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Fig. 3. Frequency response of a simple logging device.

the curves present a constant behavior at low frequencies and at rel-
atively high frequency values they increase with frequency. It can be
verified that the points at which the curves start to deviate from the
constant line are related to those frequency values at which the skin
depth in the formation becomes comparable to the length of the tool.

It can be concluded from these results that in the typical range of
operational frequencies, which is between 10 and 100 Hz for such type
of devices, the measurement is substantially affected only for the case
of the saltwater sand formation.

VI. CONCLUSION

The time-harmonic field analysis procedure presented here consti-
tutes a new methodology that presents some important advantages over
the conventional direct-current analysis techniques. It allows one to
study the electric logging systems at their real frequencies of opera-
tion without the necessity of electrostatic assumptions.

As may be concluded from the simulation results, the validity of the
electrostatic assumption cannot be always presupposed. In particular,
special care must be exercised when dealing with conductive forma-
tions.

The presented time harmonic field analysis procedure also provides
a means for studying the suitability of frequency-based radial resistivity
sounding.
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Modeling Non-Rayleigh Speckle Distribution
in SAR Images

Yves Delignon and Wojciech Pieczynski

Abstract—In non-Rayleigh distributed radar images, the number of
scatterers can be viewed as a Poisson distributed random variable, with
the mean itself random. When this mean is Gamma distributed, then the
image classically satisfies the distribution. We add three new possible
distributions for this mean: inverse Gamma, Beta of the first kind, and
Beta of the second kind. We show that new intensity distributions so
obtained can be estimated, with the interest of the extension validated on a
real image.

Index Terms— law, Pearson system, scatterer, speckle, statistical
modeling of SAR images.

I. INTRODUCTION

In radar imagery, the observed intensity is the sum of the contribu-
tions of the different scatterers at the observed surface. In the classical
approach, the number of scatterers in each elementary cell is assumed
to be large enough and approximately constant. The reflected electrical
field is then Gaussian; the observed intensity admits an exponential dis-
tribution, and the amplitude admits a Rayleigh one. However, when the
number of scatterers varies, the distribution of the resulting field may
be non-Gaussian, and so the observed intensity may no longer be expo-
nential. Assuming that the random number of scatterers in each elemen-
tary cell is distributed according to a Poisson distribution, one can con-
sider that the mean of this distribution, or the “expected number of scat-
terers,” is itself a random variable [14]. It is well known that when this
random variable is Gamma distributed, the intensity of the back-scat-
tered field isK distributed [2]–[7], [12]–[15], [17], [20], [22], [27]. In
this paper, we extend the possibilities of distributions of this expected
number of scatterers to three new distributions—inverse Gamma, Beta
of the first kind, or Beta of the second kind—and show that the inten-
sity distribution of the back-scattered field can be calculated in these
three new cases. Furthermore, we propose a method of classification,
using only the observed image, in which case, among four possibilities
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including the classical case and the three new cases, the observed in-
tensity data lie. The usefulness of the three new distributions is tested
on a real image, and it turns out that there exist situations in which the
new distributions are of interest.

This article is organized as follows. In Section II, we briefly recall
the Pearson system of distributions and specify the four distributions of
the intensity corresponding to four distributions of the expected number
of scatterers. Section III is devoted to the problem of intensity identi-
fication, which consists of finding simultaneously the form of its dis-
tribution and the corresponding parameters. In Section IV, we present
some experimental results. Our conclusions and some perspectives for
further work are presented in Section V.

II. I NTENSITY DISTRIBUTION

Let us consider the propagation in free space of an incident
monochromatic wave on a rough surface, with the surface variation
much larger than the wavelength. The back-scattered field from an
illuminated area takes the form

F =

n

k=1

Fk =

n

k=1

Ake
i� (1)

wheren is the number of scatterers,Ak is the amplitude, and�k is
the phase of thekth component.A1; . . . ; An will be assumed to be
independent random variables with the same distribution and likewise
for �1; . . . ; �n, each of which has a uniform distribution on [0, 2�].

