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Abstract

This paper deals with the statistical restoration of hidden discrete signals, extending the classical methodology based

on hidden Markov chains. The aim is to take into account the hidden signal and complex relationships between the

noises which can be from different parametric models, non-independent, and of class-varying nature. We discuss some

possibilities of managing it using copulas. Further, we propose a parameter estimation method and apply resulting

unsupervised restoration methods in variety of situations. It is also validated by experiments performed in supervised

and unsupervised context.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The aim of this paper is to propose original
techniques of hidden signal restorations that use
simultaneously copulas and hidden Markov
chains. Let Y ¼ ðY 1; . . . ;Y mÞ be a random vector
taking its values in Rm. The theory of copulas
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allows one to define the distribution pðyÞ from
given marginal distributions pðy1Þ,y, pðymÞ and
dependence structure [1]. Firstly introduced by
Sklar [2], this theory is widely used in various fields
like linguistics [3], biology [4], decision sciences [5],
finance and insuring [6], or still psychology [7],
among others. We only mentioned recent papers,
each of which contain numerous references for
these different fields of research. In a more
theoretical context, copulas can also be useful to
measure the dependence among random variables
[2,8,38], and to construct a general model for
d.
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stationary Markov process, with non-linear de-
pendence, as it is shown in [9,37], or in [10] for
financial applications.

Otherwise, the hidden Markov chains model
allows one to recover a hidden random vector X ¼

ðX 1; . . . ;X nÞ from an observed one
Y ¼ ðY 1; . . . ;Y nÞ, even for a very large n. Since
the seminal papers [11,12], hundreds of papers
described different applications in various do-
mains like image processing [13–15], biology [16],
finance [17], among others. However, apart [18]
there are no results, to our knowledge, concerning
a simultaneous use of copulas and hidden Markov
chains. Extending the first results presented in [18],
the aim of this paper is to describe some
possibilities of such a simultaneous use. In
particular, the latter allows one to consider
complex noise such that (i) its nature can vary
with the class, and (ii) it is not independent
conditionally on the hidden states. Indeed, instead
of assuming that the observed process is the
simplest stationary process with fixed marginals
conditionally on the state process, we use recent
advances in stationary Markov chain modeling
based on copulas for specifying processes with
prescribed margins. The first point (i) can be seen
as a generalization of ideas in [15], where the noise
follows the usual assumption of conditional
independence of the classical hidden Markov chain
model. Concerning the second point (ii), the
approach presented here is a different one, and
can be seen as complementary, to the method
studied in [19]. The main difference is that the
present method does respect the given marginal
distributions of the noise, when the previous
method does not. We also present some numerical
results which attest the interest of the new models,
with potential application to the different domains
mentioned above. The practical applications are
made possible with an original parameter estima-
tion method we propose, based on the general
Expectation-Maximization (EM) principle. Final-
ly, some possible extensions of the proposed
models and techniques to pairwise and triplet
Markov chains [20,21], which generalize hidden
Markov chains, are also mentioned.

The paper is organized as follows. Hidden and
pairwise Markov chains are recalled in Section 2
and the new models using copulas are described in
Section 3. Section 4 is devoted to the parameter
estimation problem. Experiments are described in
Section 5 and the Section 6 contains some
concluding remarks and perspectives.
2. Hidden and pairwise Markov chains

Let X ¼ ðX 1; . . . ;X nÞ denote a stochastic pro-
cess modeling a hidden discrete signal and let Y ¼

ðY 1; . . . ;Y nÞ be a stochastic process modeling the
observations. We assume that each X i takes its
values in a finite set of classes O ¼ f1; . . . ; kg,
which will be assumed known through this paper,
and each Y i takes its values in the set of real
numbers R. The problem is then to estimate X ¼ x

from Y ¼ y. Different Bayesian methods are then
very useful tools, once both the processes X , Y are
linked by the mean of some appropriate joint
distribution pðx; yÞ. The hidden Markov chain with
independent noise (HMC-IN) model, in which this
distribution is written

pðx; yÞ ¼ pðx1Þpðx2jx1Þ . . . pðxnjxn�1Þ

� pðy1jx1Þ . . . pðynjxnÞ ð2:1Þ

is among the most widely used. The name ‘‘HMC’’
is due to the fact that the hidden process X is a
Markov one. Further, given that (2.1) implies the
independence of Y 1,y,Y n conditionally on X , we
will add ‘‘independent noise’’, which gives HMC-
IN. However, in real situations the independence
of Y 1,y,Y n conditionally on X is often subject to
criticism and taking into account possible non-
independency undoubtedly improves the adequacy
of the model. So, it is possible to propose,
especially in the Gaussian noise case, hidden
Markov chains (HMC) models in which both X

and Z ¼ ðX ;Y Þ are Markov chains, but Y 1,y,Y n

are no longer independent conditionally on X .
Further, the so-called pairwise Markov chains
(PMC [21]), whose interest has been shown via
experiments in [19], generalize HMC in that the
hidden process X is no longer necessarily a
Markov chain. Further generalization consists of
introducing a latent process U ¼ ðU1; . . . ;UnÞ and
assuming that the triplet T ¼ ðX ;U ;Y Þ is a
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Markov chain; it leads to the so-called triplet
Markov chains (TMC [20,22]). It is then possible
to show that TMC are strictly more general that
PMC, in that the marginal distribution of Z ¼

