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Unsupervised Restoration of Hidden Nonstationary
Markov Chains Using Evidential Priors

Pierre Lanchantin and Wojciech Pieczynski

Abstract—This paper addresses the problem of unsupervised
Bayesian hidden Markov chain restoration. When the hidden
chain is stationary, the classical “Hidden Markov Chain” (HMC)
model is quite efficient, and associated unsupervised Bayesian
restoration methods using the “Expectation–Maximization” (EM)
algorithm work well. When the hidden chain is non stationary,
on the other hand, the unsupervised restoration results using the
HMC model can be poor, due to a bad match between the real
and estimated models. The novelty of this paper is to offer a more
appropriate model for hidden nonstationary Markov chains, via
the theory of evidence. Using recent results relating to Triplet
Markov Chains (TMCs), we show, via simulations, that the clas-
sical restoration results can be improved by the use of the theory
of evidence and Dempster–Shafer fusion. The latter improvement
is performed in an entirely unsupervised way using an original
parameter estimation method. Some application examples to
unsupervised image segmentation are also provided.

Index Terms—Bayesian restoration, Dempster–Shafer fusion,
expectation–maximization algorithm, Hidden Markov chains,
nonstationary Markov chain restoration, parameter estimation,
theory of evidence.

I. INTRODUCTION

THE hidden Markov chain (HMC) model is widely used for
various problems, including signal and image processing,

economical prediction, and health sciences. In such a model, the
unobservable—or hidden—signal , with each

in a finite set , is assumed to be a realization
of a Markov chain . The observed signal

is assumed to be a realization of a stochastic
process . The links between and are
then modeled by the following joint distribution:

. It
allows one to recover the hidden data from the observed
data in different Bayesian ways, which are very efficient
and widely used ([1], [2]). When is based on unknown
parameters , the latter can be estimated from ,
considering the stationary HMC model, by methods like “Ex-
pectation–Maximization” (EM) [3]. Thus, when the HMC is
effectively stationary, parameters are well estimated, and the
restoration based on the estimated parameters, which is called
“unsupervised restoration,” still works well. However, when
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the HMC is not stationary, the estimation necessarily gives
incorrect results, which can imply poor restoration of .
The aim of this paper is to describe how to improve the quality
of such poor unsupervised nonstationary HMC restoration by
using the theory of evidence [4]–[8]. Our approach is based on
the two following points:

1) The posterior distribution of an HMC, which is
needed to Bayesian restoration, can be seen as the Demp-
ster–Shafer fusion (DS fusion) of the prior Markov dis-
tribution of
with a probability defined
on by .

2) When is incompletely known, it can be replaced by
so-called “belief function,” which is obtained from ,
whose aim is to model the lack of precise knowledge of

. It can be fused with using DS fusion. The result
of the latter fusion is a probability distribution on ,
and although it is not necessarily a Markov distribution, it
can be used to perform Bayesian restorations. Indeed, the
latter feasibility is due to the fact that the fused distribu-
tion is a triplet Markov chain [9], [10].

We provide different simulation studies, showing that such an
introduction of an appropriate belief function can improve the
results obtained in the classical unsupervised Bayesian restora-
tion. The important point is that the latter appropriate belief
function is found in an entirely unsupervised way using an orig-
inal parameter estimation method.

Let us mention some existing methods of dealing with the
nonstationarity of , which call on the introduction of the
“time duration function” [11]. Parameters can then be estimated
by a Monte Carlo Markov Chain (MCMC) method, as proposed
in [12]. Then, further generalizations to hidden semi-Markov
chains have been proposed (see [13] with the related references).
Therefore, the method we propose, which is based on the theory
of evidence, is a quite different alternative one.

The paper is organized in the following way: The next sec-
tion is devoted to a brief description of the HMC model. In Sec-
tion III, we introduce the main theory of evidence tools used in
this paper. In this section, we also deal with a very simple case
of DS fusion, outside any Markov model, to show how DS fu-
sion can improve the Bayesian classification based on incorrect
parameters. Pairwise and Triplet Markov chains are described
in Section IV. The hidden “evidential” Markov chain (HEMC)
model is addressed in the Section V, and different simulation re-
sults are described in Section VI. Finally, Section VII contains
our conclusions and perspectives.

