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Abstract

Hidden Markov fields (HMF) models are widely applied to various problems arising in
image processing. In these models, the hidden process of interest X is a Markov field and must
be estimated from its observable noisy version Y. The success of HMF is mainly due to the fact
that the conditional probability distribution of the hidden process with respect to the observed
one remains Markovian, which facilitates different processing strategies such as Bayesian res-
toration. HMF have been recently generalized to ‘‘pairwise’’ Markov fields (PMF), which offer
similar processing advantages and superior modeling capabilities. In PMF one directly
assumes the Markovianity of the pair (X,Y). Afterwards, ‘‘triplet’’ Markov fields (TMF), in
which the distribution of the pair (X,Y) is the marginal distribution of a Markov field
(X,U,Y), where U is an auxiliary process, have been proposed and still allow restoration pro-
cessing. The aim of this paper is to propose a new parameter estimation method adapted to
TMF, and to study the corresponding unsupervised image segmentation methods. The latter
are validated via experiments and real image processing.
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1. Introduction

Hidden Markov fields (HMF) are widely used in solving various problems, com-
prising two stochastic processes X = (Xs)s2S and Y = (Ys)s2S, in which X = x is
unobservable and must be estimated from the observed Y = y. This wide use is
due to the fact that standard Bayesian restoration methods can be used in spite of
the large size of S: see [3,12,19] for seminal papers and [14,33], among others, for
general books. The qualifier ‘‘hidden Markov’’ means that the hidden process X
has a Markov law. When the distributions p (y|x) of Y conditional on X = x are sim-
ple enough, the pair (X,Y) then retains the Markovian structure, and likewise for the
distribution p (x|y) of X conditional on Y = y. The Markovianity of p (x|y) is crucial
because it allows one to estimate the unobservable X = x from the observed Y = y,
even in the case of very rich sets S. However, the simplicity of p (y|x) required in stan-
dard HMF to ensure the Markovianity of p (x|y) can pose problems; in particular,
such situations occur in textured images segmentation [21]. To remedy this, the
use of pairwise Markov fields (PMF), in which one directly assumes the Markovia-
nity of (X,Y), has been discussed in [26]. Both p (y|x) and p (x|y) are then Markovian,
the former ensuring possibilities of modeling textures without approximations, and
the latter allowing Bayesian processing, similar to those provided by HMF. PMF
have then been generalized to ‘‘triplet’’ Markov fields (TMF), in which the distribu-
tion of the pair Z = (X,Y) is the marginal distribution of a Markov field
T = (X,U,Y), where U = (Us)s2S is an auxiliary random field [27]. Once the space
K of possible values of each Us is simple enough, TMF still allow one to estimate
the unobservable X = x from the observed Y = y. Given that in TMF
T = (X,U,Y) the distribution of Z = (X,Y) is its marginal distribution, the Marko-
vianity of T does not necessarily imply the Markovianity of Z; and thus a TMF
model is not necessarily a PMF one. Therefore, TMF are more general than PMF
and thus are likely to be able to model more complex situations. Conversely, a
PMF model can be seen as a particular TMF model in which X = U.
There are some studies concerning triplet Markov chains [18,28], where general

ideas somewhat similar to those discussed in the present paper, have been investigat-
ed. However, as Markov fields based processing is quite different from the Markov
chains based one, we will concentrate here on Markov fields with no further refer-
ence to Markov chains.
This paper is mainly devoted to study situations in which using TMF can improve

the image segmentation results obtained with PMF and HMF. Its principal purpose
is to propose an efficient TMF parameter estimation method and show its suitability
in unsupervised image segmentation. The new method, briefly introduced in [1], is
based on the general Iterative Conditional Estimation (ICE) principle [25]. This prin-
ciple, whose relationship to the well-known ‘‘Expectation-Maximization’’ (EM)
principle is described in [8], already has given satisfactory results in different classical
HMF-based processing [4,16,22,23,30]. The new method we propose is applied in
different situations and shows, via experiments, its superiority over an adaptation
to TMF of the ‘‘Stochastic Gradient,’’ which works well in the context of HMF
[35]. It is also shown that the corresponding unsupervised Bayesian MPM image seg-
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mentation method can improve the efficiency of the classical HMF and PMF-based
analogous methods.
The organization of the paper is as follows. Some basic principles of Bayesian seg-

mentation, as well as classical HMF, PMF, and TMF, are cited in the next section,
along with some original models and comments. Section 3 is devoted to the original
parameter estimation methods we propose, and some unsupervised image segmenta-
tion results are presented in Section 4. In particular, we deal with real image segmen-
tation and show the interest of the new unsupervised methods based on TMF with
respect to classical ones based on HMF and PMF. Section 5 contains conclusions
and perspectives.

2. Bayesian segmentation with triplet Markov fields

2.1. Bayesian segmentation

Let X = (Xs)s2S and Y = (Ys)s2S be two random fields as above, each Xs taking its
values in X = {x1, . . . ,xk} and each Ys taking its values in R, and let us consider the
problem of estimating the unknown X = x from the observation Y = y. In this paper,
Y = y is the observed image and X = x is the class image. Therefore, for each s 2 S
the problem is to propose an ‘‘estimated’’ x̂s 2 X, that would be ‘‘optimal’’ in some
sense. In other words, each pixel s 2 S is associated with a class, which can be, for
example, ‘‘water,’’ ‘‘forest,’’ ‘‘urban area,’’ . . . and so on. To be more precise, let
us consider the Maximum Posterior Mode (MPM) segmentation method classically
used in the HMF context. This produces an estimated X̂ ¼ x̂ ¼ ðx̂sÞs2S, with
x̂s ¼ argmaxx2Xpðxs ¼ xjyÞ, which means that the class associated with each pixel
s 2 S is that which maximizes its probability conditionally on the observation of
the whole image y = (yt)t2S. Thus, MPM is workable once the marginal distributions
can be obtained in some way. The main property allowing one to obtain marginal
distributions p (xs|y), is the fact that in HMF the distribution of X conditionally
on Y = y is a Markov distribution. In fact, the latter allows one to sample X accord-
ing to p (x|y) and estimate p (xs|y) from the obtained samples. Let us also recall that
the Bayesian MPM method is optimal in the following sense. If X = x is the true
class image and x* is the ‘‘estimated’’ one, possibly different from x, let us assume
that the gravity of the error is measured by the number of pixels on which the classes
are different. This number is thus given by the ‘‘loss function’’
Lðx�; xÞ ¼

P
s2Svðx�s ; xsÞ, with vðx�s ; xsÞ ¼ 0 for x�s ¼ xs and vðx�s ; xsÞ ¼ 1 for x�s 6¼ xs.