ðX ;Y Þ in a TMC T ¼ ðX ;U ;Y Þ is not necessarily
a Markov chain distribution. So, we have four
embedded models called HMC-IN, HMC, PMC,
and TMC, and each of them allows us to estimate
the hidden process X from the observed process Y .

Let us recall the pairwise Markov chain (PMC)
model. Let Z ¼ ðZ1; . . . ;ZnÞ, with
Z1 ¼ ðX 1;Y 1Þ,y,Zn ¼ ðX n;Y nÞ as defined in the
previous section. Z ¼ ðZ1; . . . ;ZnÞ is called pair-
wise Markov chain (PMC) simply when it is a
Markov chain:

pðzÞ ¼ pðz1Þpðz2jz1Þ . . . pðznjzn�1Þ. (2.2)

One can then easily see that HMC-IN are PMC
(with pðz1Þ ¼ pðx1Þpðy1jx1Þ and pðxiþ1; yiþ1jxi; yiÞ ¼

pðxiþ1jxiÞpðyiþ1jxiþ1Þ), but PMC are not necessa-
rily HMC-IN. In fact, in PMC we have
pðxiþ1; yiþ1jxi; yiÞ ¼ pðxiþ1jxi; yiÞpðyiþ1jxiþ1;xi; yiÞ

and so we can say that HMC-IN are particular
PMC in which pðxiþ1jxi; yiÞ ¼ pðxiþ1jxiÞ, pðyiþ1

jxiþ1; xi; yiÞ ¼ pðyiþ1jxiþ1Þ. Otherwise, in PMC the
process X is not necessarily a Markov one [21].
However, likely to HMC-IN, PMC can be used to
estimate X ¼ x from Y ¼ y by different Bayesian
methods and first results are encouraging [19]. In
fact, considering the same ‘‘forward’’ probability
aðxiÞ ¼ pðxi; y1; . . . ; yiÞ, and the more general
‘‘backward’’ probability bðxiÞ ¼ pðyiþ1; :::; yn

jxi; yiÞ, we have analogous recursions

aðx1Þ ¼ pðx1Þpðy1 x1j Þ; and

aðxiþ1Þ ¼
X
xi2O

aðxiÞpðziþ1jziÞ for 1pipN � 1,

ð2:3Þ

and

bðxN Þ ¼ 1; and

bðxiÞ ¼
X

xiþ12O

bðxiþ1Þpðziþ1jziÞ,

for 1pipN � 1. ð2:4Þ

As for each 1pipn, pðxijy1; . . . ; ynÞ / aðxiÞbðxiÞ,
the latter can be calculated and thus the Bayesian
MPM method given by ŝMPMðy1; . . . ; ynÞ ¼
ðx̂1; . . . ; x̂nÞ, with

x̂i ¼ arg max
xi2O

pðxijy1; . . . ; ynÞ (2.5)

can also be calculated.
Otherwise, we have

pðxi;xiþ1jy1; . . . ; ynÞ / aðxiÞpðziþ1jziÞbðxiþ1Þ (2.6)

which gives pðxiþ1jxi; y1; . . . ; ynÞ and thus allows
one to simulate X according to its posterior
distribution pðxjyÞ.
Concerning the particular TMC, that we deal

within this paper and in which each Ui takes its
values in a finite set L ¼ fl1; . . . ; lmg, they are not
much more complicated than PMC. In fact, as
T ¼ ðX ;U ;Y Þ is a Markov chain, we can put V ¼

ðX ;UÞ and say that T ¼ ðV ;Y Þ is a PMC (with
each vi taking its values in O� L) and all we said
above can be applied. In particular, as T ¼ ðV ;Y Þ
is a PMC, pðvijy1; . . . ; ynÞ / aðviÞbðviÞ is calculable
for each 1pipn, and thus one can also calculate
pðxijy1; . . . ; ynÞ ¼

Pm
j¼1pððxi; ui ¼ ljÞjy1; . . . ; ynÞ.

The latter makes possible the use of the Bayesian
MPM method given by (2.5).
The difference between HMC and PMC, which

are not HMC and specifies the interest of the latter
with respect to the former, is described in the
following proposition.

Proposition 2.1. Let Z be a PMC verifying: (a)
pðzi; ziþ1Þ does not depend on 1pipn� 1; and (b)
pðzi; ziþ1Þ ¼ pðziþ1; ziÞ. Then the three following

conditions
(i)
 Z is a HMC;

(ii)
 for each 2pipn, pðyijxi; xi�1Þ ¼ pðyijxiÞ;

(iii)
 for each 1pipn, pðyijxÞ ¼ pðyijxiÞ.
are equivalent.