1053-587X/$20.00 © 2005 IEEE
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II. UNSUPERVISED RESTORATION OF STATIONARY HMC WITH

INDEPENDENT NOISE

Let and be two sto-
chastic processes. is hidden (each takes its values in a
finite set ), and is observed (each takes
its values in the set of real numbers ). The problem is then to
estimate from . The distribution of is as-
sumed to be given by

(1)

Such a model is called a “hidden” Markov chain with “indepen-
dent noise” (because the hidden process is a Markov chain,
and the random variables are independent condi-
tionally on ). Hereafter, it will be denoted by HMC-IN.

Let us consider, for each , the “forward” prob-
ability and the “backward” proba-
bility . These probabilities can
then be recursively calculated for by

(2)

Further, one can show that for each , the marginal
posterior distribution of the hidden state can be calculated by

(3)

and the joint posterior distribution of two successives hidden
states by

(4)

Therefore, one can easily calculate , which makes the
use of Bayesian Maximum Posterior Mode (MPM) restoration

possible, and is given
by . Another Bayesian restora-
tion method is the maximum a posteriori (MAP), which is
sometimes also referred to as the “Viterbi algorithm” [2]. The
calculus of MAP is also possible, and it is widely used.

Let us consider the case of stationary and Gaussian
HMC-IN model. Thus, do not depend on

, just as and the distribu-
tions on are Gaussian.
Finally, the distribution verifying (1) is defined by
parameters , which is a probability
on means , and variances of
the Gaussian densities above. The estimation of all these
parameters with the iterative EM method runs as follows.

i) Take an initial value
.

ii) For each is calculated from and in two
steps:

• Step E) Use and to calculate and
; then, deduce and

• Step M) Calculate
with

(5)

(6)

(7)

As mentioned in the Introduction, associating EM with MPM
or MAP in the stationary HMC-IN model provides a very effi-
cient unsupervised restoration method, which is at the origin of
the very success of the HMC-IN model.

Now, let us consider a nonstationary and Gaussian HMC-IN
in which remain Gaussian

and equal, but do depend on .
Therefore, the EM estimates above give an unique prob-
ability on , which will necessarily vary, possibly in a
significant manner, from the different . In other
words, the estimate gives a stationary Markov distribution

, which is nec-
essarily different from the real nonstationary distribution

. We are going to
show how to improve the results of the MPM based on
by using the theory of evidence.

III. DEMPSTER–SHAFER THEORY OF EVIDENCE

This section is devoted to the basic notions of the theory
of evidence that will be needed to the purpose of this paper.
Let us consider a finite set of classes, which is called, in the
theory of evidence context, “the frame of discernment”

, which is made up of exclusives hypotheses.
Further, let us consider its power set ,
which represents the set of all subsets of .

By considering single hypotheses and compound hypotheses,
as well, the Dempster–Shafer theory of evidence provides a
way to represent missing information or ignorance using the
so-called “mass function” . The latter is a function from
to , verifying (8).

(8)

We see that when is null outside singletons, it can be as-
similated to a probability, and thus, it appears as a kind of “gen-
eralization” of the latter. The mass functions verifying (8) are
the only ones we will use in this paper; however, let us mention
two other possible representations of the uncertainty linked with
the mass functions: the degree of plausibility (Pls) given by Pls

and the degree of belief (Bel), given by
Bel . In fact, Pls, and Bel can be defined in
an axiomatic way, and each of Pls, and Bel defines the two
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others. A probability function illustrates a particular case in
which Pls Bel.

Example 3.1: Let us consider a family of possible proba-
bility distributions on and the following
“lower” probability . Then, defined
by , and

is a mass function, where can
be interpreted as a quantity that models the lack of information
about the exact probability on .

Example 3.2: Let us consider the problem of satellite
or airborne optical image segmentation into two classes:

“forest” and “water”. The prior knowledge is
modeled by , which simply is a probability on . For an
observation , which is a real number, on a pixel , we have
three possibilities: “forest,” “water,” or “clouds.” The possible
presence of clouds can then be modeled by a probability mea-
sure on , which is a mass function
defined by , and

. Therefore, models the ignorance
attached with the fact that one cannot see through clouds.
The DS fusion (see (9) below) of with then gives a
probability on , which generalizes the posterior probability
(this is found again when the clouds disappear) and can be used
to perform some Bayesian classification. An example of such a
situation with visual presentation is dealt with in [14].