The MPM method ŝMPM is then the best one, with respect to all possible methods
(statistical or other), with respect to the mean error:
E½LðŝMPMðY Þ;X Þ	 ¼ minx̂E½LðŝðY Þ;X Þ	. According to the large number law, the latter
has quite an intuitive interpretation: using MPM ensures minimizing the loss in
the long run. In fact, if ŝMPM is applied to n digital images y1, . . . ,yn and if
x1, . . . ,xn are the true unknown corresponding class images, we have
L (ŝMPM(y

1),x1) + 
 
 
 + L (ŝMPM(yn),xn) � nE [L (sMPM(Y),X)] and so, for m large
enough, the loss is smaller than the loss obtained by any other method y ! x̂ ¼ ŝðyÞ.
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To summarize, the important point is the possibility of sampling X according to
p (x|y), which exists in models below.

2.2. Hidden Markov fields

The family of triplet Markov fields offers numerous and rich possibilities for par-
ticular models. However, to better emphasize the interest of TMF with respect to
classical HMF, let us first specify some general properties of the latter. In fact,
although the simplest models of the HMF family are almost exclusively used in prac-
tice, this family is itself quite rich. Let us specify three hidden Markov fields (HMF)
of growing generality, the third being an original model. In the following, we will say
that Z = (X,Y) is an HMF if both X and Z = (X,Y) are Markov fields.

(i) HMF with Independent Noise (HMF-IN)

The simplest HMF is the widely used classical HMF with Independent Noise (HMF-
IN), in which the conditional distribution p (y|x) verifies the two following
hypotheses:

(H1) pðyjxÞ ¼
Q
s2S
pðysjxÞ;

(H2) p (ys|x) = p (ys|xs) for each s 2 S.

We say that the noise is ‘‘independent’’ because (H1) means that the random vari-
ables (Ys)s2S are independent conditionally on X. The distribution of the Markov
field X is a Gibbs distribution with respect to a neighboring system (As)s2S; for exam-
ple, As can be the set of four nearest neighbors of s 2 S. Denoting by C the set of
cliques (a clique being either a singleton or a set of mutually neighboring pixels),
the distribution of X is classically written p (x) = cexp [


P
c2Cuc (xc)]. Thus, the dis-

tribution of (X,Y) is:

pðx; yÞ ¼ c exp 

X
c2C

ucðxcÞ þ
X
s2S

log ½pðysjxsÞ	
" #

. ð2:1Þ

Although the hypotheses (H1) and (H2) are rarely satisfied in practical situations, the
HMF-IN model is widely used and gives satisfactory results in numerous contexts.
However, in some others, as in the presence of textured classes, these hypotheses
can turn out to be too strong [21].

(ii) HMF with Correlated Noise (HMF-CN)

In the HMF-CN hypothesis (H1) is relaxed and (H2) is maintained. A simple way of
constructing such models follows [14]. Let X = (Xs)s2S be a Markov field on XCard (S)

as above, and W = (Ws)s2S be a Markov field on R
Card (S), both being Markovian

with respect to the same neighborhood, which produces the set of cliques C. For each
s 2 S and xs 2 X, let fxs be a bijective and derivable function from R to R, and let us
assume that for each fixed x, Y = f (x,W), with f ðx;wÞ ¼ ðfxsðwsÞÞs2S . Denoting by
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P
c2Cuc (xc) the energy of the Markov field X and

P
c2C/c (wc) the energy of the

Markov field W, the joint distribution p (x,y) is then given by p (x,y) = p (x)p (y|x).
Thus, we have

pðx;yÞ ¼ cexp 

X
c2C

ucðxcÞþ
X
c2C

/cðf 
1
xc

ðycÞÞ

X
s2S
log

oðf 
1
xs

ðysÞÞ
oys

����
����

 !" #
. ð2:2Þ

We see that since Z = (X,Y) and X are Markov fields, Z is a HMF. Moreover,
we notice that (H2) is verified while (H1) is not, consequently Z is not a HMF-
IN.

(iii) HMF, which are neither HMF-IN nor HMF-CN

Let us consider the following HMF, which is strictly more general than HMF-IN
and HMF-CN. In other words, both (H1) and (H2) are relaxed but X and (X,Y)
remain Markov fields. Let X be a Markov field on XCard (S) and W = (Ws)s2S be a
Markov field on RCard (S), as in (ii) above. Let C1, . . . ,Cq be a set of cliques of car-
dinal aP 2 forming a partition of S. So, S = C1 [ 
 
 
 [ Cq and Ci \ Cj = ; for i 6¼ j.
Of course, there are many other cliques which are not in {C1, . . . ,Cq}. For each Ci
and xCi 2 Xa, let fxCi be a bijective and derivable function from Ra to Ra, and let
us assume that for each fixed x, Y = f (x,W), with f ðx;wÞ ¼ ðfxCi ðwCiÞÞ16i6q. Denot-
ing by ½oðf 
1

xCi
ðyCiÞÞ=oyCi 	 the Jacobian of f 
1

xCi
(which is a matrix of size a · a), we

have

pðx;yÞ¼ cexp 

X
c2C

ucðxcÞþ
X
c2C

/cðf 
1
xc

ðycÞÞ

X
16i6q

log det
oðf 
1

xCi
ðyCiÞÞ

oyCi

" #�����
�����

 !" #
. ð2:3Þ

We see how (2.3) generalizes (2.2), the latter being obtained for particular fxCi veri-
fying fxCi ðyCiÞ ¼ fðx1;...;xaÞðy1; . . . ; yaÞ ¼ ðfx1ðy1Þ; . . . ; fxaðyaÞÞ. Further, X is a Markov
field by the very construction of p (x,y) (which is defined by a Markov p (x) and some
p (y|x)), and p (x,y) is a Markov field because the last sum in (2.3) is taken over
cliques.