The proof of the equivalence between (i) and (ii)
is given in [21], and the proof of the equivalence
between (i) and (iii) is given in [22].
In a similar way, we can specify the conditions

under which a TMC is a PMC.

Proposition 2.2. Let T be a TMC verifying: (a)
pðti; tiþ1Þ does not depend on 1pipn� 1; and (b)
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pðti; tiþ1Þ ¼ pðtiþ1; tiÞ. Then the three following

conditions
(i)
 T is a PMC;

(ii)
 for each pðti; tiþ1Þ ¼ pðtiþ1; tiÞ,

pðuijzi; zi�1Þ ¼ pðuijziÞ;

(iii)
 for each 1pipn, pðuijzÞ ¼ pðuijziÞ.
are equivalent.

The proof, analogous to the proof of the
Proposition 2.1, is omitted.

Remark 2.1. PMC are more general than HMC,
but they are not necessarily more complex and the
same is true concerning the TMC. For example,
considering a Markov chain Y ¼ ðY 1; . . . ;Y nÞ and
defining the distribution of X ¼ ðX 1; . . . ;X nÞ

conditionally on Y ¼ ðY 1; . . . ;Y nÞ by pðxjyÞ ¼

pðx1jy1Þ . . . pðxnjynÞ we have a PMC which is as
simple as a HMC-IN, but which is not a HMC. In
an analogous manner, let us consider a TMC,
where U ¼ ðU1; . . . ;UnÞ is a Markov chain and
where the distribution of ðX ;Y Þ conditionally
on U ¼ ðU1; . . . ;UnÞ is given by pðx; yjuÞ ¼
pðx1ju1Þpðy1ju1Þ . . . pðxnjunÞpðynjunÞ. We have a
TMC, which is neither PMC nor HMC, and
which is as simple as a HMC-IN.
3. Copulas in HMC, PMC, and TMC

3.1. Copulas

As said above, copulas allow one to define a
joint distribution from a pair formed by the
marginal distributions and a dependence structure
between the different marginal. The main result of
the theory of copulas, which we will state in the
case of two variables needed in this paper, is the
following. Let hðy1; y2Þ be a probability density on
R2, H the associated cdf function, h1ðy1Þ and h2ðy2Þ

the marginal densities, and H1, H2 the cdf
functions associated with them. Then there exists
a function C defined on ½0; 1�2 such that

Hðy1; y2Þ ¼ CðH1ðy1Þ;H2ðy2ÞÞ. (3.1)

Taking the derivative of (3.1) with respect to y1,
y2 and introducing cðu; vÞ ¼ qqCðu; vÞ=qu qv,
we have

hðy1; y2Þ ¼ h1ðy1Þh2ðy2ÞcðH1ðy1Þ;H2ðy2ÞÞ. (3.2)

Conversely, having H1, H2 and a copula C, one
can use (3.1) to define H. So, a given H cdf on R2

defines a copula C with (3.2), and this copula can
also be used to define any another H 0 from any
another H 01, H 02.

Example 3.1. As an example, let us consider the
Gaussian copulas. Let hðy1; y2Þ be the density of a
Gaussian vector with correlation r and marginal
distributions having null means and variances
equal to one. (3.1) and (3.2) then define a
‘‘Gaussian bivariate copula’’ by

cðu; vÞ ¼
hðH�11 ðuÞ;H

�1
2 ðvÞÞ

h1ðH
�1
1 ðuÞÞh2ðH

�1
2 ðvÞÞ

. (3.3)

So, a bivariate Gaussian copula is defined by
just one parameter, which is the correlation r.
Finally, let Y 1, Y 2 be two real random variables

with correlation r, and with cdf F1, F 2, and f 1, f 2,
the corresponding densities. Using (3.3), we can
define a density for the distribution of ðY 1;Y 2Þ by

f ðy1; y2Þ ¼ f 1ðy1Þf 2ðy2Þ

�
hðH�11 ðF1ðy1ÞÞ;H

�1
2 ðF 2ðy2ÞÞÞ

h1ðH
�1
1 ðF1ðy1ÞÞÞh2ðH

�1
2 ðF2ðy2ÞÞÞ

. ð3:4Þ

The interesting point is that the marginal
distributions defined by (3.4) are F 1, F2. When
ðY 1;Y 2Þ is Gaussian, (3.4) gives again its distribu-
tion.

