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Abstract—Due to the enormous quantity of radar images
acquired by satellites and through shuttle missions, there is
an evident need for efficient automatic analysis tools. This
paper describes unsupervised classification of radar images
in the framework of hidden Markov models and generalized
mixture estimation. Hidden Markov chain models, applied to a
Hilbert–Peano scan of the image, constitute a fast and robust
alternative to hidden Markov random field models for spatial
regularization of image analysis problems, even though the
latter provide a finer and more intuitive modeling of spatial
relationships. We here compare the two approaches and show
that they can be combined in a way that conserves their respective
advantages. We also describe how the distribution families and
parameters of classes with constant or textured radar reflectivity
can be determined through generalized mixture estimation.
Sample results obtained on real and simulated radar images are
presented.

Index Terms—Generalized mixture estimation, hidden Markov
chains, hidden Markov random fields, radar images, unsupervised
classification.

I. INTRODUCTION

BOTH visual interpretation and automatic analysis of data
from imaging radars are complicated by a fading effect

called speckle, which manifests itself as a strong granularity in
detected images (amplitude or intensity). For example, simple
classification methods based on thresholding of gray levels
are generally inefficient when applied to speckled images, due
to the high degree of overlap between the distributions of the
different classes. Speckle is caused by the constructive and de-
structive interference between waves returned from elementary
scatterers within each resolution cell. It is generally modeled
as a multiplicative random noise [1], [2]. At full resolution
(single-look images), the standard deviation of the intensity is
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equal to the local mean reflectivity, corresponding to an SNR of
0 dB. One possible way to overcome this problem is to exploit
spatial dependencies among different random variables via a
hidden Markov model.

Markov random fields are frequently used to model stochastic
interactions among classes and to allow a global Bayesian op-
timization of the classification result [3], according to criteria
such as the maximuma posteriori(MAP) or the maximum pos-
terior marginal (MPM) [3]–[10]. However, the computing time
is considerable and often prohibitive with this approach. A sub-
stantially quicker alternative is to use Markov chains, which
can be adapted to two-dimensional (2-D) analysis through a
Hilbert–Peano scan of the image [11]–[14].

In the case of unsupervised classification, the statistical
properties of the different classes are unknown and must be
estimated. For each of the Markov models cited above, we
can estimate characteristic parameters with iterative methods
such as expectation–maximization (EM) [15]–[17], stochastic
expectation–maximization (SEM) [18], or iterative conditional
estimation (ICE) [19], [20]. Classic mixture estimation consists
in identifying the parameters of a set of Gaussian distributions
corresponding to the different classes of the image. The
weighted sum (or mixture) of the distributions of the different
classes should approach the overall distribution of the image. In
generalized mixture estimation, we are not limited to Gaussian
distributions, but to a finite set of distribution families [14],
[21]. For each class we thus seek both the distribution family
and the parameters that best describe its samples. In this
paper, we consider some distribution families that are well
adapted to single- or multilook amplitude radar images and to
classes with or without texture [2]. By texture, we here refer to
spatial variations in the underlying radar reflectivity and not
the variations due to speckle. According to the multiplicative
noise model, the observed intensity is the product of the radar
reflectivity and the speckle.

In this study, we limit ourselves to the ICE estimation method
and the MPM classification criterion. When analyzing an image,
the only input parameters entered by the user is the number
of classes and the list of distribution families that are allowed
in the generalized mixture. The estimation and classification
schemes are described separately for the two Markov models.
We compare their performances and show in particular that the
Markov chain method can compete with the Markov random
field method in terms of estimation and classification accuracy,
while being much faster. We furthermore introduce a hybrid
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method that combines the speed and robustness of the estima-
tion and classification methods based on Markov chains with the
fine spatial modeling of Markov random fields. Tests have been
conducted on both real and simulated synthetic aperture radar
(SAR) data, with different compositions of distribution fami-
lies.

The paper is organized as follows. In Section II, we intro-
duce the hidden Markov random field and hidden Markov chain
models, as well as the different probabilities that are needed for
parameter estimation and classification. For simplicity, we first
describe MPM classification in Section III, assuming known
parameters for both Markov models. The ICE parameter esti-
mation methods are presented in Section IV, first in the frame-
work of classic mixture estimation (only Gaussian distributions)
and then for generalized mixture estimation (several possible
distribution families). Specific adaptations to radar images are
mentioned. All the algorithms are described in sufficient de-
tail to be implemented by readers that are familiar with sta-
tistical image processing. Estimation and classification results
obtained on real and simulated SAR images with the two ap-
proaches are reported in Section V. We here also describe the
improvements obtained by combining Markov chain methods
and Markov random field methods in the estimation phase. Our
conclusions are given in Section VI.

