DZ fðu;A1;A2Þ2U!L1 !L2ju2A1hA2g.

Then the DS fusion (M04M14M2)(x) is the probability

p(xjy) defined by the TMF TZ(X,X*,1,X*,2,Y) whose distri-

bution on Dn!Rn is given by
pðx; x*;1; x*;2; yÞfexp K
X
c2C

4cðxcÞ

"

K
X
c2C

4*;1
c ðx*;1

c ; ycÞC
X
c2C

40*;1
c ðx*;1

c Þ

K
X
c2C

4*;2
c ðx*;2

c ; ycÞC
X
c2C

40*;2
c ðx*;2

c Þ

# (4.6)

as a consequence, different Bayesian segmentation techniques

can be implemented.

The proof is similar to the proof of Proposition 4.1.

This second case is quite similar to the second case of the

previous subsection: we obtain a proposition analogous to

Proposition 4.2 above, with the only difference that in p*(x*jy)

we have yZ(y1,y2).
5. General model

We assumed in the previous sections that either the prior

information, or the observation provided by sensors, were

probabilistic and modeled by some Markov fields. This enabled

us to see how different classical models can be successively

extended to more and more complex—or simply different—

situations. This section is devoted to an ultimate extension:

Let us consider r sensors: YZ(Y1,.,Yr), and YiZ ðYi
sÞs2S for

iZ1,.,r. Let M0 be a prior EMF defined on (L0)n by

M0ðx*ÞZg0 exp K
P

c2C 40
cðx

*
c Þ

� �
, and for iZ1,.,r let Mi be

the EMF defined on (Li)
n, for fixed yi, by a PEMF

Miðx*;iÞZgi exp K
P

c2C 4i
cðx

*;i
c ; yiÞ

h i
. Let us consider L the

set of all A3U such that there exists at least one (A0,A1,.,Ar)

2L0!L1!/!Lr for which AZA0hA1h/hAr. Then the

DS fusion gives MZM04M14/4Mr defined on Ln by

Mðx*Þ

f
X

ðx*;0 ;x*;1 ;.;x*;r Þ

1½x*Zx*;0hx*;1h.hx*;r � exp K
X
c2C

4i
cðx

*;0
c ÞK

X
1%i%r

X
c2C

4i
cðx

*;i
c ;yiÞ

" #" #

(5.1)

and thus, as in the particular cases above, M can be interpreted

as a marginal distribution defined on Ln of the EMF defined on

ðDÞnZLn !ðL0Þ
n !ðL1Þ

n !/!ðLrÞ
nby

M0ðx*;x*;0;x*;1;.;x*;rÞ

f1½x*Zx*;0hx*;1h/hx*;r�exp K
X
c2C

4i
cðx

*;0
c ÞK

X
1%i%r

X
c2C

4i
cðx

*;i
c ;yiÞ

" #" #

(5.2)

Let us notice that, on the contrary of the two previous sections,

the result M(x*) is not necessarily a probability measure. However,

it is still possible to perform statistical segmentation using the so-

called ‘maximum of plausibility’ principle. More precisely, once

Mðx*
s Þ is estimated, we compute the plausibility of each xsZu2U

by PlðxsZuÞZ
P

u2x*
s
Mðx*

s Þ, and then the estimated x̂Zðx̂sÞs2S is

given by x̂sZarg maxu PlðxsZuÞ.

Example 5.1. Let us consider an example illustrating the

interest of the general model (5.2) and its use in a concrete
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situation. Imagine a satellite image representing a scene

containing a river (u1), a sea (u2), urban area (u3), and forest

(u4). Imagine that we have some prior knowledge about the

probabilistic distribution of ‘water’, which is {u1,u2}, and

‘land’, which is {u3,u4}, and that this distribution is a Markov

field. Thus we have L0Z ffu1;u2g; fu3;u4ggZ fl0
1; l

0
2g and M0

is an EMF defined on (L0)n, where n is the number of pixels.