3.2. Copulas in HMC

Returning to the situation described in the first
Section, let X ¼ ðX 1; . . . ;X nÞ denote a stochastic
process modeling a hidden discrete signal and let
Y ¼ ðY 1; . . . ;Y nÞ be a stochastic process modeling
the observations. We assume that each X i takes its
values in a finite set of classes O ¼ f1; . . . ; kg, and
each Y i takes its values in the set of real numbers
R. Finally, let Z ¼ ðZ1; :::; ZnÞ be the pairwise
process, with Zi ¼ ðX i;Y iÞ.
Let Z ¼ ðZ1; . . . ;ZnÞ be a PMC verifying the

hypotheses (a) and (b) of the Proposition 2.1
above. Furthermore, we will assume that Z is a
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HMC which means, according to the Proposition
2.1, that for each 1pipn, pðyijxÞ ¼ pðyijxiÞ. As the
distribution of Z ¼ ðZi;Ziþ1Þ is independent of
1pipn� 1, we can say that the distribution of
ðZ1;Z2Þ defines the whole distribution of Z. As
we have pðz1; z2Þ ¼ pðx1; y1;x2; y2Þ ¼ pðx1;x2Þ�

pðy1; y2jx1;x2Þ, we may say that the whole dis-
tribution of Z is defined by a probability pðx1;x2Þ

on O2 ¼ f1; . . . ; kg2, and k2 distributions
pðy1; y2jx1;x2Þ on R2. Further, concerning the
marginal distributions of pðy1; y2jx1;x2Þ we have,
according to the Proposition 2.1, pðy1 x1;x2j Þ ¼

pðy1 x1j Þ and pðy2 x1; x2j Þ ¼ pðy2jx2Þ. Now, let us
assume that these k marginal distributions are
possibly not all equal; in other words, pðy1jx1 ¼ iÞ

can vary with i 2 O. Further, pðy1; y2jx1;x2Þa
pðy1jx1Þpðy2jx2Þ, which means that we have a
HMC with correlated noise. Finally, we have k

marginal distributions pðy1jx1 ¼ iÞ ¼ pðy2jx2 ¼ iÞ,
and kðk � 1Þ=2 correlation coefficients rij and
we see that it is possible to use kðk � 1Þ=2
copulas to define k2 distributions of
pðy1; y2jx1;x2Þ. For example, if we take the
Gaussian copula for all of them, we have a
HMC with correlated noise compatible with the
Gaussian HMC in that when all the marginal
distributions are Gaussian, the HMC defined with
copulas is Gaussian.

Remark 3.1. Let us notice the possible variation of
the margin with the class is not a purely
mathematical point of view; in fact, it can occur
in very practical problems. For instance, in a radar
image different classes can produce different
shapes of densities [23].

3.3. Copulas in PMC

Let Z ¼ ðZ1; . . . ;ZnÞ be a PMC verifying the
hypotheses (a) and (b) of the Proposition 2.1,
and let us assume that Z is not a HMC. As
mentioned above, the distribution of ðZ1;Z2Þ,
which can be written pðz1; z2Þ ¼ pðx1; y1;x2; y2Þ ¼

pðx1; x2Þpðy1; y2jx1;x2Þ, defines the whole distribu-
tion of Z. So, according to Proposition 2.1, each of
the marginal distributions pðy1jx1;x2Þ and
pðy2jx1; x2Þ of the distribution pðy1; y2jx1;x2Þ de-
pends on both x1 and x2. To simplify notations, let
us put pijðy1; y2Þ ¼ pðy1; y2jx1 ¼ i;x2 ¼ jÞ. Let us
assume that for each 1pi; jpk, the density
pijðy1Þ ¼ pðy1jx1 ¼ i;x2 ¼ jÞ (which is equal to
pðy2jx1 ¼ j;x2 ¼ iÞ) and the density pijðy2Þ ¼

pðy2jx1 ¼ i; x2 ¼ jÞ (which is equal to pðy1jx1 ¼

j; x2 ¼ iÞ) are known and their Gaussian copula is
indexed by a known correlation coefficient rij . Of
course, in the Gaussian case this gives pijðy1; y2Þ

but in a general case different pijðy1; y2Þ define the
same pijðy1Þ,pijðy2Þ, and rij .
Finally, by the stationarity (a) and reversibility

(b) assumptions, we have k2 marginal distributions
pijðy1Þ (which are the same that the k2 marginal
distributions pijðy2Þ, with pijðy2Þ ¼ pjiðy1Þ) and only
kðk � 1Þ=2 correlation coefficients rij. As in the
HMC above, it is then possible to use kðk � 1Þ=2
copulas to define the k2 distributions
pðy1; y2jx1;x2Þ.

Remark 3.2. We see that PMC do not need much
more parameters than HMC; however, they are
strictly more general. This greater generality
can be seen at the transitions level: as the condition
(ii) in Proposition 2.1 is equivalent to
pðxiþ1jxi; yiÞ ¼ pðxiþ1jxiÞ, the general formulation
pðziþ1jziÞ ¼ pðxiþ1; yiþ1jxi; yiÞ ¼ pðxiþ1jxi; yiÞpðyiþ1

jxiþ1;xi; yiÞ in PMC becomes pðziþ1jziÞ ¼ pðxiþ1jxiÞ

pðyiþ1jxiþ1;xi; yiÞ in HMC.