II. M ODELS

Let be a finite set corresponding to the pixels of an
image. We consider two random processes and

. represents the observed image andthe un-
known class image. Each random variable takes its values
from the finite set of classes , whereas each

takes its values in the set of real numbers. We denote real-
izations of and by and , respec-
tively.1

We here suppose that the random variables are
conditionally independent with respect toand that the distri-
bution of each conditional on is equal to its distribution
conditional on .2 In practical applications, the assumption
of conditional independence is often difficult to justify. How-
ever, numerous algorithms based on hidden Markov models that
make this assumption have been successfully applied to real im-
ages.

All the distributions of conditional on are then
determined by the distributions of with respect to

, which will be denoted :

(1)

1As a practical example, consider a radar imageY = y covering an area
composed of agricultural fields. We can imagine a corresponding class image
X = x, where the different crops are identified by discrete labels. Each ob-
served pixel amplitude depends on several factors, including the characteristic
mean radar reflectivity and texture of the underlying class, the speckle phenom-
enon, the transfer function of the imaging system, and thermal noise. The latter
is in general negligible.

2In the case of radar images, this means that we suppose uncorrelated speckle,
i.e., that the radar system has constant transfer function. This is generally not
the case, but it is often used as an approximation.

Fig. 1. Pixel neighborhood and associated clique familiesC andC in the
case of four-connectivity.

As indicated above, we will model the interactions among the
random variables by considering that the prior distri-
bution of can be modeled by a Markov process. We refer to
it as a hidden Markov model, as is not directly observable.
The classification problem consists in estimating from
the observation .

A. Hidden Markov Random Fields

Let denote a neighborhood of the pixelwhose geometric
shape is independent of . is a Markov random field if
and only if

(2)

i.e., if the probability that the pixel belongs to a certain class
conditional on the classes attributed to the pixels in the rest

of the image is equal to the probability of conditional on the
classes of the pixels in the neighborhood.

Assuming that the probability of all possible realizations of
is strictly positive, the Hammersley–Clifford theorem [4] estab-
lishes the equivalence between a Markov random field, defined
with respect to a neighborhood structure, and a Gibbs field
whose potentials are associated with. The elementary rela-
tionships within the neighborhood are given by the system
of cliques . Fig. 1 shows the neighborhood and the associated
cliques in the case of four-connectivity.

For a Gibbs field

(3)

where is the energy of , and
is a normalizing factor. The

latter is in practice impossible to compute due to the very
high number of possible configurations . The Hammer-
sley–Clifford theorem makes it possible to relate local and
global probabilities [7], [21]. Indeed, the local conditional
probabilities can be written as

(4)
where is the local energy function, and

is a normalizing
factor. There are several ways of defining the local energy

, and finding a good compromise between its modeling
power—which increases when its complexity increases—and
the possibilities for efficient estimation of it in unsupervised
classification methods—which decreases when its complexity
increases—remains an open problem. For simplicity, we will
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restrict ourselves to Potts model, four-connectivity and cliques
of type [7], in which case is the number of
pixels for which , minus the number of pixels

for which , multiplied by a regularity parameter
. The global energy in (3) is computed in a similar way,

except that we sum the potentials over all vertical and horizontal
cliques in the image. As will be explained later, it can be

advantageous to have different regularity parametersand
horizontally and vertically.

Bayes’ rule and the conditional independence of the samples
(1) allow us to write thea posterioriprobability as

(5)

and the corresponding local conditional distributions as

(6)

where and are normalizing factors obtained by summing
over all possible nominators, similar toand . Substituting

into (5), we see that
conditional on is a Gibbs field (3).

It is not possible to createa posteriorirealizations of ac-
cording to (5) directly, but they can be approximated iteratively
with the Metropolis algorithm [22] or Gibbs sampler [5]. We
will here only consider Gibbs sampler, which includes the fol-
lowing steps.

• We start from an initial class image .
• We sweep the image repeatedly until convergence. For

each iteration and for each pixel

a) the locala posteriori distribution given by (6) is
computed;

b) the pixel is attributed to a class drawn randomly ac-
cording to this distribution.3

In a similar way,a priori realizations of obeying (3) can
be computed iteratively using (4).