Remark 2.1. When sampling X according to p (x|y), one uses the conditional local
marginal distributions pðxsjxV s ; yÞ, where Vs is the set of neighbors of s. Furthermore,
completing the global distributions (2.1)–(2.3), these are useful to figure out the
degree of generality of the corresponding model. So, let us see how these
distributions vary in the three models above. In HMF-IN, we have according to
(2.1): pðxsjxV s ; yÞ / exp½


P
s2cucðxcÞ þ log ½pðysjxsÞ		 (s is fixed and the sum is taken

over the cliques c such that s 2 c). In an analogous way, these distributions are

proportional to exp 

P

s2c ucðxcÞ þ
P

s2c /cðf
1xc ðycÞÞ 
 log
oðf
1xs ðysÞÞ

oys

��� ���	 
h i
in HMF-

CN, and in HMF given with (2.3) they are proportional to

exp 

P

s2cucðxcÞ þ
P

s2c/cðf
1xc ðycÞÞ 
 log det
oðf
1xCi

ðyCi ÞÞ
oyCi


 �����
����

� �
 �
, where Ci is such
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that s 2 Ci. We see that these conditional distributions depend on ys in the case of
HMF-IN, and depend on yV s

, with increasing complexity, in the HMF-CN and
HMF cases.

2.3. Pairwise Markov fields

In PMF one assumes the Markovianity of Z = (X,Y). As marginals do not nec-
essarily retain Markovianity, neither X nor Y are Markov fields, and thus PMF
are more general than HMF in (i)–(iii) above. Therefore, the distribution of
Z = (X,Y) can be written as p (x,y) = cexp [


P
c2Cwc (xc,yc)], and the local condi-

tional distributions mentioned in Remark 2.1 are pðxsjxV s ; yÞ ¼
exp½


P
s2cwcðxc; ycÞ	=

P
x2X exp½


P
s2cwcðxc
fsg; xs ¼ x; ycÞ	, where the functions wc

are of arbitrary form. We can see how these distributions generalize those of the pre-
vious subsection.
Let us consider simple ‘‘Gaussian’’ PMF, meaning that p (y|x) is Gaussian, which

will be used in experiments below. Therefore, let (X,Y) be a random field with

pðx; yÞ ¼ c exp½
Gðx; yÞ	

¼ c exp 
 1
2

X
s2S

axsðyxs 
 mxsÞ
2 þ

X
ðs;tÞ2C

½að1
 2dðxs; xtÞÞ
""

þqxsxt ðyxs 
 mxsÞðyxt 
 mxtÞ	
##

; ð2:4Þ

(where d (xs,xt) = 1 for xs = xt and d (xs,xt) = 0 for xs 6¼ xt). We see that both p (x|y)
and p (y|x) are Markovian, and that the latter is also Gaussian.
Let us see how to calculate pðzsjzV sÞ, which is used to sample the PMF (X,Y). We

have pðxs; ysjxV s ; yV sÞ ¼ pðxsjxV s ; yV sÞpðysjxs; xV s ; yV sÞ, where:

pðxsjxV s ; yV sÞ /
1ffiffiffiffiffiffi
axs

p

� exp 
1
2

X
t2V s

að1
 2dðxs; xtÞÞ 

1

4axs

X
t2V s

qxsxt ðyt 
mxt Þ
 !20

@
1
A

2
4

3
5 ð2:5Þ

and pðysjxs; xV s ; yV sÞ is Gaussian with mean and variance given by

Mxs ¼ mxs 

P

t2V sqxsxtðyt 
 mxtÞ
2axs

; ð2:6Þ

R2xs ¼
1

axs
. ð2:7Þ

An important feature of such Gaussian PMF models is that they take into account
noise correlation, which potentially contains some useful information. For example,
let us consider the case of two classes, where the two Gaussian distributions of Ys
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conditionally on Xs = x1 and Xs = x2 are the same. So, the only possible informa-
tion is contained in the spatial correlations of the noise. Can this be enough to per-
form a suitable segmentation? We give an example in Fig. 1, where we see that PMF
give an acceptable result while HMF-IN lead to a quite poor one (in both cases the
parameters have been estimated by a new method specified in the next section).

2.4. Triplet Markov fields

Let X = (Xs)s2S and Y = (Ys)s2S be two random fields as above. A ‘‘triplet’’ Mar-
kov field is defined as T = (X,U,Y) by introducing a third random field U = (Us)s2S,
with each Us taking its values in a finite set of values, and by assuming that T is a
Markov field. So, X and Y have a real interpretation but, which is the main idea be-
hind ‘‘triplet’’ fields, the random field U can be latent, possibly without any physical
interpretation. As T is Markovian, its distribution is a Gibbs distribution with re-
spect to a neighboring system (As)s2S. As for X in Section 2.2, the distribution of
T is then written:

pðtÞ ¼ c exp 

X
c2C

ucðtcÞ
" #

; ð2:8Þ

where C is the set of cliques associated with (As)s2S. Classically, the distribution (2.8)
of T = (X,U,Y) results in a distribution of V = (X,U) conditionally on Y = y, which
is also a Markov distribution. In fact, the distribution p (x,u|y) is classically obtained
from p (x,u,y) by considering y as a constant in (2.8). We obtain

pðx; ujyÞ ¼ c�ðyÞ exp 

X
c2C

ucðxc; uc; ycÞ
" #

. ð2:9Þ

As mentioned at the end of Section 2.1, it is important to be able to simulate X from
the distribution p (x|y). This is possible because realizations of V = (X,U) according
to p (x,u|y) can be simulated, and the latter realizations give realizations of X. How-
ever, let us insist on the fact that TMF are more general than PMF in that p (x|y) is
the marginal distribution of the Markov distribution p (x,u|y), and thus is not neces-
sarily a Markov distribution itself. This greater generality permits better modelling

Fig. 1. Simulated PMF, with both distributions of Ys conditionally on Xs = x1,x2 being the same
(p (ys|xs = x1) = p (ys|xs = x2)) and comparison between PMF and HMF-IN unsupervised segmentation.
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of more complex situations; however, its practical interest in an unsupervised context
is subject to the reliability of the parameter estimation methods used. As mentioned
above, proposing such a reliable method is the main aim of the paper.

2.5. Three interpretations of TMF

As specified above, PMF can be seen as a particular case of TMF (where X = U),
and thus the latter should be able, in theory, to better model more complex situa-
tions. This is true for general latent processes U, without any physical interpretation.
However, U can also admit an interpretation in some situations, and thus some TMF
can also be justified by a physical reality. So, let us specify three possible interpreta-
tions of the latent process U.