Remark 3.3. Let us remark that methods pro-
posed in [19] solve the same problem, which is to
take into account the dependence of Y i, Y iþ1

conditional on ðX i;X iþ1Þ in Markov chain and
non-Gaussian contexts. The main difference is that
in the method proposed here the desirable forms of
the marginals of the conditional distributions
pðyijxiÞ are controlled, which is not the case in
[19]. However, even if the corresponding model is
less general than the copula-based one, it furnishes
an interesting alternative when we have no knowl-
edge on the shapes of the margins or of the copula.
Let us also mention that the method in [19] is
inspired by the ‘‘multisensor model’’ proposed in
[24] in which Y i, Y iþ1 are independent condition-
ally on ðX i;X iþ1Þ, but there are two (or more)
sensors Y i ¼ ðY

1
i ;Y

2
i Þ and Y 1

i , Y 2
i are depen-

dent conditionally on X i. In a similar—though
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inverse—manner, the method proposed in this
paper can inspire methods to deal with correlated
sensors, which is described in [25] . Otherwise, the
problem of searching the forms of pðyijxiÞ, which
possibly vary with xi, is processed in [15] in
multisensor simple case where Y i, Y iþ1 are
independent conditionally on ðX i;X iþ1Þ, and Y 1

i ,
Y 2

i are independent conditionally on X i.

3.4. Copulas in TMC

The extension of the copulas in PMC to TMC
does not pose particular problems. As T ¼

ðX ;U ;Y Þ is a Markov chain, putting V ¼ ðX ;UÞ
we can say that ðV ;Y Þ is a PMC and so the
previous subsection is applicable. The difference is
that each Vi ¼ ðX i;UiÞ takes its values in O� L,
with L ¼ fl1; :::; lmg. So, k is replaced with km.
We have then two cases: either V ¼ ðX ;UÞ is a
Markov chain and we apply the results of
Section 3.2, or it is not, and we apply the results
of Section 3.3.
4. Parameter estimation

The aim of this section is to propose a method
of estimation of all the parameters y from Y ¼ y.
More precisely, we focus on the construction of a
sequential search of a stationary point of the
observed log-likelihood in order to compute the
Maximum Likelihood Estimator (MLE) of the
parameters. The consistency of the MLE has been
assessed under general conditions for the HMC-IN
model in [26] and only very recently for the
switching AR model, somewhat similar to PMC,
in [27]. Nevertheless, the main problem in the
application of the MLE approach still remains in
finding the good root of the log-likelihood. The
Expectation-Maximization (EM) algorithm is the
main device to reach this purpose (among others
[36]), and hundreds of papers have shown its good
behavior for mixture models and HMC-IN ones;
see [28] and references therein. The latter, having
started from an initial value y0, produces a
sequence of parameters according to the dynamic
yqþ1
¼ argy max Eyq ½Log ðpyðX ;Y Þ Y ¼ y

�� �. How-
ever, in order to reduce the sensibility of EM to
initial conditions (and to avoid cumbersome
computations in the M step) it can be interesting
to use a ‘‘stochastic’’ EM (SEM [29]), whose
principle is
(i)
 simulate X ¼ xq according to pyq ðxjyÞ;

(i)
 put yqþ1

¼ ŷðxq; yÞ, where ŷ ¼ ŷðX ;Y Þ is the
MLE of y from complete data ðX ;Y Þ.

Fruitful alternatives for parameter estimation
can be found by the application of Data Augmen-
tation [30] or more general MCMC algorithms
[31,32] that enables to estimate the a posteriori
laws of the parameters and could possibly give
better results. However, the designing of the
suitable Markov chains might become technically
more involved due to the apparition of the cdf of
the observations, and the presence of copulas that
couples the a posteriori laws of the different
parameters.
Finally, when considering HMC we have to

find, in the case of Gaussian copulas considered, k

densities piðy1Þ, kðk � 1Þ=2 correlation coefficients
rij, and the distribution pðx1; x2Þ on
O2 ¼ f1; . . . ; kg2. When considering PMC which
are not HMC, we have to find, in the
case of Gaussian copulas considered, k2 densi-
ties pijðy1Þ, kðk � 1Þ=2 correlation coefficients
rij, and the distribution pðx1;x2Þ on O2 ¼

f1; . . . ; kg2.
As in both HMC and PMC cases, X can be

simulated according to pðxjyÞ (see Section 2), all
we have to do is to maximize the completed
likelihood Log ðpyðX ;Y ÞÞ. Unfortunately, it is
difficult to reach the maximum of likelihoods
involving copulas because the parameters of the
margins and of the copulas are intricate. The
extension of the SEM proposed in this paper lies in
the way to reach this maximum. The idea is to
consider the estimation of the margins and of the
copulas as two separate problems, and to first
estimate the parameters of the margins, and then
the copula coefficients, following [9].
Finally, the parameters pðx1;x2Þ can be esti-

mated by the empirical estimate:

p̂ði; jÞ ¼
1½x1¼i;x2¼j� þ � � � þ 1½xn�1¼i;xn¼j�

n� 1
(4.1)
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Then, we select from the sample ðx1; y1Þ,
ðx2; y2Þ,y, ðxn; ynÞ the observations yij ¼ ðyrÞ such
that xr ¼ i and xrþ1 ¼ j. The estimation of pijðy1Þ is
obtained by Maximum Likelihood from the sub-
sample yij .