Having defined the evidence functions and of
two information sources on the same frame of discernment

, one can combine them using the Demp-
ster–Shafer fusion (DS fusion):

(9)

We will now establish a link between the previous section and
the current one. We will call a mass function “probabilistic”
when it, being null outside singletons, defines a probability, and
we will call it an “evidential” mass function when it is not a
probabilistic one. Then, we have the following classical result.

Proposition 3.1: The result of DS fusion of a probabilistic
mass function with an evidential mass function is a probabilistic
one.

With an HMC-IN defined by (1), let us consider the Markov
distribution as being
a probabilistic mass function , and let the second proba-
bilistic mass function be defined by

(the mass function depends on ,
which is fixed). Therefore, models the prior information, and

models the information provided by the observation . The
interesting result is that the posterior distribution of
is the DS fusion of and

(10)

The aim of this paper is, as mentioned earlier, to improve the
unsupervised restoration of a nonstationary HMC-IN by substi-
tuting the estimated stationary prior distribution of the hidden
Markov chain by some evidential mass function in an unsuper-
vised manner. To do so, we are going to briefly present the pair-

wise and triplet Markov chains. In fact, when is an eviden-
tial mass function, the fusion (10) may no longer be a Markov
chain, and if it is not, the standard Bayesian restoration methods
cannot be applied directly. Before we start, let us remark that we
do not present a rigorous mathematical proof that such a substi-
tution must improve the Bayesian restoration of hidden Markov
chains; however, some calculus given in Example 3.3 is possible
in a case of simple independent variables.

Example 3.3: Let us consider , and a sequence
of random variables,

with each taking its values in and each taking its
values in . Let us assume that depends
on , but the two densities of
the distributions and do not
depend on . When using the true parameter , the Bayesian
restoration corresponding to the classical “0–1” loss function
is if , and if , which gives
the error probability ERR . When using a false

instead of , the error probability becomes ERR
. Finally, according to what will be done

in the Markov context below, we replace the false
with a “weakened” mass function

.
The DS fusion , where and ,
is then a probability, which generalizes the classical posterior
probability. Using the latter probability to perform the
restoration (that is to say, putting if

, and if )
gives if , and
if , which leads to the error probability
ERR . Therefore,
the problem is to know whether a does exist in such a way
that ERR ERR ; in other words, is it possible
to decrease the error probability by introducing a mass function

when having a false ? The response is positive in the fol-
lowing context. As are not known and can vary with

, let us assume that they do vary with and that they are
realizations of a random variable , with . The
problem is then to see whether the expectation of ERR
decreases when using the mass function instead of or, in
other words, when starts from 0. A classical calculus leads to

ERR , which shows that the
“mean” error decreases, and thus, for an large enough, the
error also decreases when using instead of .

IV. PAIRWISE AND TRIPLET MARKOV CHAINS

A. Pairwise Markov Chains

The HMC-IN model has recently been generalized to the
so-called “pairwise Markov chain” model, in which the pairwise
process , with

is directly assumed to be a Markov chain [15]. Its
distribution is then written

(11)

One can then see that HMC-IN are PMC (with
and

), but, as shown in [15], PMC
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are not necessarily HMC-IN. More precisely, we have three
models: HMC-IN, HMC in which both and are Markov
chains, and PMC. Then, HMC-IN are HMC and HMC are
PMC, but the converse propositions do not hold. Further, in the
stationary PMC, we have the following result [10].

Proposition 4.1: Let be a PMC verifying the following.

a) does not depend on .
b) .
Then, the three following conditions hold.

i) is an HMC.
ii) For each .
iii) For each are equiva-

lent.
These results provide pleasant intuitive ideas about the

respective generalities of the three models. In partic-
ular, given that

, the PMC is an HMC if and
only if , and it is a HMC-IN
if and only if it is an HMC with

.
However, like HMC-IN, PMC can be used to estimate

from by different Bayesian methods in unsu-
pervised manner, and the different results shown in [16] are
quite encouraging. In fact, considering the same “forward”
probability, , and the following
“backward” probability
(which generalize to the PMC model the classical ones valid
in the HMC-IN model), we have something analogous to (2)
recursions. More precisely, , and

for
, and ,

for . Furthermore, generalizing (3) and (4), we
have for each ,
and
for each . Therefore, as in the HMC-IN context,

and are calculable,
which allows one to propose different unsupervised Bayesian
restoration methods.