B. Hidden Markov Chains

A 2-D image can easily be transformed into a one-dimen-
sional chain, e.g., by sweeping the image line by line or column
by column. Another alternative is to use a Hilbert–Peano scan
[11], as illustrated in Fig. 2. Generalized Hilbert–Peano scans
[12] can be applied to images whose length and width are not
powers of two. In a slightly different sense than above, now let

and be the vectors of
random variables ordered according to such a transformation of
the class image and the observed image, respectively. Their re-
alizations will consequently be denoted and

3Random sampling of a class according to a distribution can be done in the
following way: We consider the interval [0,1] and attribute to each class a subin-
terval whose width is equal to the probability of that class. A uniformly dis-
tributed random number in [0,1] is generated, and the class is selected according
to the subinterval in which this random number falls.

(a) (b) (c)

Fig. 2. Construction of a Hilbert–Peano scan for an 8� 8 image. (a)
Initialization. (b) Intermediate stage. (c) Result.

. According to the definition, is a Markov
chain if

(7)

for . The distribution of will consequently be
determined by the distribution of , denoted by , and the set
of transition matrices , whose elements are

. We will in the following assume that
the probabilities

(8)

are independent of. The initial distribution then becomes

(9)

and the transition matrix is constant (independent of) and
given by

(10)

Hence, thea priori distribution of is that of a stationary
Markov chain. It is entirely determined by the parameters

, and we can write

(11)

where is the index of the class of theth element of the chain.
The so-calledforward andbackwardprobabilities

(12)

and

(13)

can be calculated recursively. Unfortunately, the original for-
ward–backward recursions derived from (12) and (13) are sub-
ject to serious numerical problems [13], [23]. Devijveret al.[23]
have proposed to replace the joint probabilities bya posteriori
probabilities, in which case

(14)

and

(15)
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In the following, we use the numerically stable forward–back-
ward recursions resulting from these approximations:

• Forward initialization

(16)

for .
• Forward induction

(17)

for and .
• Backward initialization

(18)

for .
• Backward induction

(19)

for and .
The joint probability of the classes of two subsequent ele-

ments given all the observations

(20)

can be written as a function of the forward–backward probabil-
ities

(21)

The marginala posterioriprobability, i.e., the probability of
having class in element number given all the observations

, can then be obtained from (21):

(22)

It can be shown [14] that thea posterioridistribution of ,
i.e., , is that of a nonstationary Markov chain,
with transition matrices given by

(23)

Using (23), we can simulatea posteriorirealizations of di-
rectly, i.e., without iterative procedures as in the case of hidden
Markov random fields. The class of the first element of
the chain is drawn randomly according to the marginala poste-
riori distribution (22). Subsequently, for each new element

, the transition probabilities (23) are com-
puted, the class of the precedent element being fixed,

and is obtained by random sampling according to
this distribution.

III. CLASSIFICATION

Let us first assume that we know the distributionand the
associated parameter vector of each class (in the case of a
scalar Gaussian distribution, for example, where

is the mean value and the variance), as well as the regu-
larity parameters of the underlying Markov model (or ). In
a Bayesian framework, the goal of the classification is to deter-
mine the realization that best explains the observation

, in the sense that it minimizes a certain cost function.
Several cost functions can be envisaged, leading to different es-
timators, such as the MAP, which aims at maximizing the global
a posterioriprobability , and the MPM, which consists
in maximizing the posterior marginal distribution for
each pixel, i.e., finding the mode of each local posterior distri-
bution. In this study, we use MPM classification.

A. Hidden Markov Random Fields

In the case of hidden Markov random fields, the MPM is com-
puted as follows [6].

• A series ofa posteriori realizations of are computed
iteratively, using Gibbs sampler (or the Metropolis algo-
rithm) based on the locala posterioriprobability function
(6). Each realization is obtained by generating an initial
class image with a random generator and by performing a
certain number of iterations with Gibbs sampler (until ap-
proximate convergence of the global energy).

• For each pixel , we retain the most frequently occurring
class .

The required number ofa posteriorirealizations and iterations
per realization will be discussed in Section V.

B. Hidden Markov Chains

The MPM solution can be calculated directly for hidden
Markov chains, based on one forward–backward computation.

• For every element in the chain, and for every possible
class , we compute

a) forward probabilities (17);
b) backward probabilities (19);
c) marginala posterioriprobabilities (22).