1. Let Z = (X,Y) be a PMF model with two classes such that the distributions of
Ys conditionally on Xs = xs have complex densities f1, f2 impossible to express in
closed form. One can then aim to approximate f1, f2 by mixtures: f1 �

Pm
i¼1a

i
1f

i
1,

f2 �
Pm

i¼1a
i
2f

i
2, where f 11 ; . . . ; f

m
1 ; f

1
2 ; . . . ; f

m
2 are given densities. Such a situation

can be seen as a particular TMF; in particular, if Z = (X,Y) is a HMF-IN where
X is a Markov field and p (y|x) = �s2Sp (ys|xs), we can introduce U = (Us)s2S, each
Us taking its values in a set K = {k1, . . . ,km}, such that X has the same structure
and p (u,y|x) = �s2Sp (us,ys|xs) = �s2Sp (us|xs)p (ys|xs,us), where pðus ¼ kijxs ¼ xjÞ
¼ aij and pðysjxs ¼ xj; us ¼ kiÞ ¼ f ij ðysÞ.
2. The second interpretation is like the first one, except for the fact that we know

f1 ¼
Pm1

i¼1a
i
1f

i
1 and f2 ¼

Pm2
i¼1a

i
2f

i
2. Such a situation occurs when each of two classes is

an union of finite subclasses, the latter admitting known densities. An example of
real images verifying such a situation is treated in the next section.
3. The last interpretation is more complex and calls on the ‘‘theory of evidence’’

[32]. Considering a HMF-IN Z = (X,Y), let us assume that the distribution of X is
not well known and cannot be estimated because, for example, of a strong non-sta-
tionarity. In such cases, the distribution of X can be replaced by a ‘‘Markovian mass
function’’ and the posterior distribution of X is obtained by the so-called ‘‘Demp-
ster–Shafer combination rule’’ [32] which fuses this mass function with a probability
obtained from the observation Y = y . Such a fusion destroys Markovianity; howev-
er, its result remains workable because it is formally a TMF model. These cases are
only mentioned here and will be not treated further in this paper (see [29] for more
details).

Remark 2.2. So TMF generalize PMF, which generalize HMF, the latter general-
izing HMF-IN. As HMF-IN are often complicated, one could imagine that TMF
would be very complicated and thus their practical interest would be quite limited.
This is not necessarily true because there are very simple TMF which are neither
HMF, nor even PMF. In fact, let U be a Markov field, and let us assume random
variables (Ys) and random variables (Xs) independent conditionally on U, with
p (ys|u) = p (ys|us) and p (xs|u) = p (xs|us). The distribution of T is written p (t) =
cexp [
W (t)], with W (t) =

P
c2Cu (uc) 


P
s 2 S [log (p (xs|us)) + log (p (ys|us))]. For-
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mally, T is then a classical HMF-IN, where the hidden Markov field is V = (X,U).
So, the complexity of such a TMF model is equivalent to the complexity of a HMF-
IN model T = (V,Y), which means that the computational complexity is comparable
in both models. For example, if X = {x1,x2} and K = {k1,k2}, the complexity of the
TMF model T is equivalent to the complexity of a HMF-IN model with four classes
(each component Vs of the hidden field V takes its values in X · K). Otherwise, the
distribution of X is the marginal distribution of the distribution of (X,U) given by
p (x,u) = cexp [


P
c2Cu (uc) +

P
s2S log (p (xs|us))], and thus is not a Markov distri-

bution. The latter means that (X,Y) is not a HMF.

Remark 2.3. As we place ourselves in the context of Bayesian segmentation, the dis-
tribution of the hidden field X can be interpreted as modelling our prior knowledge
about possible forms of class images. As this distribution is not known in a closed
form in TMF, modelling prior knowledge does not appear in a straightforward
way. However, we have seen that, on the one hand p (x,u|y) was Markovian and,
on the other hand, it generalized the classical Markovian p (x|y) corresponding to
HMF-IN. Furthermore, both pðxs; usjxV S ; uV s ; yÞ in TMF, and pðxsjxV S ; yÞ HMF-IN
are calculable. Comparison of these conditional distributions, which are easier to
interpret than the whole distribution of X, could then be used to elicit the form of
energy in TMF, which would generalize the simpler energy of HMF-IN. In other
words, we can start from a classical HMF-IN with a given energy, and then search
for a TMF energy such that the corresponding pðxs; usjxV S ; uV s ; yÞ would generalize
pðxsjxV S ; yÞ obtained from HMF-IN in a useful and intuitively satisfying way. To
summarize, we have two random fields (X,Y) and the problem is to recover X from
Y. Classical HMF-IN provide an interesting and widely used model. Recent TMF
provide a more general model, which can be used in more complex situations. Fur-
thermore, TMF include models which are not HMF and yet present a comparable
complexity.

3. Parameter estimation

The problem of parameter estimation from the observed data Y = y is a ‘‘mixture
estimation’’ problem, which comes from the fact that the distribution of Y is a ‘‘mix-
ture’’ of distributions p (y) =

P
xp (x,y). The most widely used general method is the

so-called ‘‘Expectation-Maximization’’ (EM) method [20]; however, its implementa-
tion in the hidden Markov fields context is difficult [6,20,24] and some alternative
methods have been proposed [3,9,15,17,24,34,35]. In particular, one may consider
Stochastic Gradient (SG [35]), whose aim is to approach the maximum of the like-
lihood p (y) in a stochastic manner to remedy the difficulties encountered by EM.
Another possibility is to use the general ‘‘Iterative Conditional Estimation’’ (ICE
[25]) method, which has given good results in different classical HMF situations
[4,7,10,16,22,23,30], and in more complex Markov models with a Dempster–Shafer
fusion [2] or fuzzy hidden fields [31]. Moreover, first applications of ICE in a simple
TMF context also gave promising results [27]. ICE resembles EM, and some
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relationships are specified in [8]; however, it is more flexible and seems better suited
to the Markov field context. In fact, ICE does not necessarily use the likelihood, and
the latter is difficult to handle in different Markov field models.
Therefore, we choose SG and ICE for general principles and propose two ori-

ginal parameter estimation methods based on them and valid in the general
TMF context. The first one is an adaptation to TMF, in a rather straightforward
manner, of the SG proposed in [35]. The second method, which is the main novelty
of this paper, is new.
We notice that the parameter estimation problem in TMF is exactly the same as

that in PMF. In fact, TMF (X,U,Y) can be seen as PMF (V,Y), with V = (X,U). So,
we will deal in this section with the parameter estimation problem of PMF (X,Y)
and, when dealing with TMF, X will simply be replaced with V = (X,U).
To simplify things, we will specify the different methods in a simple particular

Gaussian PMF defined by (2.4). On the one hand, its generalization does not pose
problems and, on the other, such models, on which the experiments presented in this
paper are based, are generally sufficient for practical applications.
Hence, for k classes X = {x1, . . . ,xk}, the vector of parameters h to be estimated

contains the following real numbers: a, a1, . . . ,ak, m1, . . . ,mk, and k
2 components qij,

1 6 i, j 6 k.
The SG-based method of estimating h from Y = y is described in Section 3.1, and

that based on ICE is described in Sections 3.2 and 3.3.

