1430

Measurement's Magnitude {volis)

0001 bvvd ol vvead v vvndd seind 3 vemad s

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 6, JUNE 2002

10 e UL R R B AL [9] M. Goldman, Non-Conventional Methods in Geoelectrical

Prospecting London, U.K.: Ellis Horwood, 1990.

Ereshivater sagd [10] V. Sokolov and L. Tabarovsky, “On calculating electromagnetic fields
for induction logging problems by deformation of the integration path
into the complex plane of the integration variabl&g&ol. Geofiz.vol.

/ 3, pp. 86-93, 1973.
Homogeneous (ormation [11] W. Anderson, “Numerical integration of related Hankel transforms of
: orders 0 and 1 by adaptive digital filteringzeophys.vol. 44, no. 7, pp.
: 1287-1305, 1979.
r [12] A. Chave, “Numerical integration of related Hankel transforms by
0.0t Lo i quadrature and continued fraction expansid@gophysicsvol. 48, no.
12, pp. 1671-1686, 1983.
[13] J. Moore and R. PizeMoment Methods in ElectromagneticsNew
York: Wiley, 1984.

TR

N\

TTTT AT

\:
WRITT

01k

vl

w

altivater sadd

ol

001 01 1 10 106 tooo 10t ic’
Frequency (Hz)

Fig. 3. Frequency response of a simple logging device.

Modeling Non-Rayleigh Speckle Distribution

the curves present a constant behavior at low frequencies and at rel- in SAR Images
atively high frequency values they increase with frequency. It can be ] o ] )
verified that the points at which the curves start to deviate from the Yves Delignon and Wojciech Pieczynski

constant line are related to those frequency values at which the skin

depth in the formation becomes comparable to the length of the tool.
It can be concluded from these results that in the typical range gf

Abstract—In non-Rayleigh distributed radar images, the number of
atterers can be viewed as a Poisson distributed random variable, with

operational frequencies, which is between 10 and 100 Hz for such tyae mean itself random. When this mean is Gamma distributed, then the

of devices, the measurement is substantially affected only for the cémege classically satisfies the< distribution. We add three new possible
of the saltwater sand formation. distributions for this mean: inverse Gamma, Beta of the first kind, and

Beta of the second kind. We show that new intensity distributions so
obtained can be estimated, with the interest of the extension validated on a
VI. CONCLUSION real image.

The time-harmonic field analysis procedure presented here constilndex Terms—K law, Pearson system, scatterer, speckle, statistical

modreling of SAR images.

tutes a new methodology that presents some important advantages ove

the conventional direct-current analysis techniques. It allows one to

study the electric logging systems at their real frequencies of opera- |. INTRODUCTION
tion without the necessity of electrostatic assumptions.

As may be concluded from the simulation results, the validity of the
electrostatic assumption cannot be always presupposed. In particmﬂg
special care must be exercised when dealing with conductive fornfi
tions.

In radar imagery, the observed intensity is the sum of the contribu-
ps of the different scatterers at the observed surface. In the classical
p'roach, the number of scatterers in each elementary cell is assumed
to be large enough and approximately constant. The reflected electrical

The presented time harmonic field analysis procedure also provia@d is then Gaussian; the observed intensity admits an exponential dis-

ameans for studying the suitability of frequency-based radial resistivi

m}aution, and the amplitude admits a Rayleigh one. However, when the
number of scatterers varies, the distribution of the resulting field may

sounding. be non-Gaussian, and so the observed intensity may no longer be expo-
nential. Assuming that the random number of scatterers in each elemen-
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including the classical case and the three new cases, the observeéhiensityl conditional toA = X is an exponential distribution of pa-
tensity data lie. The usefulness of the three new distributions is testacheter\o2. This implies the following relation among the moments
on a real image, and it turns out that there exist situations in which theA and the moments of [19]:
new distributions are of interest. k 2k k

This article is organized as follows. In Section II, we briefly recall E [I ] =o T+ 1E [A ] ) “)
the Pearson system of distributions and specify the four distributions ofmportant for what follows is that it is then possible to estimate
the intensity corresponding to four distributions of the expected numbér and 52 from 1. In fact, the momentsn., ..., m4 can be calcu-
of scatterers. Section Il is devoted to the problem of intensity identgted from E[A'],.... E[A"], and the latter can be calculated from
fication, which consists of finding simultaneously the form of its disE[I'], . ... E[I"'] ands” using (4). Now, when applying (3);* disap-
tribution and the corresponding parameters. In Section IV, we pres@egrs; thug andg. are expressed as funptions]ﬁ[ﬂ], ey E[I'],
some experimental results. Our conclusions and some perspectivedtierlatter being easily estimated frafrby E[I°] = ((21)" +--- +
further work are presented in Section V. (x1)*)/n, wherez1,...,z, are the observed intensity values on dif-
ferent pixels corresponding to a given class.