If n is large and constant, we get a circular Gaussian distribution for
the back-scattered field. Its components are independent, zero mean
and have the same variancen�2, where�2 is the common variance
of A1; . . . ; An. Consequently, the amplitude is Rayleigh distributed,
and the intensity obeys an exponential law with parameter1=n�2 [10],
[25]. When the numbern of scatterers is random, it can be consid-
ered as a realization of a Poisson distributed random variableN , with
E[N ] = �. Let � itself be a realization of a random variable�. So
the distribution of� defines the distribution ofN , which defines the
distribution ofF . We assume that the distribution of� has a density
f , and our aim is to seekf from the observed image. We assume that
f is in Pearson’s system of distributions, which covers a large variety
of density shapes [7], [16]. Since� is a positive variable, we select the
Pearson densities having a positive support. This is why only three co-
efficients are used in (2), instead of four generally taken. The Pearson
system contains a great number of known parametric laws, from which
we have chosen four laws as possible distributions for�: the Gamma
distribution, Beta distribution of the second kind, the inverse Gamma
distribution, and Beta distribution of the first kind. Let us recall that the
Pearson distribution system is defined as containing the densities veri-
fying the differential equation (2), the variations ofa, c1, c2 providing
different distributions:

df(x)

f(x)
= �

x+ a

x (c1 + c2x)
dx; x > 0: (2)

Now, let us consider the first four momentsm1 = R
xf(x)dx and

mi = R
(x�m1)

if(x)dx for 2 � i � 4, and let us denote by�1
and�2 the following functions:

�1 =
(m3)

2

(m2)
3 ; �2 =

m4

(m2)
2 (3)

(
p
�1 is called “skewness,” and�2 is called “kurtosis”). According to

the general theory,�1 and�2 define a unique densityf in the Pearson
system, andf can be analytically specified from them. Otherwise, it is
possible to show, that if� is large enough, the distribution of the field
F conditional to� = � is circular Gaussian with variances of real and
imaginary parts equal to��2=2, and so the distribution of the random

intensityI conditional to� = � is an exponential distribution of pa-
rameter��2. This implies the following relation among the moments
of � and the moments ofI [19]:

E Ik = �2k�(k + 1)E �k : (4)

Important for what follows is that it is then possible to estimate
�1 and�2 from I . In fact, the momentsm1; . . . ;m4 can be calcu-
lated fromE[�1]; . . . ; E[�4], and the latter can be calculated from
E[I1]; . . . ; E[I4] and�2 using (4). Now, when applying (3),�2 disap-
pears; thus�1 and�2 are expressed as functions ofE[I1]; . . . ; E[I4],
the latter being easily estimated fromI by Ê[Ii] = ((x1)

i + � � � +
(x1)

i)=n, wherex1; . . . ; xn are the observed intensity values on dif-
ferent pixels corresponding to a given class.

Let us note, that according to (3), we must havem2 6= 0, the case
m2 = 0 corresponding to a constant� and thus to an exponential
density. The latter case is easily detected because in the exponential
case we haveE[I] = V ar[I] and so

E[I] = E I2 � (E[I])2: (5)

So we first look at (5), and if it is verified,� is a constant (the distribu-
tion of � is a Dirac distribution).

Finally, when� is not a constant andf is the density of the distri-
bution of�, (�1; �2) can be estimated from the observed sample ofI
and thus gives the distribution of�, when the latter is in the Pearson
system.

Furthermore, if the distribution of� is among the four distributions
mentioned above, it is possible to calculate the corresponding distribu-
tion of I . In fact, if f is the density of the distribution of� andg is
the density of the distribution ofI , recalling that the distribution ofI
conditional to� = � is an exponential distribution of parameter��2,
we have the following:

g(x) =
+1

0

1

��2
e�x=�� f(�)d�: (6)

The integral (6) can be evaluated in the following four cases, of
which the first is well known:

1) f is a Gamma distribution:

f(x) = cx��1 exp �x

�
; x 2 [0;+1) (7)

with c = 1=���(�) (with � the Gamma function [1]),� =
�a=c1 + 1, and� = c1. g is then defined by the following “K
density” [14]:

g(x) = c0
x

�2�

(��1)=2

K��1 2
x

�2�
; x 2 [0;+1) (8)

whereK is the modified Bessel special function of the second
kind [1] and c0 = 2=�(�)�2�. Concerning this classical case,
let us mention that first studies were performed by Jakemanet al.
[12]–[14]. Afterward, Oliver proposed correlatedK distribution
[22]; Jao usedK distribution in the case of rural illuminated [15];
Barakat obtainedK distributions in case of weak scattering [2], [3],
and Yueh and Kong [27] created an extension ofK distribution for
multipolarization images.