The parameters rij can be estimated by the
empirical correlation coefficient of the trans-
formed data F�1ðF ijðy

ijÞÞ, where F is the cdf of a
standard normal and Fij is the cdf of pijðy1Þ, with
the newly estimated parameters. This estimator
corresponds to the MLE of a Gaussian copula,
when the margins are known and equal to F ij. We
recover the fact that if X and Y are two random
variables with respective cdf F X and FY linked by
a Gaussian copula indexed by a parameter r then
r is the covariance of the transformed variables
F�1ðFX ðX ÞÞ and F�1ðFY ðY ÞÞ.

Remark 4.1. The above two-step procedure has its
counterpart in the frame of the deterministic EM,
where it is called expectation-conditional maximi-
zation (ECM introduced by Meng and Rubin, see
chapter 5 in [33]. After an E-step, the maximiza-
tion is performed on smaller groups of parameters,
by considering the other parameters fixed (that is
Conditional Maximization). As a consequence,
simpler, faster and more stable algorithms can be
obtained. It was also shown that under wide
conditions, convergence to a stationary point is
ensured. We could expect to have the same
properties for its stochastic version.
5. Experiments

5.1. Hidden Markov chains

We present the case study of HMC based on
gamma laws. The aim of these experiments is to
show on one hand the influence of wider
dependencies in HMC than in HMC-IN, and on
the other hand the usefulness of copulas for
modeling.

In the first part, we present results on chains and
1D process in order to compare HMC-IN and
HMC. In the second part, we show some results on
an image, and the ability of the 2 models to mimic
a 2D process.
5.1.1. Chains

We use two chains having the same transition
matrix A and also the same gamma margins. One
is a HMC, with dependence described by a
Gaussian copula indexed by a correlation coeffi-
cient r, so that the classical HMC-IN is a
submodel obtained with r ¼ 0. The chains have
two classes, such that pðyjx ¼ 1Þ is a Gð1; 0:5Þ and
pðyjx ¼ 2Þ is a Gð2; 1Þ and the transitions are the
following: Pðxnþ1 ¼ 1 xn ¼ 1j Þ ¼ Pðxnþ1 ¼ 2jxn ¼

2Þ ¼ 0:8. We recall that a variable follows a
gamma law Gða; bÞ if the density is written:

f ðy; a; bÞ ¼ ðbaGðaÞÞ�1ya�1 exp ð�y=bÞ1ðyX0Þ (5.1)

where a is a shape parameter and b is a scale one.
When a is one, we have the classical exponential
law. We stress on the interest of this model,
because it is quite difficult to define a bivariate
gamma law with gamma margins, although the
gamma law is very used for modeling positive
random variables. We show in Fig. 1 two examples
of such bivariate densities; one can remark very
different shapes but the same margins.
We compare first the error rate of the restora-

tion of a HMC by the true model and by the
corresponding HMC-IN in a supervised context.
We have simulated 100 chains of 1000 observa-
tions, and we compute the mean error rates for
increasing correlation coefficients. The HMC
considered is quite simple: we assume r11 ¼ r22 ¼
r and r12 ¼ r21 ¼ 0 (Table 1).
For low correlation (o0.5) results of restoration

are nearly the same, the forgetting of the copula in
HMC-IN becomes visible when the correlation is
high. The error rate seems to have reached a
maximum value for a HMC in this latter case,
whereas the error goes on increasing for HMC-IN
(by about 2% each time).
We show also in the unsupervised case, that the

contribution of the copula is non-negligible
or the restoration when we have high correlation
(Table 2).
In this case, the superiority of the use of copulas

is not as clear as in the supervised case, because we
can see that the error rates are quite similar for
both models. The HMC-IN performs even better
for low correlations, and there is an inversion from
0.5. It is probably due to the presence of more
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Fig. 1. Bivariate gamma laws with same margins but different copula.