Let us note, that according to (3), we must have # 0, the case
ms = 0 corresponding to a constaitand thus to an exponential

Let us consider the propagation in free space of an incidegiénsity. The latter case is easily detected because in the exponential
monochromatic wave on a rough surface, with the surface variatipse we havé&|I] = Var[I] and so

much larger than the wavelength. The back-scattered field from an 5 .
g 9 E[l] = E [I] - (E[1])". 5)

illuminated area takes the form
n n So we first look at (5), and if it is verified) is a constant (the distribu-
F= Z F, = Z Apel?s (1) tion of A is a Dirac distribution).
k=1 k=1 Finally, when is not a constant and is the density of the distri-
bution of A, (31, 32) can be estimated from the observed samplé of

wheren is the number of scattererd,. is the amplitude, and;. is ' L g
the phase of théth componentA ..., A, will be assumed to be gn;;t;:s gives the distribution of, when the latter is in the Pearson
| .

independent random variables with the same distribution and likew )éF th if the distributi fi the four distributi
ford4,...,6,, each of which has a uniform distribution on [G;]2 urthermore, iHhe distrioution ok IS among he tour distributions

If n is large and constant, we get a circular Gaussian distribution 1J;)ﬂrentloned above, it is possible to calculate the corresponding distribu-

) . f I. In fact, if f is the density of the distribution of andg is
he back- field. | , %1'910 _ / Is the . n o} and
the back-scatiered field. Its components are independent, zero mt%e density of the distribution df, recalling that the distribution aof

and have the same variange?, wheres? is the common variance L ) L 2
of A, ..., A,. Consequently, the amplitude is Rayleigh distributecﬁond't'onal toA = )\ |s.an exponential distribution of parameter”,
and the intensity obeys an exponential law with paramigtes? [10], We have the following:

[25]. When the number. of scatterers is random, it can be consid- g(z) = /“o Le—”/“zf(/\)dk. ©6)
ered as a realization of a Poisson distributed random varigbleith - 0 Ao? ‘

E[N] = ). Let )\ itself be a realization of a random variable So The integral (6) can be evaluated in the following four cases, of
the distribution ofA defines the distribution alv, which defines the which the first is well known:

distribution of F'. We assume that the distribution afhas a density 1) ¢ is a Gamma distribution:

f, and our aim is to seek from the observed image. We assume that
f is in Pearson’s system of distributions, which covers a large variety
of density shapes [7], [16]. Sinceis a positive variable, we select the
Pearson densities having a positive support. This is why only three co-
efficients are used in (2), instead of four generally taken. The Pearson 1
system contains a great number of known parametric laws, from which density” [14]:

we have chosen four laws as possible distributions\fothe Gamma . (a=1)/2 . . x

distribution, Beta distribution of the second kind, the inverse Gammag('r) = <m) Ko <2 025) - €[0,+00) (8)
distributioq, a_nd Beta distribu_tion qfthe first kind_. get us recallt_h_at the “where K is the modified Bessel special function of the second
Pearson distribution system is defined as containing the densities veri-jinq [1] and ¢’ =

- ' : i > & = = 2/T(a)o?3. Concerning this classical case,
fying the differential equation (2), the variationsa@fcy, ¢z providing let us mention that first studies were performed by Jakeeta.
different distributions:

[12]-[14]. Afterward, Oliver proposed correlatdd distribution
df (x) [22]; Jao usedy distribution in the case of rural illuminated [15];
flx) — B Barakat obtained distributions in case of weak scattering [2], [3],

. . and Yueh and Kong [27] created an extensiododlistribution for
Now, let us consider the first four moments = [}, «f(x)dx and

; ) multipolarization images.
mi = [ (& —m)'f(e)defor2 < i < 4, and let us denote by, 2) f is the Beta distribution of the second kind:
and 3. the following functions: ’