2) f is the Beta distribution of the second kind:

f(x) = c
xp�1

(x+ �)p+q
; x 2 [0;+1) (9)

with p = �a=c1 + 1, q = 1=c2 � 1, � = c1=c2, and c =
�q=B(p; q) (with B(p; q) the Beta function [1]).g is then given
by the following “U distribution” [6], [14]:

g(x) = c0Uq+1;2�p
x

�2�
; x 2 [0;+1) (10)

with c0 = q�(p+ q)=�2��(p). The functionU is also called the
“degenerate hypergeometric function” [1].
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TABLE I
CORRESPONDENCEBETWEEN� AND DISTRIBUTIONS

3) f is the inverse Gamma distribution:

f(x) = c
1

x�+1
exp �

�

x
; x 2 (0;+1) (11)

with c = ��=�(�), � = 1=c2, and� = �a=c2. g is then the Beta
distribution of the second kind (B) [19]:

g(x) = c0
1

(x+ �2�)�+1
; x 2 [0;+1) (12)

with c0 = �(�2�)�. This result is quite interesting, as it has previ-
ously been suggested in [21] and, in another procedure of statistical
modeling, in [6].

4) f is Beta distribution of the first kind:

f(x) = cxp�1(� � x)q�1; x 2 [0; �] (13)

with p � 0, q � 0, and� > 0.
g is then defined by theW density [6], [20]:

g(x) = c0
x

�2�

(p=2)�1

� exp �
x

2�2�
W(�p�2q+2)=2; (p�1)=2

x

�2�
(14)

with c0 = �(p+q)=�(p)�2�,p = �a=c1+1,q = a=c1�1=c2+1,
� = �c1=c2, andW the Whittaker special function [1].

These four cases are summarized in Table I.
Finally, let us specify how the nature of the� distribution is

defined from�1 and�2 given by (3). Putting

A =
�1 (�2 + 3)2

4 (4�2 � 3�1) (2�2 � 3�1 � 6)
(15)

we have, forP�, the distribution of�:

(P� is Gamma),2�2 � 3�1 � 6 = 0;

(P� is Beta second kind),A > 1;

(P� is inverse Gamma),A = 1;

(P� is Beta first kind),A < 0: (16)

III. I NTENSITY ESTIMATION

The aim of this section is to specify how to estimate the distribu-
tion of I . Choosing a sample of intensitiesI1; . . . ; In onn pixels, let
�̂1; . . . ; �̂4 be the empirical estimates, obtained fromI1; . . . ; In, of the
first four moments of the distribution ofI . As specified above, these
moments allow us to calculate�1, �2, which give the nature of the dis-
tribution of�. Assuming that this nature is one of cases 1–4, we have
to estimate the corresponding parameters. In cases 1 and 4, the distri-
butions “W ” and “U ” are defined by three parameters:
 = ��2, p,
andq; and in cases 2 and 3, the distributions “K” and “B” are defined
by two parameters:
 = ��2 and�. Putting

a =
�̂2

2(�̂1)2
; b =

�̂3
3�̂1�̂2

(17)

TABLE II
ESTIMATES OF THEFOUR POSSIBLEDISTRIBUTIONS OF FROM EMPIRICAL

MOMENTS AND DEFINED BY (17)

the possible estimates of
, p, q, and� corresponding to different cases
1–4 are presented in Table II.

Finally, when the distribution ofI lies in the set� = fK;U; B;Wg,
which we will call the “KUBWsystem,” its identification can be done
in three steps.

1) Estimate the four first moments�1; . . . ; �4 of the distribution of
I , and calculatem1; . . . ;m4 with (4) and�1, �2 with (3).

2) Identify the distribution of� in the Pearson system with (15) and
(16) and using Table I find the distribution ofI in the KUBW
system.

3) Estimate the parameters of the distribution ofI using (17) and
Table II.

So, when the distribution ofI is in theKUBW system, we obtain an
automated procedure to find its nature and to estimate its parameters.