• Each element is attributed to the class that maxi-
mizes .

IV. M IXTURE ESTIMATION

In practice, the regularity parameters and the parameters of
the distributions of the classes are often unknown and must be
estimated from the observation . As the distribution of

can be written as a weighted mixture of probability densi-
ties, , such a problem is called
a mixture estimationproblem. The problem is then double: we
do not know the characteristics of the classes, and we do not
know which pixels are representative for each class. We first
presentclassicmixture estimation, where all classes are sup-
posed to be Gaussian, and then introducegeneralizedmixture
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estimation, where several distribution families are possible for
each class. There are several iterative methods for mixture esti-
mation, including EM [15], SEM [18], and ICE [19], [20]. Here
we will only consider ICE, which has some relations with EM
[24]. The ICE method has been applied to a variety of image
analysis problems, including classification of forest based on re-
mote sensing images [25], segmentation of sonar images [26],
segmentation of brain SPECT images [27], video segmentation
[28], multiresolution image segmentation [29], and fuzzy image
segmentation [30], [31]. In this paper, we also use the general-
ized ICE, which is an extension of the classic ICE to the case
where the distribution family can vary with the class and is not
known. We will only present what is necessary for the imple-
mentation, and not the underlying theory, which can be found in
[14] for hidden Markov chains, and in [21] for hidden Markov
random fields. Furthermore, we propose a special version of
the ICE for hidden Markov random fields, where the estima-
tion of the regularity parameter is inspired by the generalized
EM method proposed in [32].

A. Hidden Markov Random Fields

The ICE algorithm iteratively createsa posteriori realiza-
tions and recalculates the class and regularity parameters. In the
framework of classic mixture estimation, the following compu-
tation steps are carried out for each iteration.

• A certain number ofa posteriorirealizations (with index
) are computed with Gibbs sampler, using the parameters

(defining ) obtained in the previous iteration.
• The class parameters are estimated for eacha poste-

riori realization and then averaged to obtain .
• The regularity parameter is estimated with a stochastic

gradient approach [32]–[35], based on a series ofa priori
realizations computed with Gibbs sampler.

Gibbs sampler is initialized with a random image for each
a priori or a posteriori realization. In order to reduce the
computation time, we generally compute only onea posteriori
realization for each iteration of the ICE and only onea priori
realization for each iteration of the stochastic gradient. This
simplification does not imply any significant performance loss.

We use a coarse approximation of the stochastic gradient
equation to compute . Let be the energy (3) of
the currenta posteriori realization and the energy of
thea priori realization in iteration of the stochastic gradient.
Setting to , i.e., the value obtained in the precedent
ICE iteration, we repeatedly compute until
convergence

(24)

The ICE algorithm needs an initial class image from which
the initial parameters of the classes are computed. We have used
the K-means algorithm, which subdivides the gray levels in K
distinct classes iteratively. The initial class centers are uniformly
distributed over the range of gray levels. We sweep the image
repeatedly until stability, attributing each pixel to the class with
the closest center, and recompute the class centers from all the

attributed samples at the end of each iteration. It should be noted
that this method only can be used to initiate classes with dif-
ferent mean values. It is, for example, not suited when classes
with the same mean value but different variance must be distin-
guished. K-means is basically a thresholding method, so if there
is much overlap between the true class distributions, as for radar
images, the resulting class image will be quite irregular and the
initial class statistics will not be very representative. The con-
sequences of this, and a possible remedy, will be commented
on in Section V. The initial value of is predefined (typically

).

B. Hidden Markov Chains

We initiate the ICE algorithm in a similar way for hidden
Markov chains, using K-means to define the class parame-
ters and thus the marginal conditional distributions,
uniformly distributeda priori probabilities , and a generic
transition matrix where when and

when . Each ICE iteration is
based on one forward–backward computation and includes the
following steps.

• For every element in the chain, and for every possible
class , we compute

a) forward probabilities (17) based on ,
, and (given by );

b) backward probabilities (19) based on ,
, and ;

c) marginala posterioriprobabilities (22).
• This allows us to compute

a) new joint conditional probabilities (21)
using , , , and ;

b) new elements of the stationary transition matrix

(25)

c) new initial probabilities

(26)

• We compute a series ofa posteriorirealizations based on
(23) with , , and . For each realization (with
index ), we estimate the class parameters , which are
averaged to obtain and thus .