Pt
f(‘T) - L(fl" + ’{i)erq s
withp = —a/ci + 1,9 = 1/ca — 1,3 = ci/c2, andc =
39/ B(p, ¢) (with B(p, ¢) the Beta function [1])g is then given

Il. INTENSITY DISTRIBUTION

fla) = ca" "t exp {— g} L2 € [0.+50) @)

with ¢ = 1/3°T(a) (with T' the Gamma function [1])p =
—afer + 1,and3 = ;. g is then defined by the following X

x4+ a d
x(er + o)

x, x> 0. 2

x € [0,+oc) 9)

M4

2
5 = (ms) 8, =

(m2)?" :

: (3)

(m2)*

(v/B1 is called “skewness,” and; is called “kurtosis”). According to

the general theory}; andj3, define a unique densitf in the Pearson
system, and’ can be analytically specified from them. Otherwise, it is
possible to show, that i is large enough, the distribution of the field
F conditional toA = X is circular Gaussian with variances of real and
imaginary parts equal tde2 /2, and so the distribution of the random

by the following ‘U distribution” [6], [14]:
, . T
g(@) = Uytr,2-p <m> @ €10, +00)

with ¢ = ¢q[(p + ¢)/o*BL(p). The functionU is also called the
“degenerate hypergeometric function” [1].

(10)
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TABLE | TABLE I
CORRESPONDENCEBETWEEN A AND I DISTRIBUTIONS ESTIMATES OF THEFOUR POSSIBLE DISTRIBUTIONS OF I FROM EMPIRICAL
MOMENTS @ AND b DEFINED BY (17)
A distribution Gamma |Betasecond |inverse |Beta first |Dirac

kind Gamma | kind Law of 7 B é &
[ distribution K U B w [Exponential K Aia-1) Ll
a—

~ba-2)+a 2(a—b) da—3b -1

U I 5 N .

a b1 b(2-a)-a 2a-b-1
3) f isthe inverse Gamma distribution: B b arl
a

1 3 W - bla—2ta 2(a—b) 2a—bXa- D -1
f(l) =c——exp |:_'_:| ,x € (0,—1—’)6) (11) 2a-b-1 b(2-a)-a QRa-b-1)(2b-ab-a)
rotl T

with e = 8% /T(a), « = 1/co, ands = —a/c2. g is then the Beta

distribution of the second Kind) [19]; the possible estimates of p, ¢, and« corresponding to different cases

1-4 are presented in Table 1.

. , 1 Finally, when the distribution df liesinthe set\ = { K, U, B, W},
gla) =c (x4 o025 z € [0.+o0) (12)  which we will call the KUBW system,” its identification can be done
in three steps.
with ¢’ = a(o” 3)*. This result is quite interesting, as it has previ- 1) Estimate the four first momenis. . . ., ju4 of the distribution of
ously been suggested in [21] and, in another procedure of statistical 1, and calculaten, . .., m4 with (4) andg,, 3, with (3).
modeling, in [6]. 2) Identify the distribution of\ in the Pearson system with (15) and
4) f is Beta distribution of the first kind: (16) and using Table | find the distribution @fin the KUBW
) . . system.
fla) =ca? (B =)™, €0,] (13 3) Estimate the parameters of the distribution afsing (17) and
ithp > 0,¢ > 0,ands > 0 Table Il.
ng ilsj tﬁen’ geﬁne;jabr;/ thg dénsity [6], [20]: So, when the distributionlol i.s in the KUBW systgm, we obtain an
automated procedure to find its nature and to estimate its parameters.
e \@/D-1 Remark 3.1: The calculations above are based on the fact that the
glz)=¢ <m> distribution of the fieldF’ conditional toA = A is circular Gaussian

. . with variance of the amplitude equal d@2. Otherwise, we also men-

- exp {— m} Wip—2q+2)/2, (p—1)/2 <m> (14) tlongd that for the number (_)f s_catt_eréVs: n !arge en(_)l_Jgh and 3p-
/ proximately constant, the distribution of the fieficonditional too

is circular Gaussian with variance of the amplitude equal#. The
latter case has been studied in [5], whetavas assumed to be random.
In an analogous manner, when the distributiomdfis Gamma, Beta
of the second kind, inverse Gamma, or Beta of the first kind, the distri-
bution of I is K/, U, B, andW, respectively. However, these two sit-
uations are “physically” different: in this paper is constant, which

with¢' = T(p+q)/T(p)o?B,p = —a/ei+1,q = afei—1/ca+1,
3 = —ci1/co, andW the Whittaker special function [1].