Remark 3.1: The calculations above are based on the fact that the
distribution of the fieldF conditional to� = � is circular Gaussian
with variance of the amplitude equal to��2. Otherwise, we also men-
tioned that for the number of scatterersN = n large enough and ap-
proximately constant, the distribution of the fieldF conditional to�2

is circular Gaussian with variance of the amplitude equal ton�2. The
latter case has been studied in [5], where�2 was assumed to be random.
In an analogous manner, when the distribution of�2 is Gamma, Beta
of the second kind, inverse Gamma, or Beta of the first kind, the distri-
bution ofI is K, U , B, andW , respectively. However, these two sit-
uations are “physically” different: in this paper�2 is constant, which
means that the nature of the scatterers is the same in the whole image.
For example, if we have the same kind of trees in the whole image and
the density per pixel of those trees varies, then variations of the shape of
the intensity distribution can be due to the variation of the distribution
of �—as described in this paper—and cannot be due to any variation
of �2 which, only depending on the kind of trees, is constant. Finally,
this remark allows us to consider the following “mixed” case, which
undoubtedly is more frequent in real situations: bothn and�2 are re-
alizations of random variablesN and�2. Then all results presented in
this paper remain valid once we show that the distribution of the field
F conditional toN�2 = n�2 is Gaussian. Thus, when the distribution
of N�2 is Gamma, Beta of the second kind, inverse Gamma, or Beta
of the first kind, the distribution ofI isK, U ,B, andW , respectively.

IV. EXPERIMENTS

We present below different results concerning a three-look ampli-
tude JERS1 image of Rondonie, whose resolution is 25 m� 25 m and
which contains four classes (see Figs. 1 and 2). Rondonie is a part of
the Amazon where cultivation displaces the forest. In the Amazon, the
prevalent method of cultivation, called “slash and burn,” is made in the
following way: first plots of dense forest are cut and burned. Then, plots
of burnt land are put into cultivation and converted into meadows after
two or three years. Then other plots of forest are cut, burned, and trans-
formed into cultivated land. Finally, we have four classes: burn plot,
cultivation, dense forest, and recent pasture.
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Fig. 1. Three-look image JERS1 of Rondonie.

Fig. 2. Image of classes: burned plot, cultivation, dense forest, recent pasture.

Thus we have, in the image considered,A =
p
I = ((I1 + I2 +

I3)=3)
1=2, where the random intensitiesI1, I2, andI3 have a common

distribution assumed to beK, U , B, or W . To decide in which case
the data lie, we have to calculate, according to the previous section,
E[(I1)

i], for 1 � i � 4. As E[(I1)
i] = E[(I2)

i] = E[(I3)
i] and

E[(I)i] = E[(I1 + I2 + I3)
i]=3, all E[(I1)

i] can be easily calcu-
lated from the fourE[(I)i], the latter being estimated from the samples
I1 = (A1)

2; . . . ; In = (An)
2 (remember that four different samples,

corresponding to the four classes, are used).
Remark 4.1: The distribution ofI is here the convolution product

of the distributions ofI1=3, I2=3, andI3=3, and thus it can no longer
remain in theK, U , B, W system. However, in each of these four
cases its densityg is calculable. In fact, if we haven looks (n = 3
here), theK,U ,B, andW densities given by (8), (10), (12), and (14),
respectively, become as follows:

g(x) =
2

�(n)�(�)�2�

x

�2�

(�+n�2)=2

�K��n 2
x

�2�
; (18)

g(x) =
�(n+ q)

�(n)B(p; q)�2�

x

�2�

n�1

� Uq+n;1+n�p
x

�2�
; (19)

TABLE III
ESTIMATED AND DISTRIBUTIONSWITH CORRESPONDINGPARAMETERS

g(x) =
(�2�)�xn�1

B(n; �)(x+ �2�)�+n
(20)

g(x) =
�(q)

�(n)B(p; q)�2�

x

�2�

(p+n�3)=2

� exp �x
2�2�

W(�p�2q+n+1)=2;(p�n)=2

� x

�2�
: (21)

Of course, we find again the distributions (8), (10), (12), and (14) for
n = 1.