As for hidden Markov random fields, we generally limit the
number ofa posteriorirealizations per ICE iteration to one.

C. Generalized Mixture Estimation

In generalized mixture estimation, the distributionof each
class is not necessarily Gaussian, but can belong to any distribu-
tion family in a predefined set. This implies the following mod-
ifications to the above ICE algorithms.

• The parameter vectors of all possible distribution fam-
ilies are computed from thea posteriori realizations for
each class.
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• The Kolmogorov distance [36] is used to determine the
most appropriate distribution family for each class [14].

a) We compute the cumulative distributions for all the
distribution families, based on the estimated param-
eters of the class.

b) The cumulative normalized histogram of the class is
computed.

c) We retain the distribution family having the smallest
maximum difference between the cumulative distri-
bution and the cumulative normalized histogram of
the class.

As the pixel values are discrete, the computation and compar-
ison of cumulative distributions and cumulative normalized his-
tograms are straightforward.

D. Application to Radar Images

For simplicity, we here consider only two distribution fami-
lies, corresponding to classes with constant and textured radar
reflectivity, respectively. Assuming the speckle to be spatially
uncorrelated, the observed intensity in a zone of constant re-
flectivity is Gamma distributed. The corresponding amplitude
distribution is

(27)

for and for . . is here the
equivalent number of independent looks of the image, which
should be provided by the data supplier. Let the estimated mo-
ments of order be denoted by . Assuming that the zone of
constant reflectivity mentioned above corresponds to a certain
class, the estimated mean radar reflectivity in (27) is
computed over all pixels attributed to this class.

If we assume that the radar reflectivity texture of a class is
Gamma distributed, the observed intensity will obey a K distri-
bution [37]–[39]. The corresponding amplitude distribution is

(28)

for and for . . is
here the modified Bessel function of the second kind, and the
estimated radiometric parametersand are computed as fol-
lows. Let and

. If , is obtained by solving the
equation . Otherwise
we set , provided that . In both cases

. If and , we consider (28) as
unsuited, and we make sure that it is not selected. Moreover, if
the radar reflectivity texture is very weak (typically ), we
approximate (28) by (27).

For simplicity, we will in the following refer to (27) and
(28) as Gamma and K distributions, respectively, even though
they actually are the amplitude distributions corresponding to
Gamma and K distributed intensities. A more comprehensive
set of distribution families are described in [40].

V. RESULTS

The schemes for unsupervised classification of radar images
described above have been tested on a wide range of real SAR
images, as well as on a few simulated ones. We will here only
present a small but representative selection of results.

A. Real SAR Image With Three Classes

Fig. 3(a) shows an 512 512 extract of a Japanese Earth Re-
sources Satellite (JERS) three-look amplitude image of a trop-
ical forest with some burnt plots related to agricultural activity.
The equivalent number of independent looks . It was
decided to classify the image into three classes. Fig. 3(b) shows
the initial classification obtained with the K-means algorithm.
The classes are represented by different gray levels (the gray
levels do not correspond to the mean amplitudes of the dif-
ferent classes, but they are ordered according to these mean
values). We note that the K-means class image is very irregular
due to the speckle. A more regular initial classification could
be obtained by applying an adaptive speckle filter prior to the
K-means algorithm [41]–[43]. The subsequent mixture estima-
tion and classification are of course carried out on the original
radar image. Our tests indicate that such speckle filtering prior
to the K-means initialization generally has little influence on the
final classification result.

Let us first consider the ICE and MPM algorithms based on
the hidden Markov random fields model. We use 30 iterations
for the ICE algorithm, with only onea posteriorirealization per
iteration. The initial value of the regularity parameter is .
Within each ICE iteration, the maximum number of iterations
for the stochastic gradient is set to ten, with onea priori realiza-
tion per iteration. We interrupt the iteration earlier ifdiffers
less than 0.01 from its previous value. Except for the first ICE
iterations, the stochastic gradient estimation generally requires
very few iterations. Gibbs sampler with as much as 100 itera-
tions is used to generate eacha priori anda posteriorirealiza-
tion. The convergence of the global energy is in fact quite slow,
especially for realizations according to thea priori distribution.
The MPM classification based on the hidden Markov random
fields model relies on tena posteriori realizations. Fig. 3(c)
presents the obtained classification result. The regularity param-
eter was in this case estimated to , and the Gamma
distribution was retained for all three classes. The classifica-
tion result corresponds quite well to our thematic conception
of the image based on visual inspection, except that many fine
structures seems to be lost, and the region borders are somewhat
rounded.