These four cases are summarized in Table I.

Finally, let us specify how the nature of the distribution is
defined fromg, andj. given by (3). Putting

B (B2 + 3)* means that the nature of the scatterers is the same in the whole image.
A= o g = (15)  For example, if we have the same kind of trees in the whole image and
4(482 —3B1) (2082 — 361 — 6) . . . _
the density per pixel of those trees varies, then variations of the shape of
we have, forPx , the distribution ofA: the intensity distribution can be due to the variation of the distribution
) / ) of A—as described in this paper—and cannot be due to any variation
(Pa is Gamma <20, — 351 — 6 = 0; of o2 which, only depending on the kind of trees, is constant. Finally,
(Py is Beta second kinds A > 1; this remark allows us to consider the following “mixed” case, which
(Py is inverse Gammas A = 1; undogbtedly is more freguent in reaIQSituations: betands* are re-
) ) ) alizations of random variable§ andX“. Then all results presented in
(Py is Beta firstkind <A < 0. (16)

this paper remain valid once we show that the distribution of the field
F conditional toNVX? = no? is Gaussian. Thus, when the distribution
of N¥? is Gamma, Beta of the second kind, inverse Gamma, or Beta
of the first kind, the distribution of is K', U, B, andW, respectively.

The aim of this section is to specify how to estimate the distribu-
tion of I. Choosing a sample of intensitiés, . .., I,, onn pixels, let IV. EXPERIMENTS
i1, ..., fia be the empirical estimates, obtained frém. . ., I,,, of the

first four moments of the distribution df. As specified above, these tude JERS1 image of Rondonie, whose resolution is 2625 m and

moments allow us to calculatg, 3, which give the nature of the dis- which contains four classes (see Figs. 1 and 2). Rondonie is a part of
tribution of A. Assuming that this nature is one of cases 1-4, we haye ( gs. )- P

to estimate the corresponding parameters. In cases 1 and 4, the dig}ﬁ_Amazon where cultl\_/athn dlsplace“s the forest. In t?? Amazqn, the
butions ‘T and “U” are defined by three parameters:= 32, p prevalent method of cultivation, called “slash and burn,” is made in the

andq; and in cases 2 and 3, the distributiors™and “B” are defined following way: firstplqts ofde_nse_forest are cutand _burned.Then, plots
by two parameters; = 3o anda. Putting of burnt land are put into cultivation and converted into meadows after

two or three years. Then other plots of forest are cut, burned, and trans-
formed into cultivated land. Finally, we have four classes: burn plot,
cultivation, dense forest, and recent pasture.

IIl. I NTENSITY ESTIMATION

We present below different results concerning a three-look ampli-

fi2 i3
a=—, b= —/— 17
2(f11)? 3ji1 fiz @n
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TABLE 11l
ESTIMATED A AND I DISTRIBUTIONS WITH CORRESPONDINGPARAMETERS
Class 1 Class 2 Class 3 Class 4
(Bumt plot) (Cultivation) (Dense forest) | (Recent pasture)
A law Beta of the Beta of the Constant Beta of the
first kind second kind second kind
I law w U exponential U
D 1.913 2.780 - 2.978
q 0.205 6.919 - 31.515
Y 15385 8718.2 - 73186
d 1.278 6.375 - 2.433
O —C 20)
x) = W
g B(n,a)(x+ a2p)xtn
(p+n=3)/2
() = e <L)
Fig. 1. Three-look image JERS1 of Rondonie. ’ L(n)B(p.q)o?3 \ 0?3

—r i
* eXP {m} Wi p—2g4n+1)/2,(p—n)/2

. <(Tf—d) . (21)

Of course, we find again the distributions (8), (10), (12), and (14) for
n = 1.