Table 1

Error rates (%) for restoration of HMC using the true

parameters

Correlation HMC-IN HMC

0 13.4

0.2 15.8 15.6

0.4 17.7 16.8

0.6 19.5 17.5

0.8 22 17.5

Table 2

Error rates (%) for restoration of HMC using estimated

parameters

Correlation HMC-IN HMC

0 14.4 14.8

0.2 16.3 17

0.4 18.7 18.9

0.6 20.4 20.4

0.8 23.6 21.8

Table 3

Variances of the estimators of the margins for HMC and HMC-

IN, while the correlation is increasing

Correlation HMC-IN HMC

Class
ffiffiffiffiffiffiffiffiffiffi
V ðâÞ

p ffiffiffiffiffiffiffiffiffiffi
V ðb̂Þ

q ffiffiffiffiffiffiffiffiffiffi
V ðâÞ

p ffiffiffiffiffiffiffiffiffiffi
V ðb̂Þ

q

0 1 0.06 0.06 0.06 0.09

2 0.23 0.07 0.23 0.08

0.2 1 0.08 0.08 0.08 0.11

2 0.27 0.09 0.37 0.12

0.4 1 0.08 0.07 0.09 0.12

2 0.38 0.09 0.47 0.14

0.6 1 0.1 0.07 0.12 0.17

2 0.47 0.09 0.53 0.17

0.8 1 0.14 0.1 0.14 0.3

2 0.76 0.11 0.67 0.26
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parameters to estimate in HMC, which make the
variance of estimation increase (see Table 3).
Consequently, the estimation of the posterior
probabilities used for MPM segmentation deterio-
rates.

The main difference in the unsupervised context
is about the estimation of the parameters: the
estimators provided by an HMC-IN-based proce-
dure are biased, because it does not use the good
likelihood. Hence, if we want to compare the
estimators in each case, we have to use the Mean
Square Error (MSE) instead of the variance, which
is defined by

MSE ¼ E½ðŷ� y0Þ
2
� ¼ E½ðŷ� E½ŷ�2� þ ðE½ŷ� � y0Þ

2

(5.2)

As for the variances, we can compare the MSE
of the estimator of the gamma margins for
different correlation in Table 4. For low correla-
tion, the MSE are close to each other in both
HMC-IN and HMC cases, but the difference is
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Table 5

Estimated parameters for the gamma margins

Class HMC HMC-IN

â b̂ â b̂

1 0.98 0.48 1.1 0.35

2 1.99 0.97 2.6 0.77

3 3 1.9 4.45 1.46

Table 4

MSE of the estimators of the margins for HMC and HMC-IN, while the correlation is increasing

Correlation HMC-IN HMC

Class MSEðâÞ MSEðb̂Þ MSEðâÞ MSEðb̂Þ

0 1 0.0045 0.0045 0.0046 0.009

2 0.051 0.006 0.054 0.007

0.2 1 0.0075 0.007 0.0075 0.013

2 0.14 0.012 0.15 0.014

0.4 1 0.0134 0.008 0.083 0.015

2 0.37 0.026 0.25 0.02

0.6 1 0.025 0.014 0.014 0.033

2 0.64 0.04 0.32 0.03

0.8 1 0.05 0.026 0.02 0.1

2 1.66 0.073 0.46 0.07
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increasing when the correlation grows. We can
also remark that the parameters are very badly
estimated by HMC-IN. We have the same
behavior for the estimation of the transition
probabilities: the probabilities pðxnþ1 ¼ 1jxn ¼

1Þ ¼ pðxnþ1 ¼ 2Þ are over-estimated when the
correlation is increased.

We wish to stress on the equivalence of the
behavior of the two models for estimation and
restoration when the correlation is equal to 0.
Despite the estimation of a useless parameter, the
error rates are the same and mean estimation for
the correlations are r̂11 ¼ 0:016 and r̂22 ¼ �0:048
(the other correlations were forced to 0). We are
then able to identify a HMC-IN because null
correlation is equivalent to independence with a
Gaussian copula.

5.1.2. Images

In statistical image analysis, the use of a Peano
path enables to transform a 2D process in a 1D,
and to use simpler model for segmentation than
spatial models as Hidden Markov Fields (HMF)
[34]. We show here a simulation of a particular
Hidden Markov Field, with non-independent
noise. We generate a three-classes isotropic Mar-
kov field X ¼ ðX sÞs2S (128� 128 pixels), such that
PX ðxÞ / exp ð�a

P
hs;tijðxs;xtÞÞ with a ¼ 2 (j is �1

if xs ¼ xt, +1 otherwise). We use a neighborhood
based on the four nearest neighbors. We generate a
correlated Gaussian field G ¼ ðGsÞs2S of the same
size of X , such that the law of Gs is centered and
with unit variance. Then, by applying the trans-
formation F�1X s

ðFð:ÞÞ to each Gs (with F the cdf of
the centered normal law with unit variance), we
construct Y s having a cdf F X s

depending on X s.
The same kinds of ‘‘cdf transformations’’ were
used in [35] to generate stationary series with
prescribed margins. The 2D process Y ¼ ðY sÞs2S is
no more the classical HMF because we do not
have the conditional independence assumption.
For this experiments, we still use gamma laws:
pðysjxs ¼ 1Þ is a Gð1; 0:5Þ, pðys xs ¼ 2j Þ is a Gð2; 1Þ,
and pðysjxs ¼ 3Þ is a Gð3; 2Þ.
We obtain the following estimations for the

marginal laws (Table 5):
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Fig. 3. Distributions p11ðy1Þ, p12ðy1Þ, p22ðy2Þ, p12ðy2Þ denoted by

ð1; 1Þ, ð1; 2Þ, ð2; 1Þ, ð2; 2Þ.