Furthermore, there are two sensors: an optical sensor Y1, and an

infrared sensor Y2. The optical sensor cannot see any difference

between the river (u1) and the sea (u2), and there are some

clouds hiding part of the scene. Thus this sensor is sensitive to

L1Z ffu1;u2g; fu3g; fu4g;UgZ fl1
1; l

1
2; l

1
3; l

1
4g. The infrared

sensor mainly detects temperature differences and can only

detect a difference between the urban area and other classes;

thus it is sensitive to L2Z ffu3g; fu1;u2;u4ggZ fl2
1; l

2
2g. The

EMFs M1 and M2 can then be searched as follows. The

observation Y1Zy1 is considered as the observation of a

classical probabilistic hidden or pairwise Markov field (U1,Y1),

where U1Z ðU1
s Þs2S and each U1

s takes its values in L1. Let us

assume that (U1,Y1) is pairwise Markov field, with possibly

unknown distribution of U1. The distribution of (U1,Y1) is

written pðu1; y1ÞZg1 exp K
P

c2C 41
cðu

1
c ; y

1
cÞ

� �
, and the corre-

sponding parameters can be estimated from Y1Zy1 by the

method proposed in [1]. Once these parameters estimated, we

have Markovian p(u1jy1), which is M1. Then M2 is found in a

similar way. Given the forms of L0, L1, and L2 we can see that

LZ{{u1,u2},{u3},{u4}}Z{l1,l2,l3}. Finally, according to

(5.2), we have to consider the subset D3L!L0!L1!L2

such that (A,A0,A1,A2)2D is equivalent to AZA0hA1hA2.

Recalling that
L0 Z ffu1;u2g; fu3;u4gg Z fl0
1; l

0
2g;

L1 Z ffu1;u2g; fu3g; fu4g;Ug Z fl1
1; l

1
2; l

1
3; l

1
4g;

L2 Z ffu3g; fu1;u2;u3gg Z fl2
1; l

2
2g

(5.3)
We see that D is the set of the following elements:

ðl1; l
0
1; l

1
1; l

2
2Þ, ðl1; l

0
1; l

1
4; l

2
2Þ, ðl2; l

0
2; l

1
2; l

2
1Þ, ðl2; l

0
2; l

1
4; l

2
1Þ,

ðl3; l
0
2; l

1
3; l

2
2Þ.

Finally, we have an EMF M 0 defined on Dn with (5.2).

Then sampling realizations of M 0, we estimate Mðx*
s Þ, which

is a bba on LZ{{u1,u2},{u3},{u4}}Z{l1,l2,l3}. The

plausibility on UZ{u1,u2,u3,u4} is computed for each

xsZu2U by PlðxsZu1ÞZPlðxsZu2ÞZMðx*
s Z fu1;u2gÞ,

PlðxsZu3ÞZMðx*
s Z fu3gÞ, and PlðxsZu4ÞZMðx*

s Z fu4gÞ,

which is then used to estimate x̂Z ðx̂sÞs2S by

x̂sZargmaxu PlðxsZuÞ. Concerning the case of correlated

sensors, the adaptation of the modeling proposed in [22] to

the general models (5.1) and (5.2) does not pose particular

difficulties. Moreover, extending to such new models of

different classical parameter estimation methods, as for

example the method proposed in [20], could be viewed.
6. Conclusion and perspectives

The aim of this paper was to study the different possibilities

of using the Dempster–Shafer theory of evidence in multi-

sensor Markov fields context. Using the recent Triplet Markov

fields (TMF) model, we showed how different Dempster–

Shafer fusions, which generalize the classical calculation of the

posterior distributions, can be performed. The latter allow one

to propose Bayesian segmentation methods, which are then

workable in more general settings. Moreover, different model

parameters can be estimated with the general ‘Iterative

Conditional Estimation’ (ICE [1]), whose relationship to the

well known ‘Expectation-Maximization’ method (EM [16]) is

described in [4]. Some examples of real situations in which the

new models are of interest have been provided, likewise some

experiments involving unsupervised image segmentation.

Hyperspectral data analysis [14,35], which at present is an

active field of investigation, or even 3D Markov models for

image analysis ([30], among others) could possibly be areas in

which the fusion techniques proposed in this paper could be

applied.
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avec applications à la segmentation des processus non stationnaires,

Traitement du Signal 22 (1) (2005) 15–26.



W. Pieczynski, D. Benboudjema / Image and Vision Computing 24 (2006) 61–69 69
[14] D. Landgrebe, Hyperspectral image data analysis, IEEE Signal

Processing Magazine 19 (1) (2002) 17–28.
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