Otherwise, ifg is the density of the distribution dfand is the den-
sity of the distribution ofA = /I, then we havé:(z) = 2x¢(«*) and
g(x) = (1/2+/x)h(y/x) (remember that > 0). So, for eacty being
Gamma, Beta second kind, inverse Gamma, or Beta first kind, we have,
for the distribution of the amplitudd, four densitiesh,,..., h4, re-
spectively. In order to keep consistent notations, we give in Table IV the
parameters corresponding to the four possible densities of the distribu-
tion of I; (which is the same fof., andIs), but the Kolmogorov dis-
tance is the distance between the cumulative histogram and the cumula-
tive distribution associated with eagh. The same is done in Table IIl,
l(J)ljgl_y for the identified distribution.

So, havingE[(I1)'] for 1 < i < 4, we specify the distribution of
A for each class using the general algorithm presented above. We find

Thus we have, in the image considered= /T = ((I, + I. + Beta of the first kind for the class 1, Beta of the second kind for the
I3)/3)'/2, where the random intensitids, I, andI; have acommon classes 2 and 4, and a constant for the class 3. According to Table |,
distribution assumed to b, U, B, or W. To decide in which case this gives the corresponding distributions Iofwhich are recalled in
the data lie, we have to calculate, according to the previous sectigable 1.
E[(I)],for1 < i < 4. AsE[(I1)'] = E[(I2)] = E[(I3)]and  Then we may notice that the four shapes of the distributions of
E[(I)] = E[(I, + I, + I3)']/3, all E[(11)'] can be easily calcu- corresponding to the four classes, which are presented in Fig. 3, are
lated from the fou[(I)'], the latter being estimated from the sampleguite different.

I = (4)°,..., L, = (A.)* (remember that four different samples, The results presented in Table Il can then be validated in the fol-
corresponding to the four classes, are used). lowing way. As we have the ground truth, we can estimate, for each
Remark 4.1: The distribution of/ is here the convolution product class, the four parameteysp, ¢, anda. Furthermore, we can also con-

of the distributions ofl, /3, I./3, andl; /3, and thus it can no longer sider that\o* is constant, which gives an exponential distribution for

remain in thek’, U, B, W system. However, in each of these fourf. So, for each class we have five candidates for the intensity distribu-
cases its density is calculable. In fact, if we have looks ¢ = 3  tion, and only one is given by the algorithm described above. Is this the
here), thel', U, B, andWV densities given by (8), (10), (12), and (14),best one? To answer this question, we have to define some similarity

,j‘l—'h".-ﬂlﬁ-ui "
R i

Fig. 2. Image of classes: burned plot, cultivation, dense forest, recent past

respectively, become as follows: criterion between a given candidate and the real data. One possible sim-
(adn—2)/2 ilarity criterion is the Kolmogorov distance defined by
2 T o n—
) = T @)e7d (7) @) = sup [H] (@) = Hi(2) (22)
Ko <2 %ﬁ) , (18)
7 . wherell; (x) is the cumulative histogram calculated from the data cor-
() = I(n+q) < x ) ' responding to the classand H? is the cumulative distribution of the
L(n)B(p,q)o2B \ 0?3 candidate (which is defined by the needed parameters estimated from

. z 19 the data corresponding to the clagdor a class, the five candidates
“Ugtn1n—p 23 )’ 19 will be K,U, B, W, and exponential distribution, respectively.
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Fig. 3. Distributions ofA corresponding to the four classes.

FOR EACH CLASS, ESTIMATED PARAMETERS OFFIVE CANDIDATES AND THEIR

TABLE IV

KOLMOGOROV DISTANCE TO THE CUMULATIVE HISTOGRAM

Class 1

‘ (Burnt plot) | (Cultivation)

Class 2

(Dense forest)

Class 3

Class 4

of scatterers\ random, with a distribution being in the set of four
following possible distributions: Gamma, Beta second kind, inverse
Gamma, Beta first kind. We specified how these four distributions in-
duce four calculable densities for the observed intensity. Furthermore,
an explicit method of choosing among these four densities from the
observed intensity, with the corresponding parameter estimators, has
been provided. The new system of intensity distributions so obtained,
which includes the classicdl law, has then been used to fit real
image data, and the fitting results are compared to those obtained for
the K law and for the exponential one. These first results show that
the new densities considered can be of interest.