3.1. Stochastic gradient algorithm

The aim of SG is to search for the maximum of the likelihood: for observed Y = y,
the problem is to find h maximizing ph (y). We do not propose here any theoretical
properties, whose study is rather tedious, but the extension of results presented in
[35] in the case of HMF-IN could be considered. In fact, the problem is difficult be-
cause ph (x,y) = c (h) exp [
Gh (x,y)] and thus h appears simultaneously in the energy
G and in the constant c. The proposed method runs as follows:

• Initialize parameter vector h0.
• Calculate hn+1 from hn and Y = y by:

hnþ1 ¼ hn þ
K

nþ 1 rhnGhðxnþ1; ynþ1Þ 
 rhnGhðx�nþ1; yÞ
� �

; ð3:1Þ

where rhnGhðxnþ1; ynþ1Þ is the gradient of Gh (xn+1,yn+1) with respect to h taken at
hn, (xn+1,yn+1) is a realization of (X,Y) simulated by Gibbs sampler using hn, x�nþ1
is a realization of X simulated by Gibbs sampler according to its posterior distri-
bution p (x|y) based on hn, and K is a constant.

SG can be initialized by different classical methods like k-means, or, in the case of
image segmentation, by some histogram based method. To stop SG, different criteria
can be used subject to each particular case considered.
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Such a method will be called Stochastic Gradient from Incomplete Data (SGID,
see also Remark 3.1).
Applying the general equation (3.1) to the Gaussian PMF defined by (2.4), we

obtain:

oG
oai

¼ 0.5
X
s2S

ðys 
 miÞ21½xs¼i	;

oG
oa

¼ 0.5
X
ðs;tÞ2C

½1
 2dðxs; xtÞ	;

oG
oqij

¼
X
ðs;tÞ2C

ðys 
 miÞðyt 
 mjÞ1½xs¼i	1½xt¼j	;

oG
omi

¼
X
s2S

aiðmi 
 yiÞ1½xs¼i	 þ
X
ðs;tÞ2C

qijðmj 
 ytÞ1½xs¼i	1½xt¼j 6¼i	

þ
X
ðs;tÞ2C

qiið2mi 
 ys 
 ytÞ1½xs¼i	1½xt¼i	.

ð3:2Þ

Remark 3.1. When a learning sample is available, that is to say when X = x is
observed, SG can still be used replacing in (3.1) the simulated x�nþ1 (which varies with
iterations) by the fixed observed X = x. So the method, which will be called
Stochastic Gradient from Complete Data (SGCD), runs as follows:

• Initialize parameter vector h0:
• Calculate hn+1 from hn and Y by:

hnþ1 ¼ hn þ
K

nþ 1 rhnGðxnþ1; ynþ1Þ 
 rhnGðx; yÞ
� �

. ð3:3Þ

3.2. Iterative conditional estimation

ICE is based on the following assumptions:

(i) there exists an estimator ĥ ¼ ĥðX ; Y Þ of h from the complete data (X,Y);
(ii) for each h 2 H, either the conditional expectation Eh½ĥðX ; Y ÞjY ¼ y	 is comput-
able, or simulations of X according to its distribution conditional on Y = y are
feasible.

ICE is an iterative method which runs as follows:

1. Initialize h = h0;
2. for n 2 N,
(a) put hnþ1 ¼ Ehn ½ĥðX ; Y ÞjY ¼ y	 if the conditional expectation is computable;
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(b) if not, simulate l realizations x1, . . . ,xl of X (each xi is a class image) according
to its distribution conditional on Y = y and based on hn and put
hnþ1 ¼ ĥðx1;yÞþ


þĥðxl;yÞ

l .

The problems of initialization and stopping ICE are analogous to those of initializa-
tion and stopping SG, and so the same methods will be used for both below.
As in PMF (X,Y) the distribution of X conditional on Y = y is a Markov field

distribution, its simulations are feasible using the Gibbs sampler or Metropolis algo-
rithm, and thus the condition (ii) always holds. Therefore, all we have to do in PMF
is to search for an estimator from complete data ĥ ¼ ĥðx; yÞ.

3.3. Estimation from complete data (X,Y)

In this subsection, we present an original approach for estimating PMF parame-
ters from complete data. The proposed procedure, which will be called ‘‘New Meth-
od from Complete Data’’ (NMCD) in the following, is mainly based on the least
squares method proposed by Derin and Elliott [9] to estimate the parameters a,
and on the use of conditional distributions to estimate the remaining model param-
eters, relative to the Gaussian distribution of Y conditional on X.
Of course, the method below can be either directly used when a learning sample of

(X,Y) is available, or inside ICE, when not. When it is used inside ICE, that is to say
when only the incomplete data Y are available, it will be called ‘‘New Method from
Incomplete Data’’ (NMID).
Although the proposed method can be extended to higher order neighborhood

systems, we present it in the case of simple neighborhood containing the four nearest
neighbors, as shown in Fig. 2.
Let us consider a sequence of sets of pixels W1, . . . ,Wn, where each Wi is of the

form presented in Fig. 2. Next, we choose a slightly more general energy, replacing in
(2.4)

P
(s,t)2Ca (1 
 2d (xs,xt)) by

P
ðs;tÞ2CHa1ð1
 2dðxs; xtÞÞ þ

P
ðs;tÞ2CVa2ð1
 2d

ðxs; xtÞÞ þ
P

s2SbðxsÞ (a1 corresponds to ‘‘horizontal’’ cliques C
H, and a2 corresponds

to ‘‘vertical’’ cliques CV). Putting b (x1) = b1, . . . , b (xk) = bk, the real a in (2.4) is
thus replaced by a = [b1, . . . ,bk,a1,a2]. The parameters a = [b1, . . . ,bk,a1,a2],
q = [qij]16i, j6k, a = [ai]16i6k and m = [mi]16i6k are then estimated from
W1, . . . ,Wn, in the following way.