The number of ICE iterations is set to 30 also for the cor-
responding analysis scheme based on Markov chains, and we
compute only onea posteriorirealization per iteration. Fig. 3(d)
shows the result of the MPM classification. It is generally less
regular than the classification in Fig. 3(c), but it represents small
structures more precisely. The K distribution was here selected
by the algorithm for the darkest class, whereas the Gamma dis-
tribution gave the best fit for the two others.

The overall quality is comparable for the two classification
results, but the computing time is quite different: The program
based on Markov random fields spent about 53 min on a
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(a) (b)

(c) (d)

Fig. 3. Classification of a 512� 512 extract of a JERS three-look image of a tropical forest into three classes. (a) Original amplitude image. (b) Initial K-means
classification. Result obtained (c) with the Markov random field method and (d) with the Markov chain method.

PC with a Pentium III 733-MHz processor running Linux,
whereas the program based on Markov chains only needed
2 min and 27 s.

B. Simulated SAR Image With Three Classes

In order to examine the performances more carefully, let
us also consider simulated SAR images. Fig. 4(a) and (b)
represents an ideal class image with three classes and its
three-look speckled counterpart. The darkest and
brightest classes are both Gamma distributed, whereas the one
in the middle is K distributed with texture parameter
(28). The contrast between two consecutive classes is 3.5 dB.
The image size is 512 512 pixels. The ideal class image is
in fact derived from a resampled optical image by K-means
classification, so it is neither a realization of a Markov random
field nor a realization of a Markov chain, but represents a
natural scene. It should therefore permit a fair comparison of
the two analysis schemes.

The parameter settings described in Section V-A were
applied here as well, except that we allowed different regularity
parameters vertically and horizontally for the method based
on Markov random fields, as the resolution is not the same in
the two directions. The regularity parameters were estimated
to and , respectively. However, the

classification result in Fig. 4(c) is far too irregular, and only
72.7% of the pixels are correctly classified. The method based
on Markov chains here gives a more satisfactory result, shown
in Fig. 4(d), with 83.9% of correctly classified pixels. In
particular, the overall regularity of the image seems to be better
estimated.

Both methods correctly identify Gamma distributions for the
darkest and brightest classes, but only the Markov chain method
found that the class in the middle was K distributed. The fit be-
tween the estimated and the true distributions in Fig. 5 is gen-
erally very good, except for the case where the Markov random
field method chooses the wrong distribution family. This can be
part of the reason why the estimation of the regularity parame-
ters here fails, but the main reason is probably the simplicity of
the Markov random field model compared to the true character-
istics of the ideal class image.

The program based on Markov chains was here 37 times
quicker than the one based on Markov random fields.

C. Simulated SAR Image With Four Classes

Fig. 6(a) represents an ideal and approximately isotropic
512 512 class image with four classes, which has been
derived fromanopticalsatellite imagebyK-meansclassification.
Fig. 6(b) shows the corresponding simulated SAR image. The
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(a) (b)

(c) (d)

Fig. 4. Classification of a 512� 512 simulated three-look SAR image into three classes (a) Ideal class image. (b) Speckled amplitude image. Results obtained
(c) with the Markov random field method and (d) with the Markov chain method. The fraction of correctly classified pixels is (c) 72.7% and (d) 83.9%.

(a) (b)

Fig. 5. Fit of the generalized mixture estimation performed (a) by the Markov random field method and (b) by the Markov chain method on the simulated
three-look SAR image with three classes.

parameter settings and the radiometric characteristics of the
classes are the same as for the simulated image with three classes
shown in Fig. 4(b), except that an additional Gamma distributed

class with higher reflectivity has been added. Fig. 6(c) and
(d) represents the results obtained with the Markov random
field and Markov chain methods, respectively.
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(a) (b)

(c) (d)

Fig. 6. Classification of a 512� 512 simulated three-look SAR image into four classes. (a) Ideal class image. (b) Speckled amplitude image. Results obtained
(c) with the Markov random field method and (d) with the Markov chain method. The fraction of correctly classified pixels is (c) 87.0% and (d) 85.2%.

(a) (b)

Fig. 7. Fit of the generalized mixture estimation performed (a) by the Markov random field method and (b) by the Markov chain method on the simulated
three-look SAR image with four classes.