B. Triplet Markov Chains

In triplet Markov chains (TMCs), a third process
is introduced, with each taking its

values in a finite set . Then, let us put
, and

as the corresponding processes. Assuming that is
Markovian, the process is a PMC, and we can formulate
the distribution of as , with

and calculable. This means that the distributions
are also

computable, giving us . Finally, although the distribu-
tion of is not necessarily a Markov one, the marginal
distributions are computable, which in particular
enables the use of the Bayesian MPM restoration method. Of
course, TMC are of interest if they generalize PMC. In the case
of stationary TMC, we have the following result, whose proof
is analogous to the proof of the Proposition 4.1, with instead
of and instead of .

Proposition 4.2: Let be a TMC verifying the following.

a) does not depend on .
b) .

Then, we have the three following conditions.

i) is a Markov chain ( is a PMC).
ii) For each .
iii) For each are equiva-

lent.

V. UNSUPERVISED RESTORATION USING EVIDENTIAL PRIORS

This section is devoted to the problem mentioned at the end of
Section II. We propose a specific mass function to replace the
distribution , show that the DS fusion result is a TMC, and
propose an original method of parameters estimation of the new
model.

A. Hidden Evidential Markov Chains

Definition 5.1: Every mass function defined on and
verifying the following:

i) vanishes outside ; and
ii) is of the “Markovian” form

, with

will be called “Evidential Markov Chain” (EMC).
We see how an EMC generalizes Markov chain ,

which can be seen as a particular being nonzero only on
such that each is a singleton.

An example of an EMC is specified in Remark 5.1 below.
The idea behind this paper, which will now be developed,

is to consider a stationary EMC to replace the incorrect sta-
tionary Markov chain estimated with EM in the non-
stationary case (see the end of Section II). The probabilistic
mass function defined from the observations
by can
be fused with an EMC , and we can say, according to (10),
that when , the fusion result is . The difficulty
is that when is no longer probabilistic, the fusion
is no longer a Markov chain. However, is a marginal
distribution of a TMC and can therefore be used to restore the
hidden signal. More precisely, we have the following result.

Proposition 5.1: Let be an EMC, and let
be

the probabilistic mass function defined by the observations
. Let be a TMC, with each

taking its values in , whose distribution is defined by

(12)

, and
for . Then, is

the conditional distribution defined by , where
is the marginal distribution of the TMC (12). As a

consequence, are calculable, and thus,
are as well.

The proof is based on the fact that the sum of
over is, on one hand, the marginal
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distribution of and, on the other
hand, the DS fusion defined by (9). Further,

defined with (12) is necessarily a Markov chain.
Let us note that the transitions could be

calculated from by “back-
ward” recursions: Putting and

, for , we
have . However, it is im-
portant for practical applications to calculate the transitions

, which are calculated in the strictly same
manner, considering as a constant in (12). Therefore, again,
we find that with being the marginal distribution
of a TMC, it is possible, according to the previous section, to
estimate the hidden signal from the observations .

Definition 5.2: The model given by an EMC and
a probabilistic mass function given from the obser-
vations by

will be called “hidden evidential
Markov chain with independent noise” (HEMC-IN).

B. Learning HEMC

We propose, in this subsection, an original parameter estima-
tion method, derived from the EM algorithm, to estimate the pa-
rameters of HEMC-IN from the only observations .
We consider a stationary HEMC-IN , with

, which means that does not depend on .
According to (12), we notice that when considering that

is the hidden process in , the latter is a
classical HMC-IN. Although this is a particular HMC-IN in the
sense that , we may view the use of
the EM method, which is widely used in the HMC-IN case.

We will now look at the Gaussian case, where
are Gaussian. Considering classes , we
have to estimate, according to (12), the following parameters:

means , and variances of the
Gaussian densities , and

parameters ,
which is a mass function on . The EM method adapted
to HEMC-IN runs as follows.

i) Consider an initial value for
.

ii) For each , calculate from and
in two steps.
• Step E: Calculate , and , and then

and .
• Step M: Calculate

with

(13)

(14)

(15)

with # # , where # is the cardinal of . Notice that
when the HEMC-IN (12) becomes a classical HMC-IN, that is
to say when are null, except for
and singletons, the formulas (13)–(15) give the formulas of
the classical EM.