• Estimation of a. The procedure, which is strictly the same as the Derin et al. meth-
od, consists of the following steps:

Fig. 2. Set Ws containing pixel s and its four neighbors.
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Step 1: Use the histogram techniques to estimate pðxs; xV sÞ;
Step 2: Consider the following over-determined system of equations in terms of

the probabilities and parameters:

½Uðxi; xV sÞ 
 Uðxj; xV sÞ	
Ta ¼ ln pðxj; xV sÞ

pðxi; xV sÞ

� �
; ð3:4Þ

where Uðx; xV sÞ ¼ ½J 1ðxÞ; . . . ; JkðxÞ; ðIðx; xt1Þ þ Iðx; xt3ÞÞ; ðIðx; xt2Þ þ Iðx;
xt4ÞÞ	

T, with

Iðx; xt1 ; . . . ; xtnÞ ¼

1 if x ¼ xt1 ¼ 
 
 
 ¼ xtn ;

þ1 otherwise.

�
ð3:5Þ

and

JkðxÞ ¼
þ1 if x ¼ xk;

0 otherwise.

�
ð3:6Þ

The location of ti�s with respect to s is shown in Fig. 2.
Step 3: Solve the over-determined system using the least squares method.

• Estimation of q = [qij]16i, j6k, a = [ai]16i6k, and m = [mi]16i6k
As above, we consider a sequence of sets of pixels W1, . . . ,Wn as in Fig. 2, cen-
tered on pixels 1, . . . ,n. Let us denote by Y W i and XW i , respectively, the restriction

of Y and X toWi. So, we have XW i ¼
X i

X V i


 �
and Y W i ¼

Y i

Y V i


 �
, where Vi contains

the four neighbors of the pixel i. The idea of the estimator is the following. For
each given configuration xW, which is a possible realization of XW 1

; . . . ;XW n , let
mxW and CxW be the mean vector and the variance–covariance matrix of the distri-
bution of YW conditional on XW = xW. So, for a given xW, we can consider in the
sequence W1, . . . ,Wn a subsequence W

0
1; . . . ;W

0
t such that xW 0

1
¼ 
 
 
 ¼ xW 0

t
¼ xW

and use yW 0
1
; . . . ; yW 0

t
to estimate mxW and CxW in a standard fashion by

m̂xW ¼ 1
t

Xt
j¼1

yW 0
j
; ð3:7Þ

ĈxW ¼ 1
t

Xt
j¼1

ðyW 0
j

 m̂xW Þ

TðyW 0
j

 m̂xW Þ. ð3:8Þ

Otherwise, fixing xW let us omit it and let us put CxW ¼ r2 A
AT B


 �
, where r2 is the

variance of Yi conditional on xi. The distribution of Yi conditionally on Y V i (recall

that Y W i ¼
Y i

Y V i


 �
) is then a Gaussian distribution of mean and variance given,

respectively, by

Mxs ¼ mxs þ AB
1ATðyV i 
 mV iÞ; ð3:9Þ

R2xs ¼ r2 
 AB
1AT. ð3:10Þ

Comparing the estimates (3.7)–(3.10) with (2.6) and (2.7), we calculate mi, ai, and
qij (with i = xs). More precisely, mxs is given by (3.7), axs is given by axs ¼ 1

R2xs
(see
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(2.7)) with R2xs given by (3.10). Further, putting qxs ¼ ðqxsxt1 ; qxsxt2 ; qxsxt3 ; qxsxt4 Þ and
comparing (3.9) to (2.6) gives

qxs ¼ 
2axsAB
1. ð3:11Þ
Hence, we have the estimates of mi, ai, and qij for each configuration xW. Conse-
quently, when configurations vary, say, from 1 to r, we obtain m1i ; . . . ;m

r
i possibly

different estimates for mi, and the same for ai, and qij. Let us denote by d1 the car-
dinal of configurations of type 1, . . . ,dr the number of configurations of type r (we
have d1 + 
 
 
 + dr = n). Then we take as final estimates the means of the estimates
associated with particular configurations xW:

m̂i ¼
1

n

Xr
t¼1

dtmt
i; âi ¼

1

n

Xr
t¼1

dtati; and q̂ij ¼
1

n

Xr
t¼1

dtqtij. ð3:12Þ

Finally, the approach we propose can be summarized in the following steps:

Step 1: Estimation of a using Derin et al.�s method described above;
Step 2: For each configuration xW, estimation of means mxW and variance–co-
variance matrices CxW with (3.7) and (3.8);
Step 3: For each configuration xW, computation of mi, axs , and the
qxs ¼ ðqxsxt1 ; qxsxt2 ; qxsxt3 ; qxsxt4 Þ with (3.9) and (3.11);
Step 4: Calculation of final qij, ai, and mi with (3.12) applied to the estimates
obtained from r configurations of xW used.

Let us remark that it is not necessary—and it would even be impossible when the
number of classes becomes large—to take all the configurations xW into account.
For example, one could decide to consider only the configurations with no more than
two classes.
Otherwise, let us notice that the NMCD above can be used in some practical sit-

uations. For example, imagine that the ground truth is known on some part of a
country, and it has to be estimated on some other part. Thus, all parameters needed
can be estimated from the known part with the NMCD, and used to segment the
other part by some Bayesian method.
Finally, using NMCD inside ICE produces the new NMID we propose, which is

summarized in Fig. 3.
Let us also mention the important problem of estimating the number of classes,

which is not addressed here. It can be viewed as a particular model selection problem,
anddifferent techniques have beenproposed in the classicalHMFcase (see, amongoth-
ers, the recent paper [11] and the references therein). Thus, extending these techniques
to TMF will undoubtedly be among the interesting perspectives of further work.