One possible perspective is the application of the proposed intensity
distribution recognition method to the problem of unsupervised image
segmentation. In particular, this could be integrated in the general mix-
tures estimation methods presented in [7] and [9], which would give,
for each class, a density belonging to the KUBW set of distributions.
In the case of hidden Markov field and, possibly, numerous correlated
sensors, one could envisage some adaptation of the methods presented
in [23]. Finally, in more complex situations in which each class may
simultaneously contain noise and texture, Markovian models could be
used via hierarchical models [18] or pairwise ones [24]. Other possible
perspectives are the applications of the proposed intensity distribution
recognition method to the radar image synthesis [8] and analysis [3],

(Recent pasture)

K law
o 12.452 1.877 26.789 27171
Y 1115,8 2181.,6 445.8 25449
d, 3.049 9.658 7.026 2.71
B law
o 13.45 2.877 27.789 3.719
4 173020 7687 319930 18798
d, 3.239 8.168 6.838 6.731
W-U law
w U w U
p 1913 2.78 1.992 2.978
q 0.205 6.919 0.133 31.515 [1]
¥ 15385 8718.2 12737 73186
d 1.278 6.375 7.024 2.433
Exponential law [2]
Ao’ 13895 4095 11943 6915
d 2.169 47.63 5.168 26.30

(3]

We present in Table Il the estimated parameters and the Kol-[4]
mogorov distances. We notice that the results given with the general
proposed method are consistent with the results of the Table IV. In
fact, the method givedV for I of the first class (Table Ill), andV 3]
actually minimizes the Kolmogorov distance (Table IV). The same is
observed in the three other cases: the method dieExponential,
and U for the classes 2, 3, and 4, respectively (Table Ill); and the
same distributions minimize the Kolmogorov distance (Table V). Of (7]
course, we must not claim that such a validation will occur in all kinds
of images. In particular, the use of the Kolmogorov distance is quite [g]
arbitrary, and other criteria could give different results. Furthermore,
the Maximum Likelihood estimators, as in [17] for thédistribution,
could be used to propose some other competing method. However[,g]
these results show that situations exist in which the general method
proposed is of interest. [10]

(6]

[11]
V. CONCLUSIONS
In this paper we have presented a novel method for seeking radar
image intensity distributions. We assumed that the reflectivity wag12]
constant and the number of scatterers random. In such situations the
number of scatterers is usually considered as a realization of a Poiss
process, defined by a mear(called “expected number of scatterers”). [14]
The originality of our approach is to assume the expected number

[6], [25], or to the radar detection of signal in a KUBW-distributed
clutter [2], [4], [6].
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We shall consider here the case of a spaceborne interferometer, the
antenna of which consists of a set of identical elementary antennas dis-
About Off-Axis Radiometric Polarimetric Measurements  posed within a plane (the array plane), with bore sights oriented per-
pendicularly to it. Every antenna has two orthogonal paftandY
Philippe Waldteufel and Gérard Caudal within the array plane. PotX is horizontal and perpendicular to the
orbital plane; port” (as well as the array plane) is tilted by an angle
Abstract_Polarization changes for off-axis ravs. while a minor effect from the horizontal. The pattern of every elementary antenna is broad,
for narrow-beam antennas, begome a significantyis’sue for wide-beam an- " order to yield access tc.) a wide field of view. .
tennas required by synthetic aperture radiometry. This note provides the ~ Henceforth, we will define the “antenna frame” as being the spher-
angle-dependent relationship between upwelling fields and collected sig- ical reference frame, 4, ¢ corresponding to the Cartesian frarie

nals; results are illustrated by the case of the surface moisture and ocean —Y", —Z of Fig. 1.
salinity (SMOS) mission.

Index Terms—interferometry, polarization, radiometry. B. Transformation of Electric Fields

The change of reference frame betwden E, and Err, Ev has
I. INTRODUCTION been investigated by Claassen and Fung [1]; they showed that those

) ) __sets of components are related together through a rotation by an angle
The problem of recovering polarized apparent temperature distribu-around the line of sight direction SP; the rotation anglenay be

tions from antenna temperature measurements has been addresseg yed through standard geometryis taken as increasing in the same
[1] in the case of a real aperture radiometer. They showed that the gection as azimuth in ther, 4, ¢ reference frame.

tenna couples to both emitted surface polarizations, thus introducings ¢, andg, are the colatitude and azimuth of point P relative to the

a term involving the product of the polarized and cross-polarized agyteliite position, defined with reference to the geographical frame
tenna patterns. In the case of synthetic aperture or interferometric fa- the spherical angles ¢ in the antenna frame and anglemay

be written as
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