Table 6

Error ratios obtained with the Bayesian method MPM

Case PMC and copulas model HMC model

(a) (b) (c) (b) (c)

1 5.31% 5.25% 6.44% 7.70% 12.30%
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The estimated correlation coefficients for the
Gaussian copula are: r̂11 ¼ 0:6, r̂12 ¼ 0:45, r̂13 ¼
0:59, r̂21 ¼ 0:5, r̂22 ¼ 0:5, r̂23 ¼ 0:43, r̂31 ¼ 0:66,
r̂32 ¼ 0:58, r̂33 ¼ 0:6. We remark that the correla-
tion coefficients were not forced to verify equality
rij ¼ rji during the estimation; nevertheless the
estimations are near, so that the assumption (a)
and (b) for the HMC seems to be fair.

Finally, the error rate for the HMC-IN is
22.9%, and only 15.4% for the HMC with copulas
(Fig. 2).

As we can see, the estimation of the margins
provided by HMC-IN is still biased, and the
restored image is less smooth than the original
one. When the image is restored by a HMC, the
estimated copulas enable to propose a more likely
one, with less transitions and small areas within
big ones. Moreover the margins are very well
estimated.
2 2.51% 2.60% 3.37% 7.70% 11.90%

(a): Real parameters, (b): Parameters estimated from ðx; yÞ, (c) :
Parameters estimated from y with SEM. Case 1:

r11 ¼ r22 ¼ 0:1, r12 ¼ r21 ¼ 0:5, Case 2: r11 ¼ r22 ¼ 0:5,
r12 ¼ r21 ¼ 0:8. Sample size n ¼ 500.
5.2. Pairwise Markov chains

We compare in this part the general PMC and
HMC-IN. This comparison is more difficult than
above because the distributions pijðyÞ have no
equivalent in a HMC-IN model. In fact, the
example we deal with will show that PMC can
Fig. 2. The true image and the restored ones. Image (b) is the

logarithm of true data in order to have a better contrast.
describe far more complex phenomenon than a
HMC-IN (or HMC).
Let us consider the case of two classes, with the

two distributions p11ðy1Þ, p12ðy1Þ being Gð3; 3Þ and
Gð2; 2:5Þ, and the two distributions p22ðy2Þ, p12ðy2Þ

being Weibull(1,1), and Weibull(2,1), respectively
(see their form in Fig. 3). The joint probabilities
pði; jÞ are pð1; 1Þ ¼ 0:4, pð1; 2Þ ¼ pð2; 1Þ ¼ 0:15,
pð0; 0Þ ¼ 0:3. In HMC-IN, we assume that pðy1j1Þ
is Gamma and pðy1j2Þ is Weibull. According to the
results presented in Table 6, we see that when data
come from a PMC with Gaussian Copula model,
the supervised and unsupervised Bayesian MPM
methods based on this model can be much more
interesting than the same supervised and unsuper-
vised Bayesian MPM methods based on the
classical HMC models. Of course, this is not
surprising when the true parameters are used
because of the very Bayesian theory; however, it
remains when the parameters are estimated, which
is interesting for real applications.
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6. Conclusions

Hidden Markov Chains with independent noise
processes are widely used in different problems
and their success is due to the favorable behavior
of different associated Bayesian restoration tech-
niques. This is true even in unsupervised cases,
where all parameters have to be estimated from the
observations alone. However, these models use a
questionable independence assumption, and are
often limited by the knowledge of suitable multi-
variate laws when considering vector variables.
When wishing to use dependent and non-Gaussian
noise, the theory of Copulas is well suited. The aim
of this paper was to introduce copulas in some
recent Markov models, and to show how they can
be used to describe interactions between hidden
stochastic data and observed ones. We presented
three possibilities for using copulas in three models
of increasing generality: (i) hidden Markov chains
with non-independent noise (HMC), (ii) recent
pairwise Markov chains (PMC), and (iii) recent
triplet Markov chains (TMC). The use of HMC
models is particularly direct and workable, which
makes it well suited to practical applications. This
is all the more true that a simple parameter
estimation method proposed in the paper, derived
from Stochastic Expectation-Maximization (SEM),
works well.

As perspectives, we may envisage an extension
of the models and techniques proposed to the
multi-sensor case, in which the observations are
multivariate. In fact, correlated and non necessa-
rily Gaussian sensors can be modeled using
copulas in an analogous way. Another extension
could be searching in an automated way, for each
class, the very form of the noise distribution. In
fact, such studies, performed in [15] in the case of
multi-sensor HMC-IN, gave promising results.
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