4. Unsupervised image segmentation

This section is devoted to different experiments aiming to show the interest of the
new ICE-based parameter estimation method and unsupervised image segmentation
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based on it, in both PMF and TMF cases. Subsection 4.1 contains comparisons of
the new parameter estimation method with a classical one in the case of simulated
PMF and synthetic images, while Subsection 4.2 aims to show that the use of
TMF instead of PMF or HMF-IN can be of interest. Finally, an example of unsu-
pervised segmentation of a real image, where TMF perform better than HMF-IN, is
presented in Subsection 4.3.

4.1. Simulated PMF and synthetic images

This subsection is devoted to two series of experiments. The first concerns simulat-
ed PMF whose energy is slightly more general than the energy given by (2.4): we will
consider Uðx; yÞ ¼ 1

2

P
s2Saxsðyxs 
 mxsÞ

2 þ
P

ðs;tÞ2CHa1ð1
 2dðxs; xtÞÞþ
h P

ðs;tÞ2CVa2
ð1
 2dðxs; xtÞÞ þ

P
ðs;tÞ2Cqxsxt ðyxs 
 mxsÞðyxt 
 mxtÞ	, where CH is the set of horizontal

cliques and CV is the set of vertical ones. For the case of two classes considered,
the vector of parameters to be estimated is thus h = (a1,a2,a1,a2,m1,m2,q11,q22,q12).
The aim is to compare the estimates obtained with the four methods SGCD, SGID,
NMCD, and NMID (SG for stochastic gradient, NM for new method, CD for

Fig. 3. Parameter estimation with NMID.
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complete data, and ID for incomplete data), and to look at how these different esti-
mates act upon the unsupervised segmentation methods based on them.
We have carried out several experiments and the results of one of them, represen-

tative of various results we obtained, are presented in Table 1 (see Fig. 4). In general
terms, we reached the following conclusions:

(i) the estimates SGCD and NMCD are of comparable efficiency, which is rather
good, even in the case of very strong noise, in the sense that there is little dif-

Table 1
Results corresponding to Fig. 4

TP New method SG

NMCD NMID SGCD SGID

a1 2 2.1 1.87 2.36 2.24
a2 2 2.01 1.68 2.37 2.24
a1 1 1 1.06 0.91 0.58
a2 1 1.03 1.09 1.00 1.03
m1 0 0.00 
0.01 0.10 0.26
m2 2 2.00 2.07 1.86 0.78
q11 
0.2 
0.19 
0.19 
0.2 
0.06
q22 
0.2 
0.2 
0.19 
0.21 
0.40
q12 0.00 0.00 0.00 0.02 0.00

ER 1.44% 1.61% 1.63% 2.03% 8.59%

True parameters (TP), estimates from complete data with NMCD and SGCD, and estimates from
observed data with NMID and SGID. ER, error ratio of MPM segmentation.

Fig. 4. Simulated PMF (size 128 · 128) and comparison between PMF segmentation using true
parameters (TP) and estimates by different parameters estimation methods.
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ference when segmenting the noisy image with real parameters or estimated
ones;

(ii) the estimate NMID works better than SGID in all situations.

In the case of SG estimation, 15 iterations have been used from the complete data
and 30 iterations from the incomplete data. In NMID we have used 30 iterations.
These numbers of iterations have been found experimentally, from the numerous
experiments we performed.
Note that the error rates in all experiments in the paper are obtained from one

experiment.
The second series of experiments concerns a ring-image corrupted with synthetic

Gaussian correlated noise. We have partial knowledge of the model; in other words,
the model corresponds partially to PMF above. Such models are interesting because
studying them allows one to understand how the methods work when the model used
diverges from the theoretical one. In other words, such studies provide some knowl-
edge about the robustness of the methods considered.
We consider the two-class image ‘‘Ring’’ and its noisy observed versionY = y. Each

Ys is then obtained from an independent noiseW = (Ws)s2S by averaging on the four
nearest neighbors: Y s ¼ 1

5
ðW s þ

P
t2V sW tÞ. So, firstWt (for each t 2 S) is drawn with

the Gaussian distribution Nðm1; r21Þ if xt is black, and with the Gaussian distribution
Nðm2; r22Þ if xt is white, and thenYs = ys is calculated, for each s 2 S, using the equality
above.Of course, such a correlatedGaussian field is notMarkovian and thus themodel
considered is not of the PMF type considered in the previous subsection.
As above, we performed numerous experiments and one case, representative of

the different results obtained, is specified in Table 2. On the whole, analogous con-
clusions to those drawn in the previous subsection hold. In general, SGCD and
NMCD are quite efficient, even in very noisy cases. When considering the incomplete
data situation, NMID works better than SGID (see Fig. 5).

Table 2
Image ‘‘ring’’

New method SG

NMCD NMID SGCD SGID

a1 2.01 1.17 2.38 2.30
a2 2.01 1.19 2.38 2.30
a1 7.34 8.19 4.88 2.04
a2 7.74 8.23 3.43 2.05
m1 0.01 
0.05 0.01 0.02
m2 0.99 1.04 0.98 0.60
q11 
0.50 
0.50 
0.35 0.00
q22 
0.48 
0.45 
0.23 
0.50
q12 0.00 0.00 
0.01 0.00

ER 3.1% 5.5% 3.65% 15.3%

Results corresponding to image ‘‘ring’’ in Fig. 5. Estimates from complete data with NMCD and SGCD,
and estimates from observed data with NMID and SGID. ER, error rate of MPM unsupervised seg-
mentation. Real parameters are m1 = 0, m2 = 0.5, and r21 ¼ r22 ¼ 1.
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Both methods NMIC and SGID have been initialized with k-means procedure
with 20 iterations. Further, we used 20 iterations to estimate the parameters, and
100 samples to estimate the posterior marginal distributions p (xs|y) used in MPM.
The optimal number of different iterations has been found experimentally. The com-
putation time is about 80 s for both NMID and SGID, the parameter estimation tak-
ing about 2 s in NMID and 6 s in SGID. All experiments in this paper have been
performed with IBM PC, Pentium IV, 2 GHz.