The estimated regularity parameter for the method based on
Markov random fields is here , which visually gives
a very satisfactory result. The proportion of correctly classified

pixels is 87.0%, whereas it is 85.2% for the method based on
Markov chains. The borders are slightly more irregular for the
latter method, but some of the narrow structures are better pre-
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(a) (b)

Fig. 8. Classification results for the simulated three-look SAR images with (a) three classes and (b) four classes, obtained with the new method combining Markov
chain and Markov random field algorithms. The fraction of correctly classified pixels is (a) 85.8% and (b) 87.0%.

(a) (b)

Fig. 9. Fit of the generalized mixture estimation for the simulated three-look SAR images with (a) three classes and (b) four classes, obtained with the new
method combining Markov chain and Markov random field algorithms.

served. The distribution families of the four classes were cor-
rectly identified by both methods, and the fit of the estimated pa-
rameters is comparable, as can be seen from Fig. 7. The Markov
chain algorithm was, however, 25 times faster.

D. Hybrid Method

The scheme based on Markov random fields occurs to have
difficulties in estimating the regularity parameters for many im-
ages, whereas the estimation method based on Markov chains
is very robust. The latter method is also much faster. Neverthe-
less, in cases where the Markov random field method estimates
the regularity parameters correctly, it provides a more satisfac-
tory classification result. In particular, it produces more regular
region borders. We therefore propose a hybrid method, where
we first run the ICE algorithm in the framework of the hidden
Markov chain model. Initializing with the estimated parame-
ters and the lasta posteriorirealization, we thereafter only go
through a very restricted number of ICE iterations and the final

MPM classification with the Markov random field versions of
the algorithms. Here, we have used 30 ICE iterations for the
Markov chain part, followed by one single ICE iteration with
onea posteriorirealization and the MPM with tena posteriori
realizations for the Markov random field algorithms.

Fig. 8(a) represents the classification result obtained with the
new method on the simulated SAR image with three classes.
Visually, the classification result is far better than those given in
Fig. 4, and the portion of correctly classified pixels has increased
to 85.8%. The distribution families of the different classes are
correctly identified, and the estimated regularity parameters are

and . Comparing Fig. 9(a) with Fig. 5(a)
and (b), we see that the overall fit of the estimated distributions
is improved. The computing time is 11 min and 38 s, which is
nearly four times slower than the algorithm based on Markov
chains, but ten times faster than the method based on Markov
random fields.

Likewise, Fig. 8(b) represents the classification result ob-
tained with the hybrid method on the simulated SAR image
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TABLE I
CLASSIFICATION ACCURACY AND COMPUTING TIME FOR THE MARKOV RANDOM FIELD, MARKOV CHAIN,

AND HYBRID METHOD APPLIED TO THESIMULATED SAR IMAGES

with four classes. It is very close to the classification result in
Fig. 6(c), obtained with the Markov random field method. The
portion of correctly classified pixels is the same (87.0%), and
the estimated regularity parameter is very close ;
however, the new method is approximately seven times faster.
The fit of the estimated distributions, shown in Fig. 9(b), is also
slightly better.

Table I resumes the classification accuracy and computing
time of the three methods applied to the simulated SAR images.

VI. CONCLUSION

This paper describes unsupervised classification of radar im-
ages in the framework of hidden Markov models and general-
ized mixture estimation. We describe how the distribution fam-
ilies and parameters of classes with constant or textured radar
reflectivity can be determined through generalized mixture es-
timation. For simplicity, we have restricted ourselves to Gamma
and K distributed intensities. Hidden Markov random fields are
frequently used to impose spatial regularity constraints in the
parameter estimation and classification stages. This approach
produces excellent results in many cases, but our experiments
indicate that the estimation of the regularity parameter is a dif-
ficult problem, especially when the SNR is low. When the esti-
mation of the regularity parameters fails, the mixture estimation
and classification results are poor. The considerable computing
time is another drawback of this approach. Methods based on
a hidden Markov chain model, applied to a Hilbert–Peano scan
of the image, constitute an interesting alternative. The estima-
tion of the regularity parameters, which here are the elements
of a transition matrix, seems to be more robust, but the region
borders generally get slightly more irregular than with the corre-
sponding scheme based on Markov random fields. We therefore
propose a new hybrid method, where we use the Markov chain
algorithms first and those based on Markov random fields only
for the final estimation and classification, thus obtaining both
fast and robust mixture estimation and well regularized classi-
fication results.
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