C. Unsupervised Restoration of Poorly Modeled
Hidden Signal

Finally, when the distribution of the hidden signal is poorly
known and when the noise is Gaussian, we propose the fol-
lowing method to recover it from the observed signal .

i) Model the prior knowledge on by an EMC.
ii) Estimate the parameters by the EM method above.
iii) Use the Bayesian MPM method given by

with
.

Some numerical results of different experiments we per-
formed are presented in the next section.

Remark 5.1: We considered the case of HMC-IN, but more
general HMC, in which the random variables that
are not independent conditionally on can still be viewed. In
fact, every PMC can be written

(16)

and is an HMC if and only if is the distribution of
[15]. In the latter case, we can take

instead of
, and an analogous result to the one

specified in Proposition 5.1 holds. However, since is no
longer a simple product but a Markov chain, the parameter
estimation method should be adapted. Note that by applying
this model to the situation of Example 3.2, considered with cor-
related noise, we obtain a simple example of an EMC defined
on by (with the class “clouds” assimilated to

).
Remark 5.2: Let us note that there are different kinds of

nonstationarities in HMC. In fact, they can be due to the
nonstationarity of to the nonstationarity of , or
both of them. Therefore, this paper deals with models with
nonstationary ; however, the nonstationarity of
could be treated in analogous manner. To do so, the proba-
bility
would be replaced by a mass function

, in which is obtained in some
way, preferably in an unsupervised way, from the probability

. Another interesting way of dealing with
the nonstationarity of , which is proposed and success-
fully applied in speech processing in [17], [18], is by replacing
the time-varying mean of the Gaussian by
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a mean of the form , where the
functions are given, and the time-shift parameter

is such that represents the sojourn time in state
(therefore, , and ).
Thus, we may say that in such models, the nonstationarity of

is managed by increasing the order of Markovianity;
in fact, we see that for
some . As in the present paper, the authors propose the
all parameter estimation method and the resulting unsupervised
restoration.

VI. UNSUPERVISED RESTORATION OF NONSTATIONARY

SIGNALS USING HEMC-IN

This section is dedicated to some applications of the unsuper-
vised restoration method above the following problem.
is a classical Gaussian HMC-IN, where is indepen-
dent of . The difficulty is that the hidden signal , which is
a Markov chain, can be strongly nonstationary, and its distribu-
tion is not known. The problem is then to estimate from

. The classical unsupervised MPM restoration method would
consist of considering that is a stationary HMC-IN, es-
timating the parameters with the classical EM, and applying
MPM based on the estimates obtained. We compare the results
so obtained with the results obtained with the MPM based on
an HEMC-IN, which is also in an unsupervised manner, as de-
scribed in the previous section. We also show the existence of
different situations in which the new method proposed in this
paper significantly improves the results obtained with the clas-
sical one.

We present two series of experiments. In the first one, nonsta-
tionary simulated HMC-IN are considered, and different unsu-
pervised restoration results with both classical and new methods
are given. In the second one, we consider the problem of image
segmentation. A nonstationary noisy class image is segmented
by both evidential and classical methods, where the bidimen-
sional set of pixels are previously transformed into a mono-di-
mensional set via the Hilbert–Peano scan, as previously used in
[19].

A. Hidden Nonstationary Markov Chains

We consider an HMC-IN , verifying (1), with
and the two following matrices

The Markov chain is nonstationary in
the following way. Given the two transition matrices and

, for ,
the nonstationary chain then verifies the
following.

1) The distribution of is (0.5,0.5).
2) is the transition matrix in .
3) is the transition matrix in .
A realization is simulated, and is sampled

according to , where
is Gaussian with mean 0 and variance 1, and is
Gaussian with mean 2 and variance 1. The realization

TABLE I
ERROR RATIOS CORRESPONDING TO M ;M AND DIFFERENT s

TABLE II
ERROR RATIOS CORRESPONDING TO M ;M AND DIFFERENT s

is then estimated by the Bayesian MPM method from in
three different ways.