4.2. PMF and TMF based unsupervised segmentation

This subsection is devoted to an example showing one kind of situation in which
TMF perform better than PMF. Let us consider a two-classes hand-drawn image
X = x depicted as ‘‘synthetic data’’ in Fig. 6, and its observed noisy version Y = y.
The latter is the class image corrupted with Gaussian white noise; so
p (ys|xs = x1) = N (0,1) and p (ys|xs = x2) = N (2,1). The observed image Y = y is
then segmented using HMF-IN, PMF, and TMF models, all segmentations being
performed in an unsupervised manner with parameters estimated by the new method
proposed above. All HMF-IN, PMF, and TMF used are Markovian with respect to
the four nearest neighbors, and in TMF the latent random variables Us take their
values in K = {k1,k2}. The energies of the models considered are
GHMF(x,y) =

P
(s,t)2Ca (1 
 2d (xs,xt)) 


P
s2S log [p (ys|xs)], GPMFðx; yÞ ¼

P
ðs;tÞ2Ca

ð1
 2dðxs; xtÞÞ þ
P

s2Saxsðyxs 
 mxsÞ
2 þ

P
ðs;tÞ2Cqxsxtðyxs 
 mxsÞðyxt 
 mxt Þ, and GTMF

(x,u,y) =
P
(s,t)2Ca (1 
 2d(us,ut)) 
 (a0 d(us = ut = k1) + a

0
d (us = ut = k2))

(1 
 d (xs,xt)) 

P
s2S log [p (ys|xs)], respectively. We have chosen the HMF-IN mod-

Fig. 5. Image ‘‘ring’’ (size 128 · 128), its noisy version, and different unsupervised segmentation results.
ER, error rate MPM unsupervised segmentation. Computation time is about 80 s for both NMID and
SGID, the parameter estimation taking about 2 s in NMID and 6 s in SGID.
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el, known as ‘‘Pott�s model,’’ as the simplest one. The PMF model chosen is the sim-
plest PMF generalizing the HMF-IN considered; in fact, when the noise correlations
disappear, the latter PMF model gives the former HMF-IN one. Similarly, the TMF
(X,U,Y) considered is a simple one again giving the HMF (X,Y) for U = X (let us
recall that TMF generalize PMF because the latter are particular TMF for which
U = X). In fact, when us = xs and ut = xt in GTMF(x,u,y), we have
(a0d (us = ut = k1) + a0d (us = ut = k2)) (1 
 d (xs,xt)) = 0, which is due to the fact that
a0d (us = ut = k1) + a0d (us = ut = k2) = 0 for us 6¼ ut and 1 
 d (xs,xt) = 0 for us = ut.
So, U = X implies GTMF = GHMF.
According to the experiments presented in Fig. 6 we see that the TMF-based

method works significantly better than the PMF-based one, and the latter works
slightly better than the classical HMF-based method. Thus, we have here a simple
example of a situation in which PMF contribute little to HMF, but the use of
TMF is of interest and significantly improves both HMF- and PMF-based methods
results.
We have also added in Fig. 6 the optimal ‘‘pixel by pixel’’ segmentation, in which

each x̂s is obtained by maximizing p (xs|ys). The latter also means that x̂s is obtained
by maximizing p (xs = x1)p (ys|xs = x1) and p (xs = x2)p (ys|xs = x2). As the propor-
tions p (xs = x1) = 0.26 and p (xs = x2) = 0.74 are efficiently estimated from synthet-
ic data and the two Gaussian densities p (ys|xs = x1) and p (ys|xs = x2) are known, the
‘‘pixel by pixel’’ segmentation is optimal and thus this complementary result inciden-

Fig. 6. Image ‘‘Synthetic data’’ (size 128 · 128), HMF-IN, TMF, and PMF-based unsupervised
segmentation methods results, and ‘‘pixel by pixel’’ true parameters based one. ER, ratio of wrongly
classified pixels.
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tally shows the usefulness of Markov models, in which the use of p (xs|ys) is replaced
by the use of p (xs|y) (see Section 2.1).
The computation time is comparable to that of the previous subsection.

4.3. Real image segmentation

This section is devoted to the segmentation of a real radar image. The considered
image, shown in Fig. 8, is an image of Istres city, which can be divided into four clas-
ses: (1) Water, (2) Forest and cultivation, (3) Corn field, and (4) Houses, with the
noise distributions given in Fig. 7. We want to obtain two classes: ‘‘Water’’ and
‘‘Land,’’ the latter regrouping ‘‘Forest and cultivation,’’ ‘‘Corn fields,’’ and ‘‘Hous-
es.’’ Thus, we use two different procedures: the first considers classical PMF, given
by (2.4), with two classes, estimating all parameters with NMID as described above.
The second considers the same PMF (2.4) with four classes, and then considers that
‘‘Land’’ is union of three of them (which gives a TMF: see the second interpretation
in Subsection 2.4). All parameters h = (a,ai,mi,qii)16i64 are still estimated with
NMID (we have fixed qij = 0 for i 6¼ j). We have used 30 iterations in ICE and the
posterior marginal distributions, used in the MPM segmentation, are estimated from
100 samples, each of which was sampled with 20 Gibbs sampler iterations.

5. Conclusions and perspectives

In this paper, we have dealt with the recent triplet Markov fields (TMF [27]) mod-
el, which is more general than the classical hidden Markov fields (HMF) model and
still allows one to recover, via some Bayesian methods, the hidden signal. We pro-
posed two kinds of results:

(i) the first concerns the TMFmodels themselves.We specified how several variants
can be simply obtained from classical HMFwith correlated noise. None of these
new variants is much more complicated to use than the classical HMF, and thus
new possibilities are offered to deal with each particular problem.

Fig. 7. Four Gaussian distributions (‘‘Water,’’ ‘‘Forest and cultivation field,’’ ‘‘Corn field,’’ and
‘‘Houses,’’ respectively) estimated with NMID from Istres image in Fig. 8. Estimated a = (aH,aV) is (0.93;
0.89) and estimated qxsxt are 
0.12, 
0.09, 
0.07, and 
0.02.
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(ii) The second main aim was to introduce, and assess by experiment, some origi-
nal parameter estimation methods. We proposed two of them, respectively,
based on Stochastic Gradient (SG [35]) and Iterative Conditional Estimation
(ICE [25]) with a generalization of least squares (LS [9]). It turned out that ICE
with LS is quite efficient and provides, in particular, interesting unsupervised
Bayesian image segmentation methods.

As a perspective for further studies, let us mention the extension to more complex
noises, possibly non-Gaussian, using copulas [5]. An integration of different sensors,
some of which being possibly ‘‘evidential’’ [2], is an another perspective for further
investigation of TMF. Finally, extension of the rectangular lattice considered here
to more general ‘‘Bayesian networks’’ [13] could also be viewed.
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