Otherwise, ifg is the density of the distribution ofI andh is the den-
sity of the distribution ofA =

p
I , then we haveh(x) = 2xg(x2) and

g(x) = (1=2
p
x)h(

p
x) (remember thatx � 0). So, for eachf being

Gamma, Beta second kind, inverse Gamma, or Beta first kind, we have,
for the distribution of the amplitudeA, four densitiesh1; . . ., h4, re-
spectively. In order to keep consistent notations, we give in Table IV the
parameters corresponding to the four possible densities of the distribu-
tion of I1 (which is the same forI2 andI3), but the Kolmogorov dis-
tance is the distance between the cumulative histogram and the cumula-
tive distribution associated with eachhi. The same is done in Table III,
only for the identified distribution.

So, havingE[(I1)
i] for 1 � i � 4, we specify the distribution of

� for each class using the general algorithm presented above. We find
Beta of the first kind for the class 1, Beta of the second kind for the
classes 2 and 4, and a constant for the class 3. According to Table I,
this gives the corresponding distributions ofI , which are recalled in
Table III.

Then we may notice that the four shapes of the distributions of�
corresponding to the four classes, which are presented in Fig. 3, are
quite different.

The results presented in Table III can then be validated in the fol-
lowing way. As we have the ground truth, we can estimate, for each
class, the four parameters
, p, q, and�. Furthermore, we can also con-
sider that��2 is constant, which gives an exponential distribution for
I . So, for each class we have five candidates for the intensity distribu-
tion, and only one is given by the algorithm described above. Is this the
best one? To answer this question, we have to define some similarity
criterion between a given candidate and the real data. One possible sim-
ilarity criterion is the Kolmogorov distance defined by

dji = sup Hj
i (x)� Ĥi(x)

x

(22)

whereĤi(x) is the cumulative histogram calculated from the data cor-
responding to the classi andHj

i is the cumulative distribution of the
candidatej (which is defined by the needed parameters estimated from
the data corresponding to the classi). For a classi, the five candidates
will be K, U , B, W , and exponential distribution, respectively.
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Fig. 3. Distributions of� corresponding to the four classes.

TABLE IV
FOR EACH CLASS, ESTIMATED PARAMETERS OFFIVE CANDIDATES AND THEIR

KOLMOGOROV DISTANCE TO THECUMULATIVE HISTOGRAM

We present in Table III the estimated parameters and the Kol-
mogorov distances. We notice that the results given with the general
proposed method are consistent with the results of the Table IV. In
fact, the method givesW for I of the first class (Table III), andW
actually minimizes the Kolmogorov distance (Table IV). The same is
observed in the three other cases: the method givesU , Exponential,
andU for the classes 2, 3, and 4, respectively (Table III); and the
same distributions minimize the Kolmogorov distance (Table IV). Of
course, we must not claim that such a validation will occur in all kinds
of images. In particular, the use of the Kolmogorov distance is quite
arbitrary, and other criteria could give different results. Furthermore,
the Maximum Likelihood estimators, as in [17] for theK distribution,
could be used to propose some other competing method. However,
these results show that situations exist in which the general method
proposed is of interest.

V. CONCLUSIONS

In this paper we have presented a novel method for seeking radar
image intensity distributions. We assumed that the reflectivity was
constant and the number of scatterers random. In such situations the
number of scatterers is usually considered as a realization of a Poisson
process, defined by a mean� (called “expected number of scatterers”).
The originality of our approach is to assume the expected number

of scatterers� random, with a distribution being in the set of four
following possible distributions: Gamma, Beta second kind, inverse
Gamma, Beta first kind. We specified how these four distributions in-
duce four calculable densities for the observed intensity. Furthermore,
an explicit method of choosing among these four densities from the
observed intensity, with the corresponding parameter estimators, has
been provided. The new system of intensity distributions so obtained,
which includes the classicalK law, has then been used to fit real
image data, and the fitting results are compared to those obtained for
theK law and for the exponential one. These first results show that
the new densities considered can be of interest.