1) The first restoration is obtained using the real parameters
of the hidden nonstationary chain. This is a reference one,
and according to the general theory, the error rate ,
which is the rate of wrongly classified observations, is
minimal.

2) The second restoration is obtained using the parameters
estimated with the EM algorithm, considering that
is an HMC-IN (the hidden chain is assumed stationary).
The error rate is denoted by .

3) The third restoration is obtained using the parame-
ters estimated with the EM algorithm, considering that

is an HEMC-IN. The error rate is denoted by
(the HEMC-IN-EM is initialized by the

results of HMC-IN-EM).
We present two series of results: The first one, corresponding

to , is given in Table I, and the second one, corresponding

to the same and instead of , is given

in Table II. According to these results, we see that
is always inferior to , and for some , the gain of
efficiency can be quite striking.

B. Noisy Nonstationary Images

Our example here is a 128 128 size image containing
two classes, which is presented in Fig. 1. It is then noised with
Gaussian independent noise, with variance and means 0 and 2,
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Fig. 1. Restorations using HMC-EM-MPM and HEMC-IN-EM-MPM of a
two-class image noised by N (0; 1) and N (2; 1). (a) Initial image X = x.
(b) Noised image Y = y. (c) Restoration result considering HMC-IN model:
error rate = 14:62%. (d) Restoration result considering the HEMC-IN model:
error rate = 5:05%.

TABLE III
ESTIMATES WITH EM IN HMC AND HEMC-IN CONTEXTS. REAL NOISE

GAUSSIAN DENSITIES ARE N (0; 1) AND N (2;1)

resulting in a “Noisy image” that is also presented in Fig. 1. The
bidimensional set of pixels is converted, via a Hilbert–Peano
scan, into a mono-dimensional set , as
described in [19]. The results presented in Fig. 1 clearly show
that the unsupervised HMC-IN-EM-based MPM is unable to
find details in the wings and tail of the bird, whereas the unsu-
pervised HEMC-IN-EM-based MPM is able to find the details.
The estimates of different parameters by both the HMC-IN-EM
and HEMC-IN-EM methods are presented in Table III. We can
see that HEMC-IN-EM is more efficient in the noise parameter

estimation. An another interesting point is that HEMC-IN-EM
attributes the probability 0.2573, which is rather strong, to

, which could be seen, roughly speaking,
as an inadequacy measurement of the stationary HMC-IN,
which is given by HMC-IN-EM, to the data. In fact, when
the hidden data suit a stationary HMC-IN, HEMC-IN-EM
gives the latter model, and thus, the probabilities attributed to

, and
tend toward zero. Notice that outside its interest in image
processing, the results of this subsection show a kind of robust-
ness, which is quite useful when considering real data. In fact,
transforming the set of pixels into a mono-dimensional set, the
realizations obtained from different real images, like in
Fig. 1, are not necessarily Markov chain realizations. Therefore,
the results obtained seem to show that the whole modeling and
associated unsupervised restoration method proposed in the
paper presents a good statistical robustness.

VII. CONCLUSIONS AND PERSPECTIVES

In this paper, we have provided an original unsupervised
method for restoring nonstationary hidden Markov chains,
with potential applications to various problems. The main
contribution was to tackle the lack of stationarity using the
theory of evidence. More precisely, the prior nonstationary
distribution of the hidden Markov chain was replaced with
some particular mass function, which was found in an un-
supervised manner. Bayesian restoration techniques are then
rendered applicable, according to a recent result that asserts
that the Dempster–Shafer fusion of such evidential priors,
with the probability provided by the observations, is a triplet
Markov chain. Simulations attest to the favorable behavior of
the method.

As for perspectives, we may envisage extensions to more
complex noise processes than the Gaussian ones considered
here. The EM, or Iterative Conditional Estimation (ICE) [20]
based methods considered in [19] could then be adapted to the
nonstationary case considered in this paper. Other perspectives
could concern the use of spatially correlated noise or still the
use of fully Bayesian methods, in which one considers a prior
knowledge on parameters.

APPENDIX

ERR

(17)

ERR

(18)

Following the DS fusion rule, we have
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Therefore, means
or . The calculus of

ERR is analogous to the calculus of ERR , with
instead of . According to (18), the calculus

gives

ERR

Assuming that

ERR ERR

we have

ERR

and thus

ERR

Taking the expectation gives

ERR
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