One possible perspective is the application of the proposed intensity
distribution recognition method to the problem of unsupervised image
segmentation. In particular, this could be integrated in the general mix-
tures estimation methods presented in [7] and [9], which would give,
for each class, a density belonging to the KUBW set of distributions.
In the case of hidden Markov field and, possibly, numerous correlated
sensors, one could envisage some adaptation of the methods presented
in [23]. Finally, in more complex situations in which each class may
simultaneously contain noise and texture, Markovian models could be
used via hierarchical models [18] or pairwise ones [24]. Other possible
perspectives are the applications of the proposed intensity distribution
recognition method to the radar image synthesis [8] and analysis [3],
[6], [25], or to the radar detection of signal in a KUBW-distributed
clutter [2], [4], [6].
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About Off-Axis Radiometric Polarimetric Measurements

Philippe Waldteufel and Gérard Caudal

Abstract—Polarization changes for off-axis rays, while a minor effect
for narrow-beam antennas, become a significant issue for wide-beam an-
tennas required by synthetic aperture radiometry. This note provides the
angle-dependent relationship between upwelling fields and collected sig-
nals; results are illustrated by the case of the surface moisture and ocean
salinity (SMOS) mission.

Index Terms—Interferometry, polarization, radiometry.

I. INTRODUCTION

The problem of recovering polarized apparent temperature distribu-
tions from antenna temperature measurements has been addressed by
[1] in the case of a real aperture radiometer. They showed that the an-
tenna couples to both emitted surface polarizations, thus introducing
a term involving the product of the polarized and cross-polarized an-
tenna patterns. In the case of synthetic aperture or interferometric ra-
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diometers, the problem of measuring polarized temperatures is further
complicated because the relationship between radiated and collected
Stokes parameters has to be specified for every orientation within the
solid angle. In addition, in order to give access to a wide field of view,
it is necessary that antenna elements have a wide beam, in such a way
that viewing angles with respect to bore sight reach several tens of de-
grees.

Section II presents the detailed, angle-dependent relationships be-
tween brightness temperatures radiated by a surface and linearly polar-
ized signals collected by an interferometric array element. It is found
that, whenever these signals are used in a dual-polarization mode, an-
gular zones exist where this relationship cannot be inverted due to a
singularity, and therefore radiated horizontal and vertical brightness
temperatures cannot be retrieved. These results are illustrated in Sec-
tion III for a case representative of the future surface moisture and
ocean salinity (SMOS) space mission. The simple models used for rep-
resenting antenna patterns and upwelling temperatures are indicated in
Appendix I and II.

II. TRANSFORMATION OFFIELDS AND STOKES PARAMETERS

A. Geometry

When using an interferometric design to image a surface scene, the
same antenna array is used to measure the emission signature of any
pointP on the terrestrial surface within the field of view (Fig. 1). For
any such point, therefore, one must perform the geometrical transfor-
mation relating the radiated electric fieldsEH , EV to the fieldsEX ,
EY measured on the antenna ports. Here,EH andEV are the com-
ponents of radiated electric fields in the usual local reference frame at
pointP , where horizontal polarizationH is perpendicular to the inci-
dence plane, and vertical polarizationV is perpendicular to the line of
sight in the incidence plane.

We shall consider here the case of a spaceborne interferometer, the
antenna of which consists of a set of identical elementary antennas dis-
posed within a plane (the array plane), with bore sights oriented per-
pendicularly to it. Every antenna has two orthogonal portsX andY
within the array plane. PortX is horizontal and perpendicular to the
orbital plane; portY (as well as the array plane) is tilted by an anglet

from the horizontal. The pattern of every elementary antenna is broad,
in order to yield access to a wide field of view.

Henceforth, we will define the “antenna frame” as being the spher-
ical reference framer, �, � corresponding to the Cartesian frameX,
�Y , �Z of Fig. 1.

B. Transformation of Electric Fields

The change of reference frame betweenE� , E� andEH , EV has
been investigated by Claassen and Fung [1]; they showed that those
sets of components are related together through a rotation by an angle
 around the line of sight direction SP; the rotation angle may be
derived through standard geometry. is taken as increasing in the same
direction as azimuth� in ther, �, � reference frame.

If �g and�g are the colatitude and azimuth of point P relative to the
satellite position, defined with reference to the geographical frameSx,
y, z, the spherical angles�, � in the antenna frame and angle may
be written as

� =Arc cos [sin t sin �g sin�g + cos t cos �g]

� =� Arc sin �

sin t cos �g + cos t sin �g sin�g
sin �

 =Arc sin
cos t sin �g � sin t cos �g sin�g

sin �
